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We determine the distribution function of the energy loss of low-energy particles passing through a 
"thin layer of matter" (i.e., when the loss is smaller than the initial particle energy) with allowance 
for the multiple scattering effect. 

A charged low- energy particle (ion) passing through a 
layer of matter loses energy as a result of elastic and 
inelastic ("electronic") collisions with the atoms of this 
matter. Owing to fluctuations, the particle energy loss 
is not constant, and therefore ions having the same 
initial energy will emerge from a certain layer of uni
form thickness with noticeably different energies. The 
fluctuations in the elastic collisions are connected with 
the fact that certain collisions occur with a transfer of 
energy much larger than the average value. In the case 
of separate inelastic collision, the ions lose in the main 
only a small fraction of their energy, and the fluctuations 
of the energy loss are due in this case to fluctuations in 
the number of the inelastic collisions. In addition, a 
definite contribution to the total statistical scatter of the 
energy loss is made by fluctuations connected with the 
effect of multiple scattering, i.e., with the differences 
between the true paths of the ion in the medium for dif
ferent ions having identical initial energies. 

A theoretical analysis of the statistical scatter of the 
energy loss was made in a number of papers (see the 
paper of Starodubtsev and Romanovl1l, where referen
ces to work by others can be found), but the results ob
tained there pertain to the region of large initial ion 
energies, namely to the region in which the average en
ergy loss of the charge particle is determined by the 
Bet he- Bloch formula. 

In this paper we consider the energy loss of low
energy ions. By low-energy ions we mean ions whose 
energy is such that the theory of Lindhard and 
co-workers (henceforth denoted LSS) is validl2l. As is 
well known, the LSS theory is valid for ions whose 
velocity is v $ V1 = z~13vo (Z1-atomic number of parti
cles, Vo-electron velocity at the first Bohr orbit of the 
hydrogen atom, equal to 2.2 x 108 em/ sec) or E :S E1 
= 25Z A 1 (keY). 

In the LSS theory, the energy loss in elastic and in
elastic collisions is regarded as a continuous and un
correlated process, and the energy E and the range R 
of the ion are expressed in the dimensionless variables 
E and p: 

aTFA2 
e = E p = NnaTF'yR. (1) 

Z,Z,e'(A,+A,) ' 

where A1, A2, z1e, and z2e are respectively the mass 
numbers and the charges of the ion and of the atom of 
the medium producing the deceleration, N is the density 
of the atoms of the medium, y = 4AlA2(A1 + A2r\ 

'! 2/ ! 2 

aTF= 0.8853(/i'/me') (Z, '+Z, ')-'/, = 0.468(Z/' +Z/' )-'t.(A) (2) 

is the Thomas- Fermi screening radius in the form pro
posed by Lindhard for the case of the interaction of two 
atomsl3). 

We denote the unknown distribution function by f(r, A): 
it represents the probability that an ion with a given 
initial energy E, passing through a layer of matter r, 
loses a fraction of energy lying between A and A + dA 
(E, r, and A are written in terms of the dimensionless 
variables of the LSS theory). The layer of matter r is 
assumed to be so small, that the energy lost in it is 
small compared with the initial ion energy. The kinetic 
equation for the distribution function is 

of 1 •• de of 
-=-Jro(u)[f(r,~-u)-f(r,~)]du-(-) -. (3) 
or y 0 dr 'a~ 

In (3), (dE/dr)e is the slowing-down ability for inelastic 
collisions: 

(!::_) = S,N = Ke'l•, K = ~. [ 0.0793Z, 't.Z,'I• (A, +A,)'!. ] ( 4) 
dr , (Z,''•+Z,'I•)'t.A,'i•A,'t. . 

The constant l; e in ( 4) is of the order of zi16• It is shown 
that oscillations occur in the value of K, owing to the 
shell structure of the atoml4 l. The function w(u) is the 
probability (per unit path length) of the energy loss in 
elastic collisions: 

ro(u)=; f[C;)'"]! (~u(''. (5) 

The scattering function f[(Eu/y)112] = f(t112) was calcula
ted in the LSS theory by numerical methods on the basis 
of the Thomas- Fermi statistical model of the atom, and 
its plot is shown in Fig. 1. We note that the quantity e12 

= E sin(!:l/2) (1:1 is the scattering angle in the c.m.s.) 
determines the depth of penetration of the ion into the 
electron shell of the atom. In the case of a power-law 
potential in the form V(r) = z1z2e2ksa~- 1r- s, the func
tion f(ti 12) can be expressed as follows:1> 

f(t'l•) = j.(t'i•) = '}.,t'!.-'i', 1 < s < 4, (6) 

where "-s = (2/s)(ksy8 /2)21s (ks is a constant close to 
unity, and the values of y s are given in lJl). For s = 2 
we have 

j,(t'l•) = '}., = k,n/8 = 0,327. 

To solve Eq. (3) we use the Fourier transformation 

llFor a power-law potential, the differential cross section for energy 
transfer in elastic collisions can be obtained on the basis of the quasi
classical approximation, i.e., by a method different from that used in 
the LSS tp.eory. 
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FIG. I. Plots of the functions f(tV•) and fs(t 7>) (}1. 3 = 0.86, 'A 312 = 
0.25). 

with respect to the independent variable A. Multiplying 
both sides of (3) by e-i.XA, integrating with respect to 
A from- oo to + oo, and using the theorem concerning the 
Fourier transformation of the convolution of two func
tions, we obtain 

a 1 ve iJe 
-q;(r,l.)=-q;(r,t.)J (e-i>.u_1)w(u)du-it.( -) qc(r,/.), (7) 
ilr y 0 iJr e 

q;(r, /.)= J f(r,!• .. )e-'Mdfl.. (7') 
-co 

Integrating (7) with allowance for the fact that at r = 0 
we have f(O, A) = o(A) and then using the inverse 
Fourier transformation, we obtain the following ex
pression for the distribution function: 

1 - d " f(r, !':..)=- J exp{it. [!':..- r(~ \J ] +!.... J w (u) (e-i~u -1)du} dl.. 
2:rt ~ dr e Y 0 ( 8) 

To be able to find the form of the function f(r, A) it is 
necessary to calculate the integral in the exponential of 
(8). We present below a calculation of this integral 
under different approximations of w(u) and of the func
tion f( r, A) and indicate the limits of applicability of the 
corresponding formulas. 

1. CALCULATION OF THE FUNCTION f(r, A) 

We assume that in the second integral of (8) the 
upper integration limit is equal to infinity. This can be 
done, since w(u) decreases rapidly at large values of u, 
and w(u) = 0 when u > umax· We then use different ap
proximations of w(u). 

A. Power-law Potential (s = 2) 

The case s = 2, as follows from (6') corresponds to 
the independence of fsW 12) of t. Such an approximation 
of the scattering function is valid in the region of values 
of the energy parameter € ~ 1. It should be noted here 
that in the case of not very light ions at such values of 
€ it is possible to neglect in ( 8) the term connected 
with the inelastic loss. For s = 2 we have 

A2 
w(u)=-· 

u%' (9) 

When w(u) is expressed by formula (9), it is possible to 
calculate analytically the integral in the exponential of 
(8). Substituting (9) in (8) we obtain ultimately 

i 
f(r,l':.)=j32<p(£), (10) 

1 1 
c:p(£) = --- e-•m, 

41n £% 
I':. 

6=-, 
2~' 

r-
13 = -l'2rrA,. 

y 
(10') 

FIG. 2. Plots of the function .p(~): 
solid curve-without allowance for multi
ple scattering, dashed and dash-dot 
curves-with allowance for multiple 
sea ttering. 

Thus, the function f(r, A) of two variables is presen
ted in the form of the product of 1/ {3 2 by the universal 
function cp( ~) of the dimensionless variable ~. A plot 
of the function cp( ~) is shown in Fig. 2 (solid line). When 
~ ~ 0.17 this function has a maximum, and the mean 
value corresponds to <~) = 0.50. Thus, the average and 
most probable values of the energy loss do not coincide 
and the cp( ~) curve has a right- hand asymmetry. The 
part of the curve on Fig. 2 to the left of the maximum 
(A< A0 = 0.17 x 2{3 2 , i.e., the energy loss is smaller 
than the most probable value) decreases very rapidly, 
and to the right of the maximum (A > Ao) it decreases 
much more slowly, approximately like ~-312 • The med
ian of the considered distribution (i.e., the line parallel 
to the ordinate axis and dividing the area of this curve 
into two equal parts) passes through a value of ~ ap
proximately equal to 0.925. 

B. General Case. Power-law Potential 
(s = 3 and s = 3/2) 

In order to calculate the integral in the exponential 
of the integrand, let us assume that the only values of 
.\ that matter in this integral are those for which the 
following conditions are satisfied: 

(11) 

Here u1 corresponds to the maximum of the function 
fW 12) (t~2ax 1'::0 0.15), and Umax = yE. The limitations 
which the assumption (11) imposes on the region of ap
plicability of the results will be considered below. 

Let us break up the integral with respect to du into 
two integrals with limits respectively from zero to u1 

and from u1 to infinity. In the first re~ion of the values 
of u, we approximate the function f(e 2) by the expres
sion 

As _ l.a ( y ) '/, f(t'h)=fa(t'f,), w(u)=~, Aa--z e (12) 

and in the second region 

(13) 

The approximating curves are shown dashed in Fig. 
1. In the region 0 < u ~ u1 , the f3(t112) curve lies some
what lower than the plot of the function fW 12). However, 
as will be shown below, the resultant error is not ap
preciable, and at very small values oft (ti 12 ;S 0.01) 
(corresponding to large approach distances between the 
atoms, and consequently to the case when the properties 
of the system of the interacting atoms are governed 
principally by the external electrons) this approxima
tion agrees better with the real picture of the inter-
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atomic interaction than the function2 > f(ti 12) of Fi~. 1. 
In the region u > u1 the fa12W 12) curve with ti 1" > 2 

lies above the plot of fW 12). In this region values oft, 
the energy loss in the inelastic collisions grow in im
portance with increasing E, and therefore the error due 
to such an approximation decreases with increasing 
contribution of the inelastic energy loss to the deceler
ating ability. 

Using (12), (13), and the conditions (11) we obtain, 
leaving out the intermediate steps, the following expres
sion for the integral in the exponential of ( 8): 

~r w(u)(e-""-1)du=i[/,b+c),'l•-a]+ 13 c/,'h- :__a, (14) 
y 0 3 13 

where 
3 r '1> 

b=---A3u, , 
2 y 

Substituting (14) in (8), we obtain an integral for the 
calculation of f(r, A): 

e-'•!{3 ~ [ )"3 ] 
/(r,/1)= l"2n -~ exp i(1']/,-lcl),'i•-a)-Sicl/,'i• d/,, (16) 

where 
1'j = 11 - r( de/ dr), - b. (16') 

Introducing a new integration variable y = lci 312 .A, we 
obtain for the distribution function the following integral 
representations: 

(17) 

where 

( ) 1 s '1, ~ 
<p t =-;- e-• cos(ty- 13 y'l•- a)dy, (18) 

( 19) 

Thus, just as in the case of subsection A, the function 
f(r, A) turns out to be expressed in terms of the univer
sal function cp( T) of the dimensionless variable T. The 
function cp( T) is even and depends on a single parameter 
a, with respect to which it is periodic with a period 21T. 
This function was calculated with a computer with the 
parameter a taken on the values 0.5, 1.0, 10, 50, and 
100, and its plots are shown in Figs. 3 and 4. The func
tion cp(r) to the left of the maximum (r < Tmax) decrea
ses more rapidly, and to the right of the maximum 
( T > 7 max) it decreases more slowly with increasing 
7. The value of Ao corresponding to the most probable 
energy loss is given by the formula 

l'lo = r ( ~~ ) + b + I C l'l>rmax, (20) 

where 7 max is the value of 7 at which cp( 7) has a maxi
mum. 

Let us determine the region of applicability of the 
results. Obviously, in the integral (18) the principal 
role is played by the values y ~ 1. Taking this into ac
count, we find that the assumptions (11) reduce to the 
conditions 

(21) 

2lDetailed tables of the function f(t¥2) with a1lowance for the Fermi
Amaldi correction will be published later. 

J,!Z~~~~,~.F 1. -. "··*~.-Lll r-r ~· . "'-z::__~J:~ _ . T1 
: + "---.· fL ~. ~-;__j 2 i I ', ' I ' I 

O.OB -1---i--.~-,-'."<"·--t ~.-+ _, H ' . . . + _;_ -+-+ J_ ~ -1 
1_ __ :__1- j 

H--H-1--'-+--c--+--!---\--t---+~-· 11:;:~ 
~-IL_L~L_~_l_L~~ 

0 23.567 

FIG. 3. The function .p(r) for different values of the parameters a: 
1-a- 0.5; 2-a- 1.0. 

FIG. 4. The function .p(r) for 
the va1ues of the parameter a: 1-
a = 10, 2-a =50, 3-a = 100. 

The inequalities (11) correspond approximately to 
E » 0.1. 

C. Thomas- Fermi Potential 

Expanding the exponential in the integral 

~· J w(u)e_;,u -1)du 

0 

in a series and confining ourselves to the first four 
terms of the expansion, we obtain 

J(r,l'l)= 2~_fexp[i(a/,-r]l/,++/,3y2/3r)- ~2 
yrJ2 ]d/,. (22) 

We have introduced in (22) the notation 

a= 11- r (.!:::._) 
dr , 

1 '1'1 lm=-J umw(u)du (m=1,2,3). (22') vm 
0 

Carrying out in (22) transformations similar to those 
made above, we obtain 

where 

f(r,l'l)= b;y,X(/,1), (23) 

1 ~ 

X(A!)=-;-J e-x' cos (/,1x+ 6x3)dx, 
0 

11- r[ (de/dr)e +II] 

12( y )'/, 6=3 ----;: Ska, 

rl2y 
bl=-2-, 

(24) 

(25) 

Thus, f(r, A) can be expressed in terms of the universal 
function X(.A 1) of the dimensionless variable .A 1 • The 
most probable value of the energy loss is calculated 
from the formula 

[ ( de ) ] •;, 
l'lo = r --a;: ' + J, + b1 AJmax· (26) 

The moments J m of the function w(u) were calculated 
with a computer on the basis of the function f(ti 12), and 
the values J 1 = Sn and J 2 = Sk:A are listed in Table I for 
different values of E. Figure 5 shows plots of x(.A 1 ) 

calculated with a computer for four values of the 
parameter o, and also plots of the integral probability 
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for the energy loss exceeding .\.1 , i.e., 

J x{x)d.x = 11'{1-I) (27) 
.:. 

for the same values of the parameter o. 
Let us determine the conditions for the applicability 

of the results. The expansion (22) is valid if .\.umax 
« 1, where .\. is taken to mean the value playi~ the 
principal role in the integral (22), i.e., .\. ~ bi1 2. From 
this we obtain that the condition for the applicability of 
the expansion (22) is 

ya' / rl, < 1. (28) 
The condition (28) corresponds approximately to 
E « 0.1. Recognizing that w(u) is very small for values 
of u close to the maximum, the range of applicability 
of the function ;x(.\. 1) is larger than that given by condi
tion (28). We note that if the asymmetry parameter Ska 
is equal to zero, then Eq. (24) leads to a Gaussian dis
tribution of the fluctuations with an rms deviation bf12. 
This distribution can be used to determine the fluctua
tions in thick layers comparable with the total free path 
(see[51 ). It should also be noted that in the intermediate 
region of values of e, in which the results of subsections 
A and B are not valid, the most probable energy loss ..1.o 
is close to I= r(J1 + Ke11} (compare (20) with (26)). 

2. CORRECTION FOR THE TRUE PATH LENGTH 

In the calculations of Sec. 1 it was assumed that the 
paths of all the particles passing through a layer of 
matter r are identical and coincide with the layer of 
thickness. Actually, the ion paths p in the layer are 
different and in the general case are not equal to r. 

We rewrite (3) in the form 

8 i J.,. 
-/{p,Ll)=- (I) {u)[/{p,Ll- u)- /{p,Ll)]du 
8p y 0 

-( :).8~ /{p,tl) +(1-;) 8f<:~Ll). (29) 

When p = r Eq. (29) goes over into (3). It is assumed 
that ..1. « E and r/ p is close to unity, so that the correc
tion connected with multiple scattering is small. There
fore, in the perturbation-theory approximation, we 
represent the sought function f as follows: 

t=t.+t.. (30) 
where f2 « f1 and f1 is the solution of Eq. (3). Substitut
ing (30) in (29) we obtain an equation for the function f2: 

r8f2 i.,.J 
--=- (IJ{u) [/2(p,Ll-u)-fa(p,tl)] du 

p 8p 'V 0 

- (~) !l!.+ (t-.2:..)~. (31) 
dr • 8A p lip 

Expanding the integrand of (31) in a Taylor series and 

confining ourselves to the first two terms of the expan
sion, we obtain 

-(_!__ + /1.!!£... + Ks'lo .!!£...) 812 = (1- _!__) 8f1 
p 88 8A 8p p 8p 

(32) 

The multiple- scattering effect is large at low ion 
energies, when the energy loss due to elastic collisions 
predominates. Taking this into account, we put K = 0. 
Further, inasmuch as p/r is quite close to unity, we 
replace the sum p/r + 1 by 2. Integrating (32) with 
allowance for these assumptions, we obtain for the case 
of a power-law potential 

1 ) i p /2 =- (...£..- i /J--J /J dp. 
2 r 2r 0 

(33) 

The sought function f is equal to 

f= ! (J!.+i)!I--.!Jp !Idp. 
r . 2r 0 

(34) 

Let us calculate f( p, ..1.}, taking f1 to be the function 
defined in (10'), i.e.,(/)(~). In this case 

p= ~.A. (p(~)>~t+ 13 "' ("'=~.for A,>A.['J). 

We find therefore that the correction connected with 
multiple scattering is small if (( a)/.\.2r- 1) « 1. In 
particular, when A1 >> A2 this condition is replaced by 
l.l.«l. 

If the following condition is satisfied 

(A.r)' ~ __!__~< 1 (35) 
4ylle 4y s ' 

then we can neglect the second term of (34). Represent
ing p in the form 

p(A)=r+~{A-(A))=r+__!(A-11') for A>ll', (36) 
Ao Ao 

we obtain ultimately 

( A.-112) 
I= 1+~ /J. (37) 

The dashed curves in Fig. 2 are the distribution func-

-~ -3 -z -1 o 2 3 -3 -z - o 2 J 

FIG. 5. The functions x(;\.1 ) and 1/1(;\.1 ) for different values of the 
parameter li: 1-li = 0.1, 2-li = 0.3, 3-li = 0.5, 4-li = 1.0. 

Table I. Moments of the function w(u) and the asymmetry 
parameter Ska 

0,05 0.355 0,007 0,510 0,6 0.373 0.075 1.282 0.1 0,372 0,014 0,621 0,7 0,360 0,084 1.404 o:2 0.400 0,029 0.712 o.s 0,369 0.092 1,524 
0,3 0,404 0,043 0.874 0,9 0.358 0,099 1.641 0,4 0.405 0.055 1.019 1.0 0.366 0.106 1.756 0,5 0.383 0:066 1.154 
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Table II. Comparison of theoretical and experimental 
values 

1,0 
ilj~,-:----~-~-=-~.~~· _· 4 .· f\ 1Ne+Ci 

! 1\ . 
'\~. I 

I 
\ ,_ I ' 

2· 
\ '"' 

I] I \ I 
0,5 

I I I ' I 

I I ! 1--... I I I 
\ I 

I I I I 
I 

I 'I-. .. I ! 
I I I 

0 1,0 .:1 

I 
~ 

I ~j I ~ I Ao i 1±l> .... 
~ c 

:;~< 
~ ~ i;l~ 

.£ c"' oS ~ § I ~~ f-< .Q r.t.f <l ~s ,s 

I I 
f II 3,25 0.325 D .28 

Li1 Cu 140 13 3,50 0.35 0, 28 
\ 15 3, 70 D .37 0,26 

17 3,80 0.38 0.27 
Ne20 c 106 67.2 2.70 o.l9 0,244 
Ar"' c 335 20J 26.0 ).56 0,62 
Ge74 c 235 400 9,5 0.06 0,23 

FIG. 6. Plots of the scatter of 
the energy loss of Ar40 ions in car
bon (E = 200 keY); solid curve
theory, dashed-experiment. 

FIG. 7. Plots of the scatter of 
the energy loss of Ne20 ions in car
bon (E = 67.2 keY); solid curve
theory (1-.\312 = 0.25; 2-A3 f 2 = 
0.216), dashed-experiment. 

tions of the energy loss with allowance for multiple 
scattering (we consider the case E = 1, y = 0.2, r = 0.3, 
and r/(p) = 0.1); the plot of the function f constructed 
with allowance for the second term of (34) is shown by 
a dash-dot line. From an analysis of the curves of Fig. 
2 it follows that the correction to cp( O, due to the multi
ple scattering, is small. This indicates that we can use 
the first approximation in r/p in the series expansion 
of the function. 

3. COMPARISON WITH EXPERIMENT 

Unfortunately, so far only few published papers give 
data on the energy loss of low- energy charged particles 
(with energy E smaller than several hundred keV) in 
thin layers of matter. This is due mainly to the diffi
culty of performing experiments of low- energy ions and 
thin absorbers. Table II and Figs. 6 and 7 show a com
parison of the theoretical and experimental values. 

Figures 6 and 7 show plots of the energy loss of Ar40 
and Ne20 ions, respectively, in carbon. For the Ne20 - C 
case, the calculations are given for two values of .\ 312, 
0.25 and 0.216. Table II3 > gives the values of the most 
probable energy loss for ions, plots of which are shown 

3>The conditions (21) are satisfied for all the cases under considera
tion. 

-

I ~I ~I 
I li j~ 
I 

Sn ~ 
~ ... .... Ol 

0,012 :!,58 0,88 -- 1.67 0.24 
0,010 ),58 0.95 -- 1.91 0,25 } ['] 0.009 J.58 0.99 -- 2.12 0,26 
0,008 ).58 0,97 - 2.31 0,265 
0.007 ).II ),09 0.21 1.10 0.39 ['] 
0,019 0,10 0.10 0.62 l.O 0,67 [81 
0,012 0,10 0.07 0.21 0.60 0.24 ['] 

in the figures, and also for Li7 ions in copper and Ge74 
ions in carbon. From an analysis of the theoretical and 
experimental values it follows that too depends little on 
the values of b (i.e., on .\ 3 ) and depends strongly on C312 

(i.e., on .\3/2). As seen from Fig. 7, the approximation 
of the scattering function f(t112) for large values of E by 
means of the function f3;2(e 12) with .\3/2 = 0.25 leads to 
an appreciable difference between the theoretical and 
experimental data. This is connected with the fact that 
for large E and for light ions the values of t correspond 
to the first part of the plot of the scattering function, 
where the approximating curve f312W 12) with .\ 3;2 = 0.25 
lies above the curve calculated in accordance with the 
Thomas- Fermi potential. At a smaller value of .\3;2, 
the agreement with experiment is much better. Both in 
the case of Ar40 and of Ne20 ions, the difference in to0 

between the theoretical and experimental values does 
not exceed 1(%. 

As was noted above, the formula of the LSS theory 
for inelastic slowing down is approximate, since it does 
not take into account the shell structure of the atom. 
This is due to the fact that the LSS theory is based on 
the Thomas- Fermi statistical model of the atom. We 
have obtained, on the basis of the independent-particle 
nuclear model as applied to the atom, a formula for the 
slowing-down ability (dE/dp)s with allowance for an os
cillatory dependence on Z1 and a nonmonotonic depen
dence on Z2. This formula, which describes satisfactor
ily the experimental data and is valid for Z1 2 10, is of 
the form 

•s (eV-cm2) 292 d3 Cll( Z 1Z2 
101 e atom = ' S•Ji2 ~) (Zr"' + Z2'")''• Se,LSS, (38) 

where ~ e :=::: Zi6 , d and H are constants that depend on Z1 
q,({3) is a function of the parameter {3 = 1 - 1/H and is 
expressed in terms of confluent hypergeometric func
tions. 

Table II lists values of K calculated in accordance 
with formula (4) (K0) and in accordance with formula 
(38) (K1), and also the values of to 01 calculated using K1. 
In the case of Li7 ions, formula (38) does not hold. 
Table II lists, for the Li7-Cu pair, the values of K1 
which reconcile the theoretical and experimental data. 
The constancy of the values of K1 ((K1) :::: 0.94, the 
maximum deviation from ( K1) is less than 7 %) and the 
predominance of electronic deceleration over elastic 
deceleration suggests that K1 ~ 0.90, which should be 
obtained when account is taken of shell effects, is cor
rect for the Li7-Cu pair. 

In the case of the Ge 74 ions, the form of the experi
mental profile of the energy-loss-scatter curve coin-
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cides with the theoretical one, but the absolute values of 
~0 differ significantly. For Ge74 ions, the correction 
to the value of Ko is quite large, but when account is 
taken of this correction, the energy loss in elastic colli
sions only (0.063) exceeds the experimental value. Such 
a difference in ~0 may be connected, for example, with 
the fact that the carbon density assumed in the calcula
tion does not agree with the carbon density used in the 
experiment. 

Thus, the relations obtained in the present paper 
give the correct form of the energy-loss- scatter curve, 
and if the constant >t 3 ;2 is correctly chosen an account 
is taken of the shell correction in K, the relations lead 
to satisfactory agreement with the known experimental 
data. 
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