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The method of non-equilibrium statistical operatorsPl was used to find the nonlinear corrections to 
Ohm's law, resulting from inelastic scattering by impurities and phonons. It is shown that the non­
linearities can be used to reconstruct the structure of the energy levels of the impurity in the metal 
in the case when there is no noticeable heating of the electron and impurity subsystems by the ex­
ternal field. It is possible also to reconstruct the phonon spectrum in the absence of phonon dragging 
effects. The entire analysis is based on the assumption that the phonon system is in equilibrium, 
and no account is taken of the electron-electron scattering. 

1. INTRODUCTION 

PROCESSES connected with inelastic scattering of 
electrons by impurities or lattice defects can be sig­
nificant if the impurities (defects) have internal de­
grees of freedom. The latter is possible in scattering 
by paramagnetic impurities, by defects forming a suf­
ficiently deep potential well, by neutral molecules that 
can be in different states, etc. Of particular interest 
in this sense is scattering by complex organic mole­
cules, which have internal rotational degrees of free­
dom with low-energy states. It is clear that the act of 
scattering with variation of the internal state of the 
scattering center will occur only if the electron ac­
quires between two collisions an excess energy eV ( V 
is the difference of the potentials at the points between 
two nearest collisions) sufficient to excite the impurity. 
This opens up an additional channel for scattering, and 
the differential resistance increases. The dependence 
of the current on the field intensity contains informa­
tion on the energy structure of the scattering center, 
and this information can be determined experimentally. 
This can be illustrated by means of the following quali­
tative reasoning. 

Let the electron have prior to acceleration in the 
electric field a certain energy below which all the 
states are occupied. Then, when accelerated over a 
distance A between two nearest collision, it acquires 
an energy ~E = eE ·nA (where ~E is the energy dif­
ference that the scattering center can take on, E, is 
the electric field, and n is a unit vector directed from 
the first scattering center to the second), and then the 
current experiences as a result of the inelastic scatter­
ing an increment 

I 

M-- Jdz(eEz"--M)6(eEz"--AE). 

-· 
It is easily seen that the third derivative of the current 
with respect to the field intensity will then contain 
6(eEA- ~E). From the 6-like peaks of the deriva­
tives it is possible to determine the energy spectra of 
the scatterer. Integration with respect to x in the 
direction for ~I is the result of averaging over the 
solid angle of the incoming electrons. A more detailed 
analysis reveals an additional angular averaging, which 
causes the resonant structure connected with the in-
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elastic scattering to appear not in the third but in the 
fourth derivative. It may turn out that the peaks of the 
derivatives will arise also when the electron acquires 
an energy sufficient to excite the impurities through 
1, 2, etc. scattering acts. However, when the impurity 
is excited through one scattering act the expression for 
~I is subjected to an additional averaging over the 
angles and to a random distribution of the impurities, 
as a result of which only the process considered above 
is significant. 

Inelastic scattering by static defects can be investi­
gated experimentally at not very high temperatures 
and fields. At low temperatures, scattering by phonons, 
which strictly speaking is always inelastic, is "frozen 
out." However, if the fields are such that the drift 
velocity of the electrons becomes of the order of the 
velocity of sound, then phonon generation arises and . 
leads to intense dissipation, against the background of 
which it is difficult to distinguish the weak nonlineari­
ties connected with the static inelasticity. At the same 
time, if we investigate nonlinear effects resulting from 
phonon generation, then we can interpret the phonon 
spectra in those cases when phonon dragging can be 
neglected, i.e., when there exists a momentum dissipa­
tion mechanism proceeding from the electron system 
to the phonon system. 

2. GENERAL RELATIONS 

Inasmuch as in this problem deviations from Ohm's 
law are significant, which furthermore (as seen from 
the simplified reasoning) are non-analytic functions of 
E, we cannot use perturbation theory in powers of E, 
in spite of the fact that we shall henceforth assume E 
not to be very large. In the case when nonlinear pro­
cesses are significant, it is easiest to obtain the solu­
tion of the problem by using the method of nonequili­
brium statistical operators, developed by Zubarevf 1l. 

For simplicity we shall consider a model system 
consisting of a gas of free electrons interacting with 
phonons and impurities. The Hamiltonian of such a 
system :M is written in the form 

:!& = :M. + H,. 

Here :M0 is the Hamiltonian of the electrons in elec­
tric field, of the phonons, and of the impurities, and 

(1) 
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HI is the Hamiltonian of the interaction of the elec­
trons with the impurities and phonons: 

de, =L,J d'n!>.+(r) (- :~ -eEr )lll.(r)+Hi+Hph, (2) 

H,= L,Jd'r¢.+(r) [L,u(r-r,)+gcp(r) ]lll.(r), (3) 
• l 

</J~(r) and <J!a(r) are the electron field operators. 
cp ( r) is the phonon field operator, Hi and H ph are the 
Hamiltonians of the impurities and the phonons, U(r) 
is the potential of the interaction between the electrons 
and the impurity, rz is the location of the mass center 
of the l-th impurity, and g is the constant of the 
electron-phonon interaction. 

In (3), U is a function not only of the coordinates of 
the conduction electrons, but also of the operators de­
scribing the internal motion in the impurity. Following 
Zubarev, let us determine the quasiequilibrium statis­
tical operator Pe, which we shall need to find the 
parameters of the non-equilibrium operator 

(4) 

Here S is the entropy operator (see[ 2l), which does not 
depend on the time, since we are considering a sta­
tionary state of the system, {3 is the reciprocal tem­
perature, 

H=H,+H,= .EJ d'rl!l,+(r) [ (-i::mv)' 

+Hi+Hph+H,, 

eEr- J.L(r)] \ll.(r) 

(5) 

where v and J.1. ( r) are thermodynamic parameters 
having the meaning of the mass velocity and the chemi­
cal potential and determined with the aid of the addi­
tional requirements 

n(r)= .E (\llcr+(r)¢o(r)/,= L ('¢cr+(r)\llcr(r)), (P)e= (P), (6) 

where ( ... ) e and ( ... ) denote averages over the 
quasi-equilibrium and over the nonequilibrium ensem­
bles, and 

P =- ~4J d'r[\ll.+(r)V¢.(r)- V\ll.+(r)\ll.(r)]. (7) 

The choice of the thermodynamic parameters {3, v, 
and J.1. ( r) in (4) and (5) is determined by the fact that 
a stationary homogeneous solution is sought, for which 
the system is characterized by a single temperature 
of the electrons, phonons, and impurities, an average 
velocity of the electron gas, and a certain chemical 
potential that depends on the coordinates as a result of 
the fact that the Hamiltonian contains a term with the 
electric field. Generally speaking, in sufficiently 
strong electric fields and at a noticeable impurity con­
centration, a situation is possible at which the tempera­
ture of the electrons, phonons, and impurities are dif­
ferent. In addition, in very strong fields it may turn 
out that the velocity and the temperature of the elec­
trons in the stationary state depend on the coordinates 
in a plane perpendicular to the direction of the motion 
of the electron gas. Consequently, if it is assumed 
that f3 and v do not depend on the coordinates, then it 
is necessary to assume for metals that at least eE 
« pgfm (p0 is the Fermi momentum). 

To use relations (6) it is necessary to find the con-

nection between the mean values over the quasi­
equilibrium ensemble and the parameters v and J.1.. 

To this end we use the exact relation 

([HP]_)"=O. (8) 

Relation (8) is the consequence of the properties of the 
operation of taking the trace and the commutativity of 
Pe and H. On the other hand, by commuting H and p 
in (8) we obtain, taking (6) into account, 

eEN+ Jd'rVJ.L(r)n(r}-i([PH1]_),=0, (9) 

where N is the total number of electrons. One of the 
possible solutions of (9) is 

J.L(r) = J.Lo- eEr + ir( [PH,]_), 1 N, 

where J.l.o is the chemical potential of the system at 
E = v = 0. 

(10) 

As seen from (10 ), to determine J.1. ( r) it is neces­
sary to find the mean value 

(11) 

where ( ... )~ is the mean value with the operator Pe 
at v = 0. By calculating directly the mean value in 
(11) we obtain an equation for y. It is easy to see that 
this equation is of the form 

y = yf(y'). (12) 

One of the possible solutions of (12) is y = 0. In 
principle, other solutions can also exist, but if we 
choose the solution with y = 0, then v will have the 
meaning of the drift velocity of the electron gas. It is 
easy to see that 

(P), = (P),' + mvN. 

If y ~ 0, then ( P)~ ~ 0, and the drift velocity, by 
virtue of the conditions (6), will be the quantity 

(13) 

v + ( P )~/mN. Apparently the final results do not 
depend on the solutions chosen for Eqs. (9) and (12), 
but from the computational point of view the proposed 
choice has considerable advantages. 

We write down the non-equilibrium statistical 
operator in the form 

0 

p = exp [- S + Ldte•'S(t) ] (14) 

Here € = + 0 and S is the entropy production operator: 

S = i~v[P(t)H,(t) l- + ~eE [P(t) - mvN] I m, (15) 

where P(t) and HI( t) are the Heisenberg representa­
tions for the operators. If HI is small, then the en­
tropy-production operator is small and it is possible 
to expand in its terms the non-equilibrium statistical 
operator (see[ 2l). Actually such an expansion is an 
expansion in powers of the interaction operator[ 2 l, so 
that to take correct account of the orders of the per­
turbation-theory series it is necessary to expand con­
sistently in HI. A case is possible, of course, when 
the small quantities are the fluxes that result from the 
weak deviation of the non-equilibrium state from the 
quasi-equilibrium state. In the present case, however, 
we assume smallness not of the fluxes but of HI. 

Using the Hamiltonian (1 ), we can easily write down 
an equation of motion for the operator P: 
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dP I dt = eEN- i[PH,]_. (16) 

Averaging (16) with the aid of the statistical operator 
(14), we obtain after expanding HI in the first non­
vanishing order 

0 I 

eEn = -{3 J dte" J d-r([vP(t),HI(t)]-[P(T),Hr(-r)]-),. (17) 
0 

Here and throughout we assume for simplicity that the 
volume of the system is equal to unity, so that the 
number of electrons coincides with the concentration 
n; ( ... ) o denotes averaging with the quasi-equilibrium 
operator at HI( t) = 0; A( t) are operators in the inter­
action representation, and 

.4(T) = exp( -T~H,)A exp(r~H,). 

Relation (17) gives the sought connection between the 
field intensity E and the current I= env. As can be 
readily seen, the proposed method of considering the 
behavior of the system of electrons in the electric 
field is inverted relative to the traditional methods. 
One usually specifies the electric fields and one seeks 
the current produced in the system under the influence 
of this field. Here, on the other hand, we specify the 
current and find the field corresponding to this current. 
In this sense the theoretical calculation is in better 
correspondence with experiment, since to plot the 
current-voltage characteristics of highly conducting 
samples it is customary to specify the current and to 
measure the resultant potential difference across the 
sample. 

3. SCATTERING BY IMPURITIES 

To calculate (17) we determine the commutator 

[P(t)Hr(t)]- =- L qa:.(t)a.+o.a(t)e'•', (pjU(t) IP + q). (18) 
I,P,q,a 

Here a~ a< t) and ap,a( t) are the operators of creation 
and anmhilation of electrons in states with momentum 
p and spin projection a in the interaction representa­
tiOI~, (pI U(t) I p + q) is the matrix element of the 
operator U(t) calculated with plane waves with mo­
menta p + q and p, 

a •.• (t) = exp(i (J'€00- eER)t)a •. a exp [- i(J'6,,- eER) t), 

U(t) = exp (iH;t)Uexp (-iH;t), 
(19) 

where J'€0 is the Hamiltonian of the free electron gas 
without the field, and 

R = L J d'rrlfla+(r)'i'a(r). 
a 

In the evolution operator in (19) it is convenient to 
separate the exponentials containing the kinetic energy 
of the electrons and the energy connected with the 
electric field: 

exp [i(J'6.,- eER) t] = exp [ i ( J'(J., + ~::t} t] 
[ ie'E't'N ] 

Xexp(- ieERt)exp 6 . 

Recognizing that 
e-•••R< [PH r] _e•••Rt = [PH r] _, 

we obtain for (18) with the aid of (20) the expression 

[P(t)HI(t)J- =- L,qe'••,a;,.ap+q,a(PIU(t) IP+q) 
l,P,q,a 

(20) 

X exp [ i (e. - e•+< - ~!~t) t] , (21) 

where €p is the kinetic energy of the free electron 
(€p = p?2m). 

Using (17) and (21 ), after thermodynamic averaging 
and averaging over the random location of the impuri­
ties, and also after a number of simple transforma­
tions we obtain for the field intensity the expression 

eEn = 2c E q(qv) I Unm(q) 12 /m(1- n.)nP+•- fnn.(i- n.t.) 
P,<;n m 8p- 8p+q + CJlnm 

0 ( d~ 
X J~tcos 8p- 8p+q + Wnm- qv- 2 m ) t. (22) 

Here Wnm is the energy difference between the n-th 
and m-th energy state of the impurity, fn is the popu­
lation of the n-th energy level of the impurity, c is 
the impurity concentration in the metal, Unm(q) is the 
matrix element of the operator of the interaction be­
tween the electron and the impurity: 

Unm = (p, niUip + q, m), 

and np is the Fermi distribution function 

n. = [1 + exp ~(e.- f.1o)]-•. 

It is easy to verify that if the interaction potential of 
the electron with the impurity is central, then the 
matrix element Unm ( q) depends only on the modulus 
of q. For simplicity, we assume throughout a spher­
ically-symmetrical interaction potential. 

It is convenient to divide (22) into two parts: eEn 
= A1 + A2. One of these parts, A1, contains the con­
tribution of only the elastic scattering by the impuri­
ties, i.e., scattering at which no change takes place in 
the internal energy state of the impurity. Contributing 
to A2 are processes accompanied by changes of the 
proper energy of the impurity. Elementary calcula­
tions yield for A1 the expression 

where 

A,= vmn/-r, 

I 

'<1 =BnN(O)c,L,tnJ dyy3 IUnn(2PoY)I 2, 

n 

(23) 

and N(O) is the density of states on the Fermi surface. 
The formula for A1 was obtained under the assumption 
that v « p0 /m and eE « pgj2m. These inequalities, 
as a rule, are very well satisfied in experiment even in 
the case of semimetals. If we assume in the expres­
sion for r that all the fn with the exception of those 
corresponding to the ground state of the impurity are 
equal to zero, then we obtain the usual expression for 
the relaxation time. Actually the obtained expression 
is a trivial generalization to include the case when the 
impurity is in several energy states, and the probabil­
ity of observing it in the n-th state is equal to fn 
( ~fn = 1). A much more interesting result is con­

n 
tained in the expression for A2, which can be repre-
sented in the form 

Q~ • I oo oo~ 
A,=--, ~Jdee-'l•N(e-f.lo)Jdxx'fdqq'!Unm(q)l' S-;; 

n22 '' '-.l o -co n*mO -1 
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So [ eEqx •] -/.n(e)[1-n(e+ro.m-lll)]} dtcos (ro-qv:c)t-~t . 

~ (24) 
Here B(x) is the Heaviside step function. 

Further simplification of the expression for A2 is 
possible under the assumption that T-1 « I Wnm I « JJ. o· 
Then, as can be readily seen, the main contribution in 
the integration with respect to w in (24) (fr1 
;S I Wnm I) will be made by the region in which I w I 
« JJ. 0 , and therefore each of the terms in the curly 
brackets is a function with a sharp maximum in the 
vicinity of the Fermi energy. Under these conditions 
it is easy to carry out the integration with respect to € 

and x, so that as a result we obtain the expression 

A 8vm1V(O)po3 \"1 f sl d 3 s"" dw I u (2 ) 12 
2= :rt2 "'-< n YY ~ nm PoY (25) 

n¥:m 0 -oa 

Here 
[ ll(Wnm-ro)] X B(2p,y, ro) (ro- ro.m) 1 + cth 9 • 

So {sinQ 2 [ sinQ ]} B(q,ro)= dtcosrot --+2 cosQ-Q , 
-oo Q Q 

Q == qt(v + eEt I 2m). 

In order to see the character of the dependence of 
A2 on v in expression (25), let us consider the case 
when the impurity can be in only two states. It is as­
sumed also that the energy € 1 of the excited state 
greatly exceeds the thermal energy, and the electric 
field is not very strong, so that the inequality 
( eEv0 ) 112 « {3-1 is satisfied { v0 is the electron velocity 
on the Fermi surface). Under these conditions, in the 
region where w 1 - 2pov >> {3-\ we have 

' A,= BnmN(O)~Jdyy(~- y) IU"(2p,y) l'exp[-!l(ro,-2p,vy)]. 
llPoV 0 2p,v 

{26) 
We see that A2 is an exponentially small quantity in 
the entire region of variation of v from zero up to 
v R~ w1/2p0 • If {3-1 « (eEv0 )ll2, then A2 in this region 
is also exponentially small, but the argument of the 
exponential in {26) contains a quantity of the order of 
(w 1 - 2p0vy)/{eEv0 ) 112. The term preceding the expo­
nential is likewise strongly altered in this case. 

It is also of interest to calculate the asymptotic 
expression for A2 at large v, i.e., in the region where 
v » w1/2p0 • In this limit we can easily obtain from 
{25) 

A2 =8nmN(O)ncv J dyy2 ( Y- :p:~) IUoi(2poy) 12• {27) 
0 

From relations {23), (26), and (27) we can represent 
the character of the variation of the electric field with 
changing v. Figure 1 shows schematically a plot of 
E(v). At small drift velocities the E(v) plot is linear 
until an additional scattering mechanism appears at 
v R~ w1/2p0 • Further increase of the current with in­
creasing E is hindered by the increasing contribution 
of the inelastic processes. At sufficiently large v, 
practically all the carriers in the system have an ex­
cess energy sufficient to excite the impurity, and the 
E(v) curve again becomes a straight line. However, 
the slope of this line is larger because of the increas­
ing resistance to the current as a result of the addi­
tional scattering. If the asymptotic straight line at 
large values of v is continued into the region of small 

v1 "'r/2p0 

FIG. l 

E, then at E = 0 the line has an intercept vz on the 
abscissa axis 

I I 

vz=·~~ J dyy2 1Uol(2poy) 12 / J dyy3 IUol(2poy) 12
• (28) 

4 ~ 0 0 

The region where one straight section of the E( v) 
curve changes into the other has the dimension A v 
~ p(/ max[{3-\ (eEvo)112 ]. 

Using relations such as (28) and finding the charac­
teristic points in the E{v) plot, we can draw definite 
conclusions concerning the energy spectrum of the 
impurity center from the current-voltage character­
istics of metallic samples. However, the practical use 
of the current-voltage characteristics for this purpose 
is limited by the smallness of the matrix elements 
1 Unm 12 and by the possible small spacing between the 
energies of the allowed transitions. Under these condi­
tions, it will be difficult to distinguish between the 
individual straight-line sections of the current-voltage 
characteristic, and in principle the curve may not 
become a straight line at close values of wnm even 
if the distance between the neighboring wnm is 
A.w > max( {3-\ ( eEv0 ) 112]. Nonetheless, it is possible 
to increase appreciably the resolving power of this 
method by investigating the derivatives of the current­
voltage characteristic. The fourth derivative of E 
with respect to v consists of a series of sufficiently 
sharp "resonant" spikes at v = I wnm l/2po, under 
conditions when /31 Wnm I » 1' {3 < ~ eEvo rl/2 or 
(eEvot112 1 wnml » 1, {3 > (eEvot1 2. Differentiating 
(25) four times and neglecting small monotonic correc­
tions 11 , we obtain 

iJ4E = 31!E1 \"1 lllnmfniUnm(2po) I'[D(Qnm +j-D(Qnm-}] 
iJv4 •v4 "'-< 

n,m 

Here E1 = vm/re, O~m = 2pov ± Wnm• and D{O) 
determines the form of the spike and is given by the 
expression 

4 a s"" dtt D(0)=--112 - 2- 1--cos[ll2 eEvot2 -ll0t]. 
~ ap 0 en -1 

(29) 

(30) 

The function D(O) has a sharp maximum in the 
vicinity of the point 0 = 0. It is convenient to introduce 
the parameter 0! = {3( eEv0) 112. If 0! 2 « 1, then it is 

l)The monotonic terms can be regarded as small only near the "res­
onant" points v""' lwnml/2p0 , where the relative contribution is of the 
order of (jjlwnmf1 or (eEv0 )~1wnmr1 • Far from the spikes, their con­
tribution can be of the same order as the terms in (29). Since the mono­
tonic terms are of no interest from the point of view of the analysis of 
the energy spectrum of the impurity states, they are omitted from for­
mula(29). 
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possible to omit the term containing a 2 from the 
argument of the cosine of (30), so that the integrand is 
exponentially small if t » ( 21T r 1' and the quadratic 
term still does not make a noticeable contribution. 
The integral obtained after neglecting the term a 2 e 
can be easily evaluated, and as a result we obtain for 
D( il) the expression 

D=(ycthy-1)/s.h'y, y=~~~/2. (31) 

In the case when a 2 » 1, the integral in (30) is de­
termined in a different manner, depending on whether 
il s 0 or il > {3-1• If il s 0, then the cosine will 
oscillate very rapidly with changing t, so that the 
main contribution to the integral will be made by small 
t, and therefore exp( 21rt) - 1 can be replaced by 2m. 
On the other hand, if il > tr\ the integral can be cal­
culated by the Laplace method. The solutions that are 
valid in different regions of the variation of il can then 
be readily interpolated to the region where U ~ 0. The 
expression obtained for D in this manner is 

D = 2 ( ~~ )"' {cosy,' [ ; + C(y,)] + siny,'[; + S(y,) ]}y,'. 

( 2ny1 }-2 2ny1 
X exp~-1 exp-a-' 

where y1 = U/2(eEvo) 112, and C(y) and S(y) are 
Fresnel integrals, defined by the expressions 

C(y) = df 2 j dtcos y't', S(y) = y V ~ j dtsiny't'. 
n o o 

(32) 

Figures 2 and 3 show plots of (31) and (32). As seen 
from these figures. If a 2 << 1, the shape of the curve 
is symmetrical about the point y = 0, and if a 2 >> 1 
there is a clearly pronounced asymmetry, which in­
creases with a 2 • We note that the conditions a 2 << 1 
and {31 Wmn I >> 1 are not completely independent. 
Indeed, a 2 = J32eEv0 ~ {3 2p0v/T, but in the vicinity of the 
spike PoV ~ I Wmn I, and consequently the conditions 
{32 1 wmn 1/ T « 1 and J'll wmn I » 1 should be satisfied. 
The latter is impossible if {3 << T, i.e., if the thermal 
time is much shorter than the relaxation time. On the 
other hand, when 0! 2 << 1, the dependence on E is for 
all practical purposes eliminated from the argument 
of the cosine in (22). But this dependence is a result 
of the fact that the electrons are accelerated between 
the scattering acts, since the term with the field is due 
to the dynamic Hamiltonian in the absence of interac­
tion. Consequently, if the thermal time is much 
shorter than the average time between successive 
scattering processes, then the acceleration of the elec­
tron can be neglected. In the opposite case, as seen 

from (32), the accelerated motion of the electrons be­
tween collisions leads to an appreciable change in the 
shape of the spike. 

4. SCATTERING BY PHONONS 

As is well known, scattering by lattice vibrations is 
accompanied by annihilation and creation of a phonon 
with energy n, and consequently it is alwys inelastic. 
At high temperatures, when {3il << 1, the inelasticity 
can be approximately neglected. Then the dependence 
of the electric field on the drift velocity is linear in a 
wide range of variation of v. At low temperatures, the 
inelasticity of the scatterin1 becomes appreciably 
manifest (see, for example, 31) even in the value of the 
proportionality coefficient of the linear section of 
E(v). 

Using (1 7) and taking (20) into account, we obtain 
for the field intensity the expression 

eEn = 2g'Eq(qv)Q. (1 + N.)nP+o(1- n.)-N.n.(1- n•+•) 
o,P Ep - Eo+q + Q0 

0 

·x j dtcos(e.- e•+•- qv + Q,- eEqt/2m)t, (33) 

where ilq is the frequency of the phonon with the wave 
vector q and Nq are the phonon occupation numbers: 

N. = [exp(~Q.) -1]-•. 

In a manner similar to that used to derive (25), we 
can easily obtain from (33) in the Debye model 

g2m2vs "'dw 9' 
eEn=-- J- Jq 4dq(Q 0 - w)[N(Q.- w)- N.]B(q, w). (34) 

8n4 w 
~ 0 

Here s is the speed of sound and q0 the Debye momen­
tum. 

In the derivation of (34) it was assumed that p0 

> q0 /2. If Po< q0 /2, then the upper limit of the inte­
gration with respect to q will be 2p0 and not q0 • 

In the case when v « s, we obtain from (34) a 
linear connection between E and v: 

eEn=~=~F(y). 
"t "to 

(35) 

Here y = J3il 0 , 0 0 is the Debye frequency ( 0 0 = sqo), 
and 

v 
F(y)=4v-•J dzz'e'(e'-1)-'. 

0 

At high temperatures (y << 1) we have T - T 0 , 

i.e., we get the usual high-temperature expression in 
the Debye model. When y >> 1 we have T-1 ~ {3-S, i.e., 
the relation derived by Bloch. The relation (34) be­
comes much simpler if the inequality eE « msil0 is 
satisfied. If it can be assumed that eE ~ mv/r, then 
the inequality acquires the clearer form ~ = v/s 
« Til 0 • When these inequalities are satisfied, the field 
dependence in B(q, w) can be neglected and it is pos­
sible to integrate with respect to w in (34). As a re­
sult we obtain 

g2m2vQ0q04 1 { y2 } 
eEn= 12n3 s dy eVY-1 +L(6,y)+L(-6,y) ' (36) 

0 . 

where 
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(1+£>' [ s 1+3s ] / L(£,y) s y 1- 2·(1+slY+~y3 [exp(y(1H)y)-1]. 

Let us consider certain limiting cases, when the 
integration in (36) can be carried out analytically. If 
y~ « 1, then we obtain the result that can be easily 
gotten also from (36). In the other limiting case, when 
y(1- 0 » 1, we have 

2g'm'v [ 4 ] 
eEn=~~-'~(5) 1+ (1-£')' , (37) 

where !; is the Riemann Zeta function. 
Relation (37) was obtained with exponential accuracy 

in y(1- 0, so that at low temperatures (y » 1) it 
can be used up to ~ ~ 1 ( ~ :S 1 ). In the region when 
y 11 - ~ I « 1 and y » 1 we have 

E = g2m?w R-1 [n 3R-1~(2)- (1- s) no•]. (38) 
e n 12rr3 s• " o " 3 

If~> 1 andy(~- 1)» 1, then 
g2m 2vQo5 (s- 1) 2 (39) 

eEn = 240nas• -s-a -(2s + 1). 

The asymptotic expression (39) can be used to deter­
mine the maximum value of ~ at which the formula 
(36) can still be used. From the inequality eE « ms00 

and expression (39 ), with allowance for the fact that 
g2 = 27T2 K/pom ( K ~ 1 for metals, see, for example,[4 J ), 
we obtain the inequality 

(1- £-')'(2£ + 1) <t:. 40p,' / nxq,'. 

The ratio p0 /q0 can be either larger or smaller than 
unity. As is well known, in the isotropic case p0 /q0 

= ( z/2)1/ 3, where z is the number of free electrons 
per atom. 

Figure 4 shows a plot of E( 0 at different values 
of the parameter y. As seen from the figure, up to 
~ ~ 1 the phonon scattering makes no noticeable con­
tribution to the resistance at low temperatures. In the 
region where ~ 2: 1, the resistance increases sharply. 
This increase is connected with the fact that the drift 
velocity of the electrons is larger than the phase 
velocity of the phonons, and the electrons begin to 
generate phonons. The mechanism of this reaction is 
similar to Cerenkov radiation. 

We note that the emission of phonons by supersonic 
electrons was quite extensively investigated earlier 
in (see, for example, [5- 101). The purpose of these in­
vestigations was to determine the conditions under 
which carrier drift instability and coherent emission 
of phonons take place. It must be emphasized that the 
nonlinearity-inducing contribution to (34) is connected 
with incoherent emission of phonons in the stationary 
regime. The nonstationary region is outside the ap­
plicability of the present analysis. The upper limit of 
this region in terms of v depends strongly on the 
mechanism whereby the momentum transferrred to the 
phonon subsystem from the electron subsystem is 
dissipated. One of the mechanisms of such dissipation 
may be the scattering of phonons by defects. Actually, 
the results of[5- 101 pertain to the case when there is 
practically no dissipation in the momentum subsystem. 
Therefore, owing to the effectiveness of only the nor­
mal processes of phonon-electron collisions, leading 
to dragging of phonons, the conductivity of the system 
will increase with increasing v. In our case the con­
ductivity of the system decreases with increasing v. 
In a real situation this decrease of conductivity will 

FIG. 4 

continue until the momentum transferred to the phonon 
subsystem exceeds a certain critical value, above 
which a noticeable dragging of the phonons can occur. 
With further increase of v the phonon part of the con­
ductivity will increase. Formula (34) does not give 
this increase, since it has been derived without allow­
ance for the phonon dragging, using a stationary 
statistical operator. In spite of the fact that the ap­
proximation in question (in contrast to the approxima­
tions used in[5- 101) is of no interest from the point of 
view of technical applications, it may be of interest in 
connection with the possibility of investigating the 
phonon spectra by using the nonlinearities of the 
current-voltage characteristic. 

It can be seen from (36) that the third derivative of 
E with respect to v has a o-like singularity at v = s. 
This singularity is the consequence of the Debye model, 
for when v = s, phonons with all q begin to be gener­
ated immediately. In a real metal, there will be no 
singularity of this type, since each v corresponds to a 
certain definite q. To verify this, let us consider a 
model with an arbitrary isotropic dispersion law O(q). 
Relation (34) can in this case be easily changed. Using 
this new relation, which gives the connection between 
E and v at an arbitrary dispersion law, it is easy to 
see that at low temperatures 

d3E 4 d2E g 2m 2 q5 (v)8(2p0 - q) 
- -l---~ = --- ;;_7--'--'--"-;--:-;--'-
dv3 v dv2 en(2n) 3 I v- vt(v) I ' 

(40) 

where v 1 is the group velocity of the phonons ( v 1 

= dO/dq), and the q(v) and v 1(v) relations are deter­
mined from the requirement that the drift velocity v 
be equal to the phonon phase velocity ( v = n/ q). 

Equation (40) can be written in a different manner, 
so as to reveal the connection between q and v: 

qs(v)=5en(2n) 3 e(s-v){d2EI _d2E+ 4 Jdvd2E}· (41 ) 
g 2m 2 dv2 v~' dv2 v v dv2 

It is easy to see that with the aid of relation (41) it 
is possible to reconstruct the phonon spectrum in 
metals from the experimental plots of d2E/dv2 against 
v. Indeed, if it is assumed that relation (41) gives the 
implicit v( q) dependence, then the dispersion law is 
determined from the equality O(q) = qv(q). Relations 
(40) and (41) were obtained without allowance for the 
Umklapp processes. In this approximation, the second 
derivative is equal to zero at v < v0 , where v0 is de­
termined ( v0 < s) either by the equation q ( v0 ) = q if 
Po > q/2 or the equation q ( Vo) = 2po when p0 < Ci/ 2 
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(q-momentum on the boundary of the first Brillouin 
zone). Thus, the entire information concerning the 
phonon spectrum is contained in a relatively small 
section where v varies from v0 to s. In the Debye 
model, this section vanishes, since v 1 = s = v0 and q 0 

= q. As a result, a 6-like singularity appears in rela­
tion (40); this singularity was discussed earlier. We 
note that if Po> <l/2 and Unklapp processes are taken 
into account, then the section from Vo to Vo ( q(vo) 
= 2p0 ) contains information concerning these processes. 

The resolution of this method of reconstructing the 
phonon spectrum can be easily determined by consider­
ing the errors introduced by the employed approxima­
tions. If {3- 1 > ( eEqj m )112 , then the error in the fre­
quency will be Ail ~ {3-\ and if the inequality is re­
versed we have Ail~ (eEqjm)l/ 2 , 

5. CONCLUSION 

Let us assess the experimental possibilities of in­
vestigating nonlinearities in metals. The main problem 
arising here is the heating of the samples. It is there­
fore necessary to determine the power P at a given 
measured energy AE. The power P is usually drawn 
away from the surface of the sample by a cooling 
medium, so that it can be assumed that the surface 
has a specified temperature {3(/. If it is assumed that 
the conductivity depends little on the temperature (the 
main contribution to the conductivity is made by im­
purity scattering), then, using the Wiedemann-Franz 
law to determine the thermal conductivity of a cylin­
drical sample with radius a, we obtain the tempera­
ture distribution over the cross section 

3 a2 - r2 
p-2(r)= ~o-2 + 8n2(MV-').-2 -, (42) 

where ;\. = v0T is the mean free path. 
It is seen from (42) that from the point of view of 

decreasing the temperature gradient in a sample it is 
desirable to increase the mean free path. However, 
when a ~ )1., a residual resistance arises as a result 
of scattering of the electrons by the sample boundary. 
Therefore, in the best case a/;\. ~ 1 and, if heating in 
the center of the wire to a value A{3-1 ~ (301 is permis­
sible, we get from formula (42) that AE ~ 5{30\ It is 
also of interest to estimate the resultant dissipated 
power, P ~ V(AE)2n/8 JloT (here V is the volume of 
the sample). For a wire of diameter 2a ~ 10-2 em we 
have T ~ 10-10 sec in sufficiently pure substances and 
P ~ V{3- 2 x 2 x 104 W, where V is in cm 3 and {3-1 in 
degrees Kelvin. If {3-1 ~ 1°K and the sample length is 
10-1 em, then P ~ 0.2 Watt. The chosen volume of the 
sample V ~ 10-5 cm 3 is dictated by the following con­
siderations: It can be assumed that the sensitivity of 
the method is of the same order as in tunnel investiga­
tions of inelastic tunneling with impurity molecules 
located in the region of the potential barrier [ 11-131 2'. It 
is then quite easy to register 10-10-10-11 impurities 
(see( 7 J ). If it is assumed that c ~ 1016 cm-3 at 
T ~ 10-10 sec, then Vc ~ 1011 • 

The obtained estimate AE ~ 5 {301 is quite stringent 
and it might seem that it would not permit an investi­
gation of the energy region of interest, which reaches 

2>1n ( 11- 13 ] they investigated the second derivative of the field in­
tensity with respect to the current. 

1020K for impurities, and all the more will not permit 
investigations of phonon singularities (10 2-103 °K). 
Nonetheless, if we use a pulse measurement procedure, 
then the region of attainable A E increases by two or 
even three orders of magnitude, so that apparently an 
experimental observation of the described effects en­
tails no particular difficulty. We note that even in the 
continuous measurement procedure the situation can 
be greatly improved by using semimetals or degenerate 
semiconductors. In semimetals and in semiconductors, 
however, effects of phonon dragging may exert a strong 
influence, which was nof taken into account in the 
present investigation. In addition, a noticeable tem­
perature difference may arise between the impurity, 
the electron, and phonon subsystems. The occurrence 
of a temperature difference between different sub­
systems, the dragging of phonons, and the influence of 
electron scattering can greatly distort, under certain 
conditions, the obtained results. Allowance for these 
effects will be the subject of further investigations. 

Let us make also a few remarks concerning formu­
las (30) and (32). As seen from the foregoing esti­
mates, the case a 2 >> 1 is quite difficult to realize in 
experiment, all the more since relation (30) and (32) 
were derived without allowance for the proper lifetime 
Ti of the excited impurity states_ Under conditions 
when the impurity is in the metal, this time can be 
sufficiently small and comparable with (3. If Ti < {3, 
then it is necessary to consider in lieu of a the 
quantity ~Ti(eEv0 ) 112 • 

The author is sincerely grateful to D. N. Zubarev 
and K. B. Tolpygo for a discussion of the work and a 
number of interesting remarks. 
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