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This is a continuation of an earlier paper[ 1J in which we investigated a general solution of the gravita
tion equations with the same type of time behavior as that encountered in the particular case of a homo
geneous metric of Bianchi type IX. The general solution is assumed in this case to be periodic with 
respect to the space variables. It is shown that if this condition is rejected, the qualitative character 
of the time behavior of the general solution remains the same. Moreover the general solution also in
cludes as a particular case a homogeneous metric of the type VIII besides the homogeneous metric of 
the type IX. 

1. INTRODUCTION 

IN[1J we investigated a general solution of the gravita
tional equations, close to the solution for a homogene
ous Bianchi metric of type IX. The investigated solu
tion was periodic in the spatial variables. In this paper 
we wish to call attention to the possibility of construct
ing also a solution that is not periodic in the spatial 
variables and has qualitatively the same oscillatory 
character in time as the solution in[ 1J. The obtained 
solution includes, as a particular case, besides the 
homogeneous metric of type IX, also the homogeneous 
metric of type VIII. We recall that homogeneous 
metrics can be represented in the form 

-ds2 = -dt2 + (a2l,,}~ -~- b2mam~ + c2nan~)dxadx~, (1) 

where the three-vectors lOt, mOt, and nOt do not depend 
on the time, and the functions a, b, and c depend only 
on the time. In metrics of types IX and VIII, the three
vectors are subject to the conditions 

I rotl =A., m rotm = J.t, n rotn = v, I[mn] =1. (2)* 

Here >.., JJ., v = const, and all the non-diagonal scalar 
products of the form l curl m, etc., vanish. Condition 
l· m x n = 1 (unlike the first three conditions) does not 
include any physical limitation and is a result of the 
special choice of coordinates. It was shown in[ 2,sJ that 
a metric of type IX corresponds to the case when all 
three constants >.., JJ., and 11 have the same sign, and a 
metric of type VIII to the case when one of them is 
negative and the other two are positive. An investiga
tion carried out inC 2,sJ shows that during the temporal 
evolution of these metrics (on approaching the singular 
point t = 0, where the determinant abc vanishes), an 
alternation of Kasner epochs and of long eras takes 
place. It is obvious that an analytic construction of the 
general solution should be carried out separately for 
each stage of the evolution. During the Kasner epoch, 
the metric is given by expression (1) with (a2, b 2, c2) 
= ( eP1, eP2, ePs) and with vectors l, m, and n that 
depend in arbitrary fashion on the spatial variables 

*[mn] =mx n. 
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x, y, and z. We shall investigate further the form of 
the general solution for a long era. A long era is char
acterized by the fact that one of the functions a, b, or 
c decreases monotonically and subsequently, during the 
entire era, it becomes much smaller than the two 
others. Assume that this is the function c. If c «a, b, 
then in the coordinate system in which ls = ms = 0 and 
ns = 0 the components of the metric tensor g1s, g2s, 
and gs3 turn out to be proportional to c2, whereas the 
components gw g 12, and g 22 are proportional to a 2 and 
b2. Thus, the following inequalities are satisfied for 
the duration of the era 

(The three Latin indices a, b, and c will henceforth 
assume the values 1 and 2.) Inasmuch as in the em
ployed system the component gss is equal to .c2 and 
depends only on the time, it is possible to introduce 
a new variable ; by means of the transformation dt 

(3) 

= rg;; d~, i.e., to change over to a coordinate system 
in which - g00 = gss· It turns out (seeC2,sJ) that this is 
the most convenient system for the description of the 
solution within a single era, since the corresponding 
formulas assume the simplest form precisely in terms 
of the variable ~. Therefore to construct the general 
solution in[ll we have chosen a coordinate system sub
ject to the conditions 

(4) 

It was shown that if one seeks a general solution of 
Einstein's equations R~ = 0 in the coordinate system 
(4), subject to the condttions (3 ), then the principal 
approximation to the solution is described by the metric 

(5) 

in which the components gas are set equal to zero, 
while gss and gab behave as if they depend only on the 
two variables z and ; . In other words, all the terms 
containing derivatives with respect to the variables xa 
in the equations R~ = 0, R~ = 0, RZ = 0, and R~ = 0 
turn out to be small in comparison with terms contain
ing derivatives with respect to z and ~ only (this 
smallness is determined by the ratio gss /gab« 1). 
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The equations R~ = 0 and R~ = 0 then determine the 
components ga3 from the solution of the preceding 
equations for g33 and gab. without imposing any new 
requirements whatever on the latter. The general solu
tion obtained in this manner satisfies conditions (3), 
thus confirming the validity of the procedure described 
above. 

It was also noted that the system (4) admits also of 
coordinate transformations that permit, without violat
ing the conditions (3), the choice of the determinant 
G = I gab I in the form 

l'G = f(x, Y)s, (6) 

where f(x, y) is a certain specified function, the form 
of which is immaterial in what follows'>. Of course, 
such a choice is possible only when the variable ..fG 
has a time-like character. 

If we now introduce the notation (the same as in[ll) 

(7) 

Then Einstein's equations assume in the principal ap
proximation the form 

Xab ++"•b- 'Aa'b =0, 

~ = -1/6 + 1/46 <"·b"b" + ,'J...bJ..b•)' 

(8) 

(9) 

(10) 

The raising and the lowering of the two-dimensional 
indices is carried out here with the aid of gab, and the 
dot and the prime denote differentiation with respect to 
~ and z, respectively. The solution of Eqs. (8) should 
satisfy the condition (6). 

2. INVESTIGATION OF THE EQUATIONS OF THE 
PRINCIPAL APPROXIMATION 

To investigate Eqs. (8)-(10), it is convenient to 
introduce the following notation for the components 
gab: 

(11) 

which automatically take into account the condition (6). 
Then the system (8)-(10) assumes the form 

.. 1 . . . 
a-t- T a- a"= 2 (a'W- a~) th ~. 

.. 1 . 1 . 
~ + T~- ~" = 2 (a2 - a'2)sh2~, 

,j, = _;_ 2~ + {- 6 ~~· + w· + (a2+ a'2) ch2 ~1. 
'I''= HW + <X.a'ch•n 

(12) 

(13) 

(14) 

(15) 
In[ll (where a somewhat different notation was used 

for the components gab), we confined ourselves to ob
taining for Eqs. (12)-(15) a solution periodic in the 
variables z. This, as can be readily seen from (12) and 
(13), causes the functions a and {3 to tend to zero like 
1/ .[f as ~- ao. This result is obtained from the solu
tion of Eqs. (12) and (13) in the linear approximation, 
if a and {3 are represented by Fourier series in z. 

!)This function could be set equal to unity by using the aforemen·· 
tioned transformations. We retain it here only because its presence 
makes it easier to obtain the particular cases of the homogeneous met
tics of type VIII and IX from the general solution. 

Allowance for the nonlinear terms in the right sides of 
(12) and (13), the order of which is 1/~ .[f, leads to an 
insignificant change of the phases of the oscillations of 
the linear approximation. It was shown that the solu
tion constructed in this manner contains, as a particu
lar case, the solution for a homogeneous metric of type 
IX. 

In the present paper, as already mentioned, we point 
to the possibility of obtaining for Eqs. (12) and (13) a 
solution that is not periodic in z, but nevertheless 
possesses the same oscillating character at large ~. 

In the region of large values of ~, we seek the solution 
in the form of the expansions 

a = pz + (J In 6 + e + 0 ( 1/l'~)' 
I}= 0(1/l'~. 

(16) 

where p, a, and 9 are arbitrary functions of x and y. 
Indeed, making the substitutions 

1 1 ( a=pz+crlns+6+-:=a1, 1}=-=.~ 1 17) 
is is ' 

we obtain from (12) and (13), assuming that a,~ 1 and 
{3 1 ~ 1 (and the same for their derivatives) 

.. " 2p II. ' 0 ( 1\ 
a,-a,=rf~''~'+ T'' 

~~-~1"-/-p2~,=- ~~~1a1'+o(-i-'). (18) 
l's " 

We seek the solutions of (18) in the asymptotic 
region ~ - ao, in a class of functions that are bounded 
in ~ . In this case, owing to the presence of 1/ .[f in the 
right sides of (18), we can employ a method of succes
sive approximations, neglecting in the first approxima
tion the right sides of (18). The equation obtained in 
this case for a 1 is a wave equation and its general 
solution can be written in the form of a sum containing 
two arbitrary three-dimensional functions: 

Cit = A (x, y, z + 6) + B (x, y, z- 6). 

The second equation for {3 1 is the Klein-Fock equation 
and its general solution also contains two arbitrary 
three-dimensional functions. 

The subsequent analysis is best carried out by ex
panding the functions a 1 and {3 1 in Fourier series2> in 
a certain bounded region of z. In this case we have in 
first approximation 

-t-

Cit = L, [ Aneinwl. + Bne-inwl.] einwz, 

n=-co 

±<» 
~I= L. [Cneiro.< + Dne-iwnl.]einwz, 

n=--oo 
Wn2 = nV+ p2, 

(19) 

(20) 

which on the one hand satisfies3> and conditions stipu
lated above that a 1 and {31 be bounded, and on the other 
hand shows that it is legitimate to discard the terms of 
order of 1/ .[f in the right sides of (18). Indeed, sub-

2>1t may be that a solution could be sought in the form of Fourier 
integrals; this question has not been investigated fully. We therefore do 
not assert that expandability in Fourier series is a necessary require
ment imposed on the coordinate dependence of the functions a 1 and 
(32. 

3llt is assumed here that all the necessary convergence condtions are 
satisfied for the series in ( 19). 
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stituting in (18) the first-approximation solution (19) 
and varying the left-hand sides, we obtain equations for 
the determination of the corrections Oa 1 and O{J 1: 

(6a1)"' -(6a1)" = 2~~ 1 ~{, (6~!) .. -(6~ 1 )" + p21)~ 1 = _ 2P_~ 1 a{. 
l's 11~. (21) 

Expanding Oa 1 and OfJ• in a Fourier series, we then 
obtain equations for the determination of the Fourier 
coefficients (oa.)n and (O{J1)n as functions of the time. 
An essential factor is the absence from the right sides 
of these equations of terms with resonant frequencies 
(the frequency wn for ( Oa 1)n and ...j n2w2 + p2 for 
(O{J •)n). Consequently, the integration of (21) yields 
Oa1 ~ 1/..{f and O{J. ~ 1/..{f, i.e., the corrections ac
tually turn out to be small. 

The situation is somewhat different when it comes 
to the determination of the next terms of the expansions 
of a. and fJ1 ~ 1/~, with allowance for the terms desig
nated O(l/0 in (18). A procedure analogous to that 
described above leads to equations for the coefficients 
(0 2a.)n and (0 2 fJ•)n with right-hand sides of the order 
of 1/ ~ , but containing resonant terms. We thus obtain 
corrections 02 a 1 and 02 {31 ~ ln ~- However, such an 
"instability" of the first approximation (19) is only 
illusory. This is connected with the variation of the 
amplitudes An, Bn, Cn, and Dn which actually are not 
constant but slowly-varying functions of ~. of the form 
cos ln ~ and sin ln ~. A similar phenomenon takes 
place also in nonlinear oscillations[41. The correct 
form of the amplitudes was determined by us in[ll for 
the case p = 041 • 

Thus, with a sufficient degree of accuracy (neglect
ing the slow variation of the amplitudes), we can use 
the solution (17), (19). Substituting it in (14), we easily 
find the principal asymptotic terms of the function 1/J. 
When p ¢ 0, we obviously have 

w= 1/4~2[1.+0(1/s)l (22) 

On the other hand, if p = 0, then the principal term in 
1/J turns out to be linear in ~. viz., 1/J = q~, where q is 
an essentially positive function of x and y (see[ 1l). 
(The role of (15) reduces only to a determination of the 
arbitrary function 1/Jo(x, y, z) for the integration of 
Eq. (14)). 

The foregoing analysis shows that when ~ decreases 
from a certain very large value ~ 1 » 1, the component 
of the metric tensor g33 decreases like exp( }'4p2 e), 
whereas the behavior of the components gab, averaged 
over the oscillations, is described only by the power 
functions ~ 1+0" and e-a, as is seen from (11) and (17)51• 

Thus, an era sets in in which the inequality g33 « gab 
which was stipulated from the very beginning, holds. ' 

The final stage of the era can be readily traced 

4lin [I] we also assumed that a= 0 = 0. However, the quantity 0 
does not enter in the equations that determine a 1 and {31 at all, and the 
term a In~ in the function a affects only the order I /~v'f of (18). Thus, 
the formulas obtained in [ 1] for the amplitudes remain valid when p 
= 0. 

5lTo obtain the particular cases of homogeneous metrics of type 
VIII and IX from the general soultion, it is necessary to put a(x, y) = 0. 
In the general case, there is a limitation on the region of admissible 
values of this function. From the conditions for the joining of the solu
tion described above with the solution in the region of small values of 
~. which is given below, it follows that a< I. 

directly from Eqs. (8)-(10). A simple analysis made 
in[•J show·s that when ~- 0 the solution has a Kasner
like asymptotic form 

gab = lah~P• + mambs2P•, 

/1m2- 12m! = j, Pl + P2 = 1, Pl > 0, P2 > 0, 
(23) 

Here la, ma, and Pa are arbitrary three-dimensional 
functions (the conditions l 1m 1 - l2m1 = f and p1 + p2 = 1 
follow from (6)). Since p., p2 > 0, the components gab 
decrease and the component gs3 increases ( p~ + p~ 
- 1 < 0). Consequently, sooner or later there sets in 
an instant when gss becomes larger than gab, and the 
condition for the applicability of the approximation 
considered here no longer holds. 

To verify the foregoing analysis, it is necessary to 
consider also the equation R~ = 0 and Ri = 0 and to 
check, after a solution is obtained for the components 
gas, that the second of the proposed inequalities, gi3 

« gssgaa, also is satisfied. We shall not do this in de
tail. An analysis perfectly analogous to the one in[•J 
shows that both when ~ » 1 and when ~ « 1 the com
ponents gas are proportional to gss· Thus, when g3s 
«gab, the second condition is also satisfied. 

Let us consider now the question of the degree of 
generality of the solution considered above. The physi
cal leeway in the general solution is determined by 
four arbitrary functions of three spatial variables and 
three functions of two variables[ 51. 

It must be ascertained first which coordinate 
transformations still remain admissible in our case· 
it is easy to show that if: 1) we retain the coordinat~ 
conditions (4), 2) we do not change the functional form 
{6) of the determinant I gab I, 3) we do not introduce 
into the component gas. by coordinate transformation, 
terms that are proportional to gab and violate the in
equality g~s « gssgaa, and 4) we retain the diagonal 
asymptotic form of the matrix gab at large values of 
~ 

( 
j;l+aepz~ 0 

gab-/ ' 0 ' 61-ae-P•-B) , 

then we can still carry out a transformation of the 
form 

(25) 

z=z+zo(.x,y). (26) 

Thus, the admissible transformations contain one 
arbitrary two-dimensional function and not a single 
three-dimensional one. 

By choosing zo it is possible to cause e(x, y) in 
solution (17) to vanish. We are then left with no trans
formations that contain two-dimensional functions. 
However, the solution still retains three arbitrary func
tions, which thus constitute a physical leeway. We have 
in mind the arbitrary function I/J 0 ( x, y) of the integra
tion of Eqs. (14) and (15), and two such functions con
tained in the component gas (for more details see[1l). 

As to the leeway determined by the three-dimen
sional functions, it is contained in solution (17) of Eqs. 
(18) for a and /3. This leeway is described by four
three-dimensional functions. 

A unique effect arises in the general case as a re
sult of the presence of the term a ln ~ in expressions 
(17) for the function a. When a ¢ 0, the oscillations of 
the metric coefficients occur against the background of 
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a general decrease of these functions, which is non
linear in ~ and has a different form for the different 
components of the metric tensor gab ( ~ l+a and e- 13 ). 

Since we did not encounter such a behavior of the metric 
in the homogeneous models, this question deserves a 
more thorough investigation. 

3. CONCLUSION 

As follows from the results of(ll, the solution for 
the homogeneous metric of type IX is contained as a 
particular case in the general solution obtained above, 
describing one era. If we put in the solution (17) and 
(19), p =a = (J = 0, and change over to the notation used 
for gab in[ 1l 

h P. hP. (chy+_!_shy, ..<!:.shy) 
( e• c t'• s p ) Y Y (27) 

sh P. e~a ch P. = m X ' 
P• P ~shy, chy---;yshr 

v•=x"+<r2 

(in the linear approximation we have simply a = x and 
{3 = q;), then we can use simply the results of[ 1J. 

We shall show now that when p ;z< 0 the solution de
scribed above contains the particular case of a homo
geneous metric of type VIII. The latter can be obtained 
from (A.11) ofr2 l, by putting J.1. = v = 1 and A= -1 (the 
constant {3 is also assumed equal to unity). This yields 

-ds2 = -dt2 + [ (a2 sh2 z + b2 ch2 z) (1- y2) + c2y2Jdx2 

dy2 
+ (a2 ch2 z + b2 sh2 z)--- (a2 + b2)sh 2z dxdy + c2 dz2- 2c2y dx dz .. 

1- Y2 (28) 

Let us consider an era during which c 2 ~ a 2, b 2 • We 
can then neglect in (28) the component g13 ~ c2 and 
discard the term c2 y 2 in g 11 • Then the transformation 

dt = cd;, x = x + y, y = th (x- fl), (29) 

yields in the principal approximation 
2ab 2 

-ds2 = c2(dz2- ds2) + [e-2' ch B dx2 + e2' ch B dy 
ch2(x- y) 
+ 2 sh B dx dy], (30) 

where {3 denotes 

B=ln(b/a), (31) 
and the bars over x and y have been omitted. Equa
tions for c 2, ab, and {3 can be readily obtained from 
the exact equations (4 .2) and (4 .3) of[2J, neglecting in 
them the small quantity c 2 and changing over to the 
variable ~. This yields immediately (ab)~~ = 0, and 
without loss of generality we obtain ab = a~~. Then 
the equations for {3 and lj! (c 2 = el/!) take the form 

1 
B" + ---r B• + 2 sh 2B = o, 

.p,=- 2~ +--}HB~2 +4ch2 BL (32 ) 

and in theregion ~ >> 1 we have in first approximation 

B= ~(Coe2i'+D0e-2''), ljl=;2• (33) 

It is easy to see that the metric (30) and Eqs. (32) are 
obtained from the general case (11)-(15) by putting 

f(x,y)= ch2(x-y)' a=-2z, (34) 

This means that in the solution (17), (19), and (22) we 
have a = (J = 0, An= Bn = 0, p = -2, and among the 
Fourier coefficients Cn and Dn only Co and Do differ 
from zero. 

We note further the following circumstance, which 
justifies the employed Fourier expansion in z. The 
general solution obtained above is valid only in a cer
tain limited interval of ~. namely ~ 1 - ~ 2 = .:l~, where 
~ 1 and ~ 2 are the start and end of the era. We can 
therefore always separate in space a region S1 bounded 
in z at the initial instant ~ 1 , and a region S2 at the 
instant ~ 2, such that the initial perturbations from the 
regions outside S1 do not have time to influence the 
character of the solution in S2 at the instant ~ 2 • Thus, 
if we use a Fourier expansion in the region S 1, then it 
can be assumed that the solution obtained in this man
ner will actually be general for all the instants of time 
in the interval .:l~ and in a certain bounded region of z, 
the dimensions of which are determined by the dimen
sions of S2 at the final instant ~ 2 of the era. 

Finally, we note the following cosmological aspect 
of the analysis presented here. We have seen that the 
general solution describing one era is close to the 
solutions for the homogeneous models of types IX and 
VIII, depending on whether the function p(x, y) 
vanishes at our solution or not. In the general case the 
solution, of course, does not belong to any type, but the 
local properties of the space in the vicinity of a certain 
point (xo, Yo, Zo) may be quite close to those that ob
tain in the homogeneous models. The type of model ap
proximating the structure of space can change from 
point to point. For example, the function p(x, y) can be 
equal to zero in some regions, and different from zero 
in others. Accordingly, in the former regions the evo
lution of space in time is close to that predicted by the 
homogeneous model of type IX, and in the latter by the 
homogeneous model of type VIII. 

In conclusion, the authors are grateful to E. M. 
Lifshitz for a number of valuable remarks that stimu
lated this work. 
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