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Replacement of the relativistic collapse of a charged sphere by expansion inside a Schwarzschild 
sphere is considered. It has been shown in[2l that if the field outside the sphere is always a Reis
ner-Nordstrom field, then sphere contraction will always be replaced by expansion into another 
outer space. It is shown in the present paper that a solution can be set up for which passage into 
another outer space does not occur. For this purpose one has to change the conditions in the space
time region within the Schwarzschild sphere (about which an outer observer will never learn). 
Another charged sphere can be put into this region, its "explosion" changing the solution for the 
first sphere in such a way that passage into the other outer space will be hindered. For an observer 
in the first outer space the total picture of the collapse will not change and he sees an asymptotic 
approach of the sphere's surface to the Schwarzschild sphere. 

IN earlier papers[l' 2 l, the author constructed a solu
tion of the problem of the relativistic collapse of a 
charged sphere. After compression to below the 
Schwarzschild sphere, the sphere again expands, but 
now in a different external space, lying in the absolute 
future relative to the space from which the compres
sion took place. It is clear that the evolution of the 
sphere in this second space depends on the processes 
occurring in that space, and is not determined com
pletely by the initial conditions in the first space (the 
absence of a Cauchy hypersurface). In the present arti
cle we wish to emphasize that even the very fact of the 
expansion of the sphere in the second outer space can
not be determined completely, by the conditions in the 
first space. The evolution of the sphere, its emergence 
to the second space (and thus, the very existence of the 
second space for the sphere) depend on the conditions 
in the space-time region ''between" the first and sec
ond spaces; these conditions must be specified in addi
tion to the conditions in the first space. 

We shall consider below an example in which, under 
identical conditions for the first space, the sphere ex
pands in the second space in one case, and does not in 
another. 

We consider the collapse of a charged sphere. At 
the initial instant the matter in the sphere has a low 
density. Let the charge of the sphere be € < mG.l/ 2, 

where G is Newton's gravitational constant and m is 
the mass of the sphere. The sphere will collapse. 

Assume that there is still nothing outside the sphere, 
with the exception of its electric field. The solution of 
the problem is given in[ 1 ' 2 l. The space-time metric 
outside the sphere is the Reisner-Nordstrom metric. 
The world line of the surface of the sphere is shown in 
Fig. 1. The vertical axis represents the proper time 
T, and the horizontal the radial coordinate R of the 
system, co-moving with the matter inside the sphere 
and continuously continued by trial particles outside 
the sphere (for details see[ 2l). The region occupied by 
the matter of the sphere is shown cross-hatched in the 
figure. 

The sphere compresses from an external space A, 
its surface crosses the Schwarzschild sphere 

Gm( lf-e2 ) 
r=rg=----;;2 1+y1-Gm2 , 

(r-length of the circle at a fixed radial coordinate), 
continues to be compressed in the nonstatic region T _ , 
and crosses its boundary 

r=rt= Gm (1- 111-~). 
c2 Y Gm2 

In the region B, the compression of the sphere gives 
way to expansion, and after crossing r ~ and rg the 
sphere goes out into a second external space C. 

In the internal region B there is a true time-like 
singularity r = 0 located outside the sphere. We note 
that the spatial section (a, b, c) is closed (in analogy 
with the closed Friedmann cosmological model), and 
the true singularity is located at the pole opposite to 
the center of the sphere. The dashed lines in region B 
are the world lines r = const, which have an infinite 
(proper} length, i.e., particles with r = const can exist 
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forever in this region ''between" the two ordinary 
spaces A and C, which are Euclidean at infinity. 

We note now that by specifying the initial data in 
space A, for example at T =To (Fig. 1), we determine 
the evolution only to the left of the line r = r 1, since 
this line is the last characteristic (the zeroth geodesic) 
arriving from the space A from r =+co at T = T0 • 

Owing to the relativistic slowing down of the time, this 
occurs after a finite T. Whatever occurs to the right 
and above this characteristic r = r 1 is no longer de
termined completely by the initial conditions on the 
section T =To (there is no Cauchy hypersurface). It is 
possible, without changing anything in the region to the 
left of r = r 1, to specify different conditions in the 
region to the right of r = r 1 (of course, satisfying the 
Einstein equations and continuing smoothly at r = r 1 
into the remaining solution). We assume now that 
matter from a different charged static sphere (3 11 is 
located to the right of r = rl> in region B, in place of 
the singularity r = 0 around the pole opposite to our 
sphere a. The possibility of this fact is discussed in 
the Appendix below. It is important to note that in this 
case the gravitational and electric field outside the 
sphere (3 do not change in any way, i.e., the entire 
evolution of the sphere a remains the same as before. 
The world line of the surface of the sphere (3 will be 
r 2 = const, the sphere (3 can exist infinitely long in its 
proper time. The corresponding space-time is shown 
in Fig. 2. 

We note here that if there are no true singularities 
in the solution, then the matter of sphere (3 (or at 
least part of the matter) should be not under pressure 
but under strong tension (generally speaking, aniso
tropic), but this does not contradict the physical laws 
(for details see the Appendix). 

We now stipulate that the sphere (3 be static not 
everywhere, but only up to an arbitrary instant of its 
proper time, after which it explodes. Its matter ex
pands and collides with the expanding sphere a, see 
Fig. 3. The evolution of the sphere a now changes. 
Clearly, after collision, emergence to the outer space 
C is impossible. The evolution of the entire matter of 
both spheres after the collision is the evolution of a 

llThe charges of the spheres il and ex are opposite, but equal in ab
solute magnitude. 

closed world, in which there is no boundary surface 
and which can appear in the outer space C21 . By the 
same token, we have constructed examples in which, 
under absolutely identical conditions in space A, 
where the sphere a begins to collapse, in one case the 
sphere emerges to the second space C, and in the 
second case it does not, of course, such a possibility 
is due to the absence of a Cauchy hypersurface in space 
A. 

We note that the very possibility of the absence of 
an initial Cauchy hypersurface in relativistic problems 
has been noted many times in the literature (see, for 
exampleP•4l). Usually such a situation was regarded 
as exotic, incapable of occurring in real processes of 
a real universe. 

The foregoing examples show that, in principle, 
such a situation, which leads to unique consequences, 
can occur in reality (of course, assuming that relativity 
theory is valid). 

In conclusion we note that the absence of a Cauchy 
hypersurface probably has no significant influence on 
the occurrence of a singularity in relativistic collapse 
(Thorne[3l). Indeed, according to Hawking's theorem 
2[sJ, a singularity arises during the course of the col
lapse under natural physical requirements, regardless 
of the presence or absence of a Cauchy hypersurface. 

APPENDIX 

Different aspects of the collapse of short spheres 
were discussed many times (see, for examplers-121). 
We are interested here in a static solution for a charged 
sphere with radius r2 < r1 and the subsequent expan
sion of this sphere. 

We write the interval in the form 

ds2 = e•rJt2- e~dflo- r2(d82 + sin• 8dqJ2). (1) 

Outside the sphere we have the Reisner-Nordstrom 
metric 

For the material inside the sphere we stipulate 

(2) 

To0 = 8 > 0, IT1'I ~ 8, lUI= ITa" I~ 8. (3) 

We shall show that at least in part of the matter of such 
a static sphere there takes place the inequality31 

T0°-TI1 -T22 -Ta3 <0, (4) 

i.e., strong tension is present. 
At the surface of the sphere we have41 v' < 0. The 

function v(r) is bounded and has a maximum at 
r = r 0 , 0 ::s r ::s r 1. At r = r 0 we have v" < 0 and v' = 0, 
and we obtain from gravitational equations 

x(To0 -TI1 -Tz2 -Ta3 ) = e-~[v"+2limHr,(v'/r)] <0, (5) 

where K is the Einstein constant. The quantity 

2) According to a remark by Ya. B. Zel'dovich, an interesting situa
tion arises if the time is reversed (T-+ -r). We then obtain an example 
of "opening" of a closed world. 

3)This inequality follows indirectly in our problem from Hawking's 
second theorem [5]. It is obvious that ordinary matter and an electro
magnetic field do not satisfy this inequality. 

4lThe prime denotes the derivative with respect to r. 
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lim11-- 110(v'/r) vanishes at ro;o! 0 and is negative when 
ro = 05). 

A static sphere with an equation of state satisfying 
(5) everywhere inside the sphere (except the regions 
at the surface itself), corresponding to gravitational 
repulsion can be described, for example, by Bardin's 
solutionr4~, which joins the external solution (2) on the 
surface of the sphere. A solution satisfying (3) and de
scribing gravitational attraction near the center may 
be, for example, the following: 

(6) 

where A2, B2 , and a are suitably chosen constants. At 
the surface of the sphere, the solution should join 
smoothly with the external solution (2). 

5)If v" = 0 when r = r0 , then inequality (5) is satisfied at neighbor
ing points. 
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