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A study is reported of time-independent states consisting of sets of interacting high-frequency and 
low-frequency waves in nonlinear dispersive media in the presence of an external high-frequency 
monochromatic force. Cases of ordinary and parametric excitation of waves by the external force 
in the medium are discussed. The excitation of Langmuir and ion-acoustic plasma oscillations by 
the external field is considered as an example. The results obtained in this way can be used to 
describe existing experimental data. 

INTRODUCTION 

THE dynamics of the interaction of high-frequency and 
low-frequency waves in nonlinear dispersive media 
without taking into account dissipation and with no ex
ternal forces was investigated in Pl. The present paper 
is concerned with the analysis of interacting high-fre
quency and low-frequency oscillations in a medium, 
taking into account dissipation and the presence of ex
ternal forces. 

When a distributed external force is applied to a 
dissipative medium it sets up time-independent oscilla
tions whose intensity and spectrum depend on the 
nature and intensity of the external force and on the 
properties of the medium. It is clear that the frequen
cies and wave vectors of the steady-state oscillations 
may not be equal to the frequencies and wave vectors 
of the applied force although they will, in general, be 
functions of them. 

For given parameters of the applied force there may 
be a few (not less than one) time-independent states. 
The problem then is to determine the amplitudes and 
the dispersion relations for the time-independent 
states and to establish their stability. In contrast to the 
well-known problem on the steady-state oscillations of 
a system with one degree of freedom under the influence 
of an applied periodic force (see for exampler 2l), here 
we have to determine multifrequency time-independent 
states of a system with an infinite number of degrees 
of freedom. We shall investigate time-independent 
states consisting of sets of interacting high-frequency 
and low-frequency waves (u and v waves) in the pres
ence of an applied high-frequency monochromatic force. 

The applied force excites u waves which in turn 
may generate low-frequency v and u waves at com
posite frequencies. We shall consider the cases of 
ordinary and parametric excitation of u waves by the 
applied force. (In the case of ordinary excitation, the 
applied force appears on the right-hand side of the 
equation motion whereas in the case of parametric 
excitation it appears in the coefficients of these equa
tions.) We shall derive the time- independent states and 
will investigate their stability. We shall analyze in 
detail the time-independent states near the instability 
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threshold for the single-frequency time-independent 
state. 

As an example, we shall discuss in the last section 
the excitation of Langmuir and ion-acoustic plasma 
oscillations by a monochromatic external field. We 
shall show that our results are in good agreement with 
experimental data[ 31 which until now could not be satis
factorily explained. 

1. BASIC EQUATIONS 

As in[ll, we shall consider a set of interacting u and 
v waves which are such that the wave vectors and fre
quencies of the former are much greater than the wave 
vectors and frequencies of the latter: 

(1.1) 

In the presence of a high-frequency applied force, 
and ignoring the damping of the waves, the Hamiltonian 
for the system can be written in the form 

:JC = {-~ mkuk'uk+ }~ Q,.v,.'v,. +}~ VH(k, k', x)ut·uk'V" 

x6(k-k'-x)+ ~ fk(t)uk' + I:. gk(t)uk-'uk"'6(k-k'-k")+c.c. 
k k,k',k" (1.2) 

In this expression, uk and Vk are the Fourier com
ponents of the u and v fields, k, K, wk, OK are the 
wave vectors and frequencies of the u and v waves, 
VH(k, k', «) are the interaction coefficients for the 
waves which can be assumed to be real without loss of 
generality, and fk and ~ are the spatial Fourier com
ponents of the applied forces. 

The variables Uk and vK and the interaction coef
ficients satisfy the usual symmetry conditions: 

The above Hamiltonian takes into account only the 
three-wave interactions in which two u waves and one 
v wave participate. We shall assume that the terms in 
the Hamiltonian which describe this interaction are 
small in comparison with the terms which are quad
ratic in u and v. The force fk(t) describes the ordi
nary excitation of u waves and ~(t) describes the 
parametric excitation. 
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The equations of motion for Uk and v K are obtained 
from Eq. (1.2) in the usual way: 

ifJu, I fJt = fJde I fJuk, ifJDx I fJt = fJdG I fJux·. (1.4) 

In order to take dissipative effects into account we 
shall introduce into the equation of motion terms which 
violate in variance under time reversal as follows: 

i ( _aa + rk) uk = wkuk + ~ [V H (k, k', ~>+iVA (k, k', ~)1 
\ t k',x. 

X Uk•Dxll(k- k'- ~) -h /k (t) + L gk+k' (t) uk:, 
k' 

;(-ft.-+ r,.)ux = QxDx + ~ VH(k,k-~, ~)u~-xUk. (1.5) 

In these expressions Yk and r K are the linear damp
ing coefficients and V A(k, k', K) are the nonlinear 
damping coefficients for the u waves. The coefficients 
VA satisfy the symmetry relation 

VA(k, k', ~)= vA·(k', k, -~). 

They take into account the slow (in space and time) 
changes in the damping of the u waves which are due 
to the presence of the v waves. 

The following order of magnitude relations are 
usually satisfied: 

IvA I Vu I ~ 'I'• I Wt «:: 1, r. I Q, «:: 1. 

In view of the assumption that the wave interaction 
is weak, the solutions of Eq. (1.5) can be sought in the 
form 

(1.6) 

assuming that ak and bK are slowly-varying functions 
(over the periods 27T/Wk and 27T/S1K). Substituting Eq. 
(1.6) in Eq. (1.5), and retaining only the slowly-varying 
terms on the right-hand sides, we obtain the following 
sets of equations for ak and bK: 

i( ! +rk)ak= ~ V(k,k',x)(ak·b,exp[ii\(k,k',x)t]) 

Xll(k-k' -x) + (/.(t)exp(iw.t)) + E (gk+k' ak:exp [i(wk + Wk•)t]), 
k' (1.7a) 

V (k, k', x) = V H (k, k', x) +iVA (k, k', ~) 

i(! '1-f.)b•=LVH(k,k-x,x)(a~-xakexp[-ii\(k,k-x,x)t]), 
k (1. 7b) 

where 

t.(k, k', x) = w.- '''"'- Qx, 

and the angle brackets indicate that we are retaining 
only slowly-varying terms. Obviously, terms which 
represent the interaction between the waves are slowly
varying terms if 

Q., "'• ~ t.(k, k- ~. ~). (1.8) 

The slow variation of the terms describing the ef
fect of external forces is ensured if 

(1.9) 

where 
IL'.o(k) I == lw•- Wo•l «::"'•• 

I I'. I (k, k') I== I Ul;, •+•'- Wk- Wt• I «:: Wt. {1.10) 

Condition (1.8) means that we are taking into account 

only the resonance interaction between the waves, 
whereas (1.10) shows that external forces excite high
frequency waves in a resonance fashion. 

In this paper we shall confine our attention to the 
excitation of waves in a medium by monochromatic 
external forces, i.e., we shall consider cases where 

f•(t) = /l'l(k- ko)e-i"''', Wo- Wt,=ll.o, 
It., I «:: w ., 

g.(t) F= gl\(k- 2ko) e-iroo't, w0'- 2w., = t.~, 

I t.d «:: w.,. (1.11) 
The first case describes ordinary resonance excita

tion of waves of frequency w0 (resonance detuning ao) 
and the second case represents the parametric excita
tion (parametric resonance detuning a 1). 

2. TIME-INDEPENDENT STATES 

A state will be referred to as time-independent if it 
takes the form of a set of waves with constant amplitudes. 
Foreach such state we have a solution of Eq. (1.7) of 
the form 

(2.1) 

where ak:, b~, ak, and f.K are constants which depend on 
the parameters of the applied force, the damping, and 
the nonlinear properties of the medium. The quantities 
ak and f.K are real; they are in fact the nonlinear addi
tions to the frequencies Wk and QK produced by the 
interaction between the waves. Since the wave interac
tion is weak, the quantities ak and f.K are small, i.e., 
I ak I « wk, I € K I « n K· 

Let us now investigate the time-independent states 
for different forms of the applied force. 

In the absence of applied forces (fk = ~ = 0) there 
is obviously only one time-independent state: ak: = bk 
= 0, and this means that there are no waves in the 
medium. When the forces are applied there will, in 
general, be nonzero solutions of the form of Eq. (2.1). 

Consider the case of ordinary excitation of u waves 
(f ;<! 0, g = 0). In this case, we have solutions of Eq. 
(1. 7) of the form given by Eq. (2.1 ): 

a.0 = ao0b •• , bx0 = 0, ao0 = f I (,L'.o + iy}, 
Ot, = ll.o, 

(2.2) 

which correspond to a time-independent state consist
ing of a single u wave of frequency w0 , wave vector 
k0 , and amplitude given by Eq. (2.2). 

If we investigate the stability of this time-independ
ent state by the standard methods[ 2J we find that it be
comes unstable as soon as the amplitude f assumes the 
critical value given 

1'. 2 ~ •• 

iflc'=m:n P·,v~t {pt.(r.-rl+(q-cr)(r+f.)' (2.3 ) 

+ (r + r .) v [(q- cr) (r.- r) + pll.]' + 4rr. (p2 + (q- cr)2 ]}, 

where 
p = Re VA (ko, ko, x), a= Im VA (k0, ko, x) 

q = Vn(ko, ko- X,~)- Vn(ko + ~. ko, x) 

Vn°= Vn(ko, ko, ~). t. = ,L'.(ko, ko- ~. x). 

Here we have used the conditions given by {1.1), and all 
the coefficients of the equations in Eq. (1. 7 ), except for 
q, are taken in the zero-order approximation in K/k 
and n/w. 

When If I > If lc we have in addition to the unstable 
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time-independent state given by Eq. (2.2) a further 
stable state which consists of a discrete set of waves: 
u waves with wave vectors kn = k0 + nK and v waves 
with wave vectors Km = mK (m and n are arbitrary 
integers, K is the wave vector for which the expression 
given by Eq. (2.3) reaches a minimum; we shall as
sume for the sake of simplicity that this minimum is 
reached at a single value of K). If the v waves with 
wave vectors Km, m "# 1, interact with the u waves in 
a nonresonant fashion, i.e., 

(J) (kn)- (J) (kn-m) :=:::: g (Xm) 

is not satisfied for any m "# 1, then the amplitudes of 
these v waves are negligible and can be set to zero in 
Eq. (1.7). In this case, the time-independent state con
sists of a discrete set of u waves and one v wave. The 
equations for the time-independent amplitudes are ob
tained from Eq. (1. 7) by substituting Eq. (2.1) into it, 
taking into account the foregoing discussion: 

(lln + iy)a,.0= V(n -1,n)a~-1b0 exp [i(lln -lln-1- e + ~)t] 

+ V(n,n+ 1)a~+IW)*exp[i(lln -lln+I + e-~)t] 

(2.4a) 

(e + ir)b0 = .E VH(n-1, n) (an~!)* a,.0exp [i(lln-1- 6,. + e- ~)t], 
n 

V(n -1, n) = V(k,., kn-h x), V = VH+ iVA, 
Y= VH+iVA*· 

It follows from these equations that 

6,.=\1\o+n(\1\-e), 

(2.4b) 

(2.5) 

The solution of Eq. (2.4a), taking Eq. (2.5) into account 
for t:J. - € "# 0, in the zero-order approximation in 
K/k can be written in the following form: 

where 

z = (V0VO)''•Ib0 l I(~- e), ~= arg b0, 

1J = (Ao + iy)I(A- e). 

In these expressions Jv( z) is the Bessel function. 
When I t:J. - £I « IT/ I the solution of Eq. (2.4a) can 

be written in the following form: 

ll±no = (-i)±"(VO I VO)±n/2pn, 

where p is a root of the equation 

2(,~o+ iy) = (VOVO)''•Ibol (p- p-'), 

which satisfies the condition I p I < 1. 

(2.7) 

If we substitute the above expressions for an into 
Eq. (2.4b), and separate the real and imaginary parts, 
we obtain equations for € and I b 0 1. The phase 
{3 = arg b0 is then found to be an indeterminate quantity 
because the equations in (2.4) are invariant under the 
transformation 

any b 0 ' or a;;' defined by Eq. (2.8) are also solutions. 
To calculate £ and I b0 I we can use the following 

equations which follow from Eq. (2.4): 

.E lan°l 21ln=2elb0I2-Re {ao0r}, 

" (2.9) 
y .E lan°l 2 =I b0l2(r Im V Ao- eRe V A0)/VH0 + 1/2 Im{ao0/*}. 

n 

Let us now investigate in greater detail the behavior 
of the time-dependent amplitudes in the case of a stable 
state as functions of the amplitude of the applied force 
near the instability threshold when If I - If lc « If lc· 
In this case, only the four waves with frequencies Wo, 

Wo ± 0, and {} are appreciably excited, SO that the 
amplitudes a~, n = 0, ± 1 in Eq. (2.4) can be set equal 
to zero, and we have 

a,o= V+lbol aoo, a,_- V_lbol aoo. 
ll,+iy I-l)_,+iy ' 

[ 1 -~( v_v_ + v+v+)]aoo=_t_, (2.10) 
llo + iy ll-1 + iy 61 + iy . llo + iy 

[ v_Hv- v+Hv+] 
(e+ir)=lao0l2 ---. +--. ; 

ll-1 - ry 61 + lY 

V+=V(k,k+x,x), V-=V(k-x,k,x). 

Separating the imaginary and real parts of this last 
equation, we obtain two equations for £ and I ag 12 

which are independent of f. Consequently, when f > fc 
the quantities € and I ag I are constants independent of 
f. Since for f < fc it is clear from Eq. (2.2) that 
I ag 12 = If 1 2 (!:!.~ + y~- 1 and lagl is a continuous function 
of f in the neighborhood of f = fc, we have for f > fc 

lao0l2= lflc2 (M+r)-'. (2.11) 

Using Eqs. (2.10) and (2.11), we find the following ex
pressions for the remaining amplitudes: 

la,ol2 = lV+bOfiZ[ (Ao2 + 'f)(ll,2 +f)]-', 
la-,0 12 = IV -b0fl [ (M +f) (ll-12 +'f)]-'. 

(2.12) 

The quantity I b0 12 is determined as a real non-nega
tive root of the equation 

lb0I'IDI 2 + 2A lb0 l2 + 1 -If I fcl 2 = 0, 

where 

A=-2ReD, D=-1-[ v_v_ + v+v+ ]· (2.13 ) 
~o+iy ll-1 + iy 61 + iy 

Among the roots of this equation 

lb0 l~.2= IDI-2 [-A ±l'A2+(1f/fci 2-1)D2] (2.14) 

there is only one non-negative real root when A ~ 0 
for f > If lc· In this region, the time-independent state 
(2.2) is unstable, and the stable state is defined by Eqs. 
(2.11)-(2.14). When f- fc 

Wl 2 = ;A (I :J -1)· 

la,0l2=-1-l V+l 2 [(M + y2) (ll12 +- Y2) ]-' ( l/1 2 -l/lc2), 
2A 

la-1012=_1_1 V -12 [(M +y2) (ll-12 + y2) ]-1( IJI2 -l/lc2). 
· 2A (2.15) 

(2.8) Therefore, when A> 0, f > fc we have 

Thus if b0 and a~ are the solutions of this system, then (2.16) 
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When A< 0 the equation given by (2.13) has one 
non-negative root for If I > If I c. and two such roots in 
the interval lfl1c <If I< lflc, lfl~c = lfl~(l- A2 ID-2 i). 
The time-independent state defined by Eqs. (2.11) and 
(2.12) and corresponding to the larger of these roots, 
I b0 11, is stable, whereas the corresponding smaller 
root, lb0 l2, is unstable. Therefore, when A <C and 
f = fc the amplitude b0 (and also the amplitudes al) 
will discontinuously reach the finite value 

I b0 (/e) 12 = I b0 (fe) lz2 = 2IAD-2 Io 

From Eq. (2.10) we obtain a somewhat unwieldly 
expression for €, which however simplifies when 
a 0 =0. In this case, 

1 
e=-- [-r~+ VHRe VAiao0 l2]o 

v+r 
Let us now consider the parametric excitation of u 

waves. The equations for the amplitudes in this case 
are obtained from Eq. {1.7) if we substitute fk = 0, 
ro.t ~ 0 in the first of these. This set of equations has 
a zero solution ak =bK = 0 which, however, becomes 
unstable when the amplitude of the applied force 
reaches the threshold value: 

0 [ ~z2 (k',2ko-k') ] Jg2 lc=mmv•·'Y2•,-•· 1 + 0 

•· (v•·+n•.-•·) 2 
(2.17) 

To simplify our analysis we shall assume that the 
minimum of this expression is reached for k' = 2k0 

- k' = ko. In that case, when I g I > I g lc the amplitudes 
of the u waves with wave vectors near to k0 increase 
exponentially. This state in turn becomes unstable 
when the amplitudes of the parametrically excited 
waves become iarge enough: 

.E Ja•l 2 ~lao0 le2 =l/lc2(M+v2)-1 {2.18) 
1r.atk0 

[the quantity If lc is defined by Eq. (2.3)]. 
When Eq. (2.18) is satisfied we have a v wave in the 

medium with wave vector K, composite u waves, and 
a time-independent state which consists of a set of dis
crete waves. The equations for the time-independent 
amplitudes are the same as those given by Eq. (2.4) 
provided we replace f and a 0 with ( ag )*g and a 1 on 
the right-hand side of Eq. (2.4a). The solutions for the 
amplitudes an differ from those given by Eq. (2.6) only 
by a constant factor: 

and for the amplitude I b 0 I we obtain the following 
equation: 

12sinntj I 
Jl~(z)/_~(z) I= ---;g o 

(2.19) 

(2.20) 

In these expressions ~n. z, and 11 are the same as in 
Eq. (2.6). 

The constant C in Eq. (2.19), and also €, are de
termined by Eq. (2.9) with agf* on the right-hand sides 
replaced with ( ag )2 g*. 

Equation (2.20) may have a number of solutions. In 
fact, when 

we have from Eq. (2.20) 
ll~(z)/_.~(z) I= 2ITJ/ gJO 

The solution of this equation is shown graphically in 
Fig. 1. Each of the roots defines a time-independent 
amplitude I b0 I which in view of Eq. (2.19) determines 
the values of the time-independent amplitudes a~. 
Therefore, each of the roots of Eq. (2.20) defines a 
time-independent state. It is readily verified that the 
time-independent states corresponding to the roots in
dicated in Fig. 1 by the open circles are stable, whereas 
those indicated by the crosses are unstable against 
perturbations in the amplitudes an and b. 

It is clear from Eq. (2.9) that the constant C in
creases with increasing I b 0 1. This means that the 
sum of the squares of the steady-state amplitudes of the 
u waves increases with increasing I z 1. Therefore, it 
may turn out that all the time-independent states, ex
cept for the first, which are stable against perturba
tions of the time-independent amplitudes an and b, 
are unstable against perturbations of the amplitudes of 
other waves, for example, the v waves with wave vec
tors K' ~ K, and u waves with wave vectors knm = kn 
+ mK'. It is obvious that the time-independent state 
corresponding to the smallest value of I b0 I is stable 
in this sense. 

3. EXCITATION OF COUPLED LANGMUIR AND 
ION-ACOUSTIC PLASMA OSCILLATIONS BY A 
MONOCHROMATIC EXTERNAL FIELD 

As an example, let us consider the excitation of 
plasma oscillations by an external longitudinal electric 
field of frequency w 0 close to the electron plasma fre
quency wp = (41Tne2/m)l/2 (e is the charge, m the 
mass, and n the mean density of electrons). We note 
that the parametric excitation of plasma waves by a 
high-frequency external field was first discussed 
inr4 • 51 • Our example is convenient in that the theoreti
cal predictions for it can be compared with experi
mental results[ 3 l and the theoretical conclusions re
ported elsewhere[e-sJ. 

The questions for the Langmuir oscillations in an 
infinite plasma placed in the field of a longitudinal 
electric wave, taking into account three-wave interac
tions, can be written in the following form (see, for 
exampleP1): 

( ~: + 2y :t + 001 2 (k)) 'Pk1 = i't• E0e;""16 (k- k0) 

, ieoop2 (kE0) , eoop2 "" (k, k- x) 1 , 
.,--T-~'Pt.-k--T-Ll k2 '~'•-•'~'• . 

+ 2iyoo1 (k)e ~ 1 , 
T .<::! 'l't-• '1' •• (3.1a) 

( ~: + zr :t + Oi (x)) 'I'•' = e~:::.s> ~ (k, k- x) (rpL )' 'l'k1, 

where cpft and cp~ are the Fourier components of the 
potentials, and y and r are the damping coefficients 
of the Langmuir and ion-acoustic oscillations; Eo is 
the amplitude, w0 the frequency, k0 the wave vector of 
the external field, T the electron temperature, 

Q,2(x) = V;2x2, ooz"(k) = OOp2 + 3/2Ve2k2, (3.2) 

Vi is the velocity of ion sound, and Ve the thermal 
velocity of the electrons. 

The last term on the right-hand side of Eq. (3.1a) 
describes the nonlinear damping of the Langmuir waves, 
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(./)/} 

whereas the second term represents the interaction 
between the external field and the Langmuir and ion
acoustic waves. However, in the case of resonance 
excitation of Langmuir waves by the external field 
[wo ~ wz(ko)] this term can be omitted because the 
field strength of the Langmuir wave is much greater 
than the strength of the external field: ko(/}kl 

0 
~ EoWp/r » Eo. 

We shall seek the solutions of Eq. (3.1) in the form 

where Uk and vK are slowly-varying functions. If we 
normalize these functions so that 

1 ( ero )''• ( eQ. )'I> uk=akk T ' v.=b• mrop• • 

then Eq. (3.1) will assume the form of Eq. (1.7) in 
which 

, (kk') e ( eQ, )'' 
VH(k, k ,x) = 2kk' T\lii: , 

V (k k' x) = ~_:_(· eQ, )'/, 
~4 '' rok'Tm' 

I = ~ ( T:p f'Eo. 
Consequently, the threshold amplitude of the ex

ternal field is determined by Eq. (2.3) in which 
q = 2(k0K)/k0, VH =(e0K/m)112e/2T.In particular, 
y » r and q » VA, which is usually the case, we 
have 

(3.3) 

The amplitudes of waves excited in the plasma by 
the external field before the threshold, near the 
threshold, and after the threshold are given by Eqs. 
(2.2), (2.5), and (2.9)-(2.12). 

In the experiment described in[3 J the Langmuir os
cillations were excited in mercury plasma filling a 
glass tube of external diameter 0.8 em and placed in (;. 
waveguide at right angles to the waveguide axis. A 
transverse wave with frequency w 0 = 2.75 x 1010 sec-1 
close to the plasma electron frequency (w 0 ~ wp) 
propagated through the waveguide. High-intensity oscil
lations were excited in the plasma and the absolute am
plitudes of these oscillations were determined. For 
microwave amplitudes Eo <12 V/cm, the plasma was 
found to execute oscillations of frequency w 0 and am
plitude a0 proportional to Eo (Fig. 2a). For Eo = Eoc 
~ 12 V/cm there were ion-acoustic oscillations of 
frequency n = 7.5 x 105 sec-1 and composite oscilla
tions of frequencies Wo ± n (Fig. 2b). As the amplitude 
Eo increases there is an increase in the amplitude of 

L 
b 

CJD 

FIG. 2 

w 

the ion-acoustic oscillations and, at the same time, in 
the number of waves at the composite harmonics. The 
spectrum of the high-frequency oscillations for Eo 
= 15 V/cm is shown in Fig. 2c. 

Moreover, the following approximate values were 
obtained in the experiment: 

T ~ 1 eV x = 6 cm-1 v, ~ 1.2·10'cm/sec u, ~ 7.5·10' em/sec 

'V / •OOp """ fQ-2 - fQ-3, f/ Q ~ 1. (3 .4) 

Before we compare the above theoretical results 
with experimental data, we note that, in contrast to the 
case of the homogeneous infinite plasma considered 
above, the experiment was performed with a bounded 
inhomogeneous plasma whose proper oscillations are 
not plane waves. This fact cannot, however, modify the 
form of the equations for the amplitudes or the order 
of magnitudes of their coefficients whose exact calcula
tion is not easy. 

We shall use the above expressions, and in the 
formulas for the coefficients we shall replace the wave 
vectors by quantities which are reciprocals of the 
characteristic inhomogeneity scales for the proper 
oscillations. As regards the longitudinal component of 
the external field, whose strength and distribution in 
the plasma are unknown, we shall assume for the sake 
of simplicity that the spatial distribution is close to 
one of the Langmuir modes. 

In order to be able to use Eq. (3.3) to estimate the 
threshold amplitude of the external field, we must first 
estimate the quantity k which was not measured in the 
experiment. This can be done by using experimental 
data on near-threshold values of the amplitudes of the 
composite waves ~1 (Fig. 2b). In fact, in view of Eq. 
(2.10), near the threshold 

I a1 I a-1l ~ 1 + q I V H 0 ~ 1 + x I ko. 

It is clear from Fig. 2b that I a1/a_11 ~ 1.1 and, con
sequently, 

(3.5) 

and 
(3.6) 
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Since resonance excitation was carried out in the ex
periments, it follows that the detuning Ao is of the same 
order as y, i.e., Ao ~ y. We then have 

~=wl(k+x)-wl(k)-Q,(x)~ Sv; kx -106 sec-1 (3.7) 
2wp 

By substituting Eqs. (3.4)-(3.7) in Eq. (3.3), we ob
tain the following estimate for the threshold amplitude 
of the external field: Eoc ~ 1 VI em. This value for the 
critical amplitude of the external field is in satisfactory 
agreement with the experimental result Eoc ~ 10 Vlcm. 

We note that the estimates of Eoc given in[6 • 7 1 are 
higher by several orders of magnitude than the experi
mental result. This discrepancy is due to the fact that 
the possibility of resonance excitation of proper oscil
lations in plasma by the external field was not taken 
into account in[s,7J. This type of excitation ensures that 
the amplitude of the Langmuir oscillations is much 
greater than the amplitude of the external field, and the 
excitation of the ion-acoustic oscillations occurs as a 

result of the presence of high-intensity Langmuir oscil
lations. 

The time-independent amplitudes of the Langmuir 
oscillations behind the threshold in the zero-order ap
proximation in K/k are given in accordance with Eq. 
(2.6) by the formulas 

lan°l - lln+~(z) I. 'I]= (L'.o + iy)A-•, z = vHoct.-'lb0 l. (3.8) 

Unfortunately, there are no experimental data which 
could be used to obtain an independent determination of 
the parameters 11 and z. 

However, if we carry out a comparison of Eq. (3.8) 
with the relative amplitudes I an I shown in Fig. 2c, and 
assume that z = 2.7 and 1J « 1 (which is not inconsist
ent with the above estimates), we obtain 

lan°l - lln(2.7) I 

which is in adequate agreement with experimental data. 
The results of the comparison are shown in the follow
ing table: 

1 -4 1 -3 1 -2 1 _, 1 o 1 , 1 2 1 3 1 4 

Jn (2.7)1 

a~ experiment, 
rel. units 

If we take terms ~ «lk into account in the equations 
for the time-independent amplitudes, we can find the 
expressions for a~ which may be in better agreement 
with experimental data. 

The value of z found from the comparison with ex
perimental data enables us to estimate the amplitude 
of the ion-acoustic oscillations for Eo= 15 Vlcm: 

( eQ )'/, 2 7 /',. ( eQ )'/• I E, = xrp' = xlbi ---;- = x-v· 0 1-"-2 -:.:::; 10-1 V em. 
mwP H \mWp 

Finally, the amplitudes of the Langmuir oscillations 
can readily be estimated if we know the estimated 
value for the threshold amplitude of the external field 
(3.8). In fact, Ez ~ EolwpiY ~ 100-1000 Vlcm. 

We thus see that the above theory is in good agree
ment with existing experimental data and can be used 
to estimate quantities which have not as yet been 
measured. 

I 0.441 0.141 0.441 0.451 0.251 0.11 0.35 0.14 0.42 0.35 0.14 0.16 
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