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We consider inertialess symmetry oscillations, having helical symmetry and an arbitrary amplitude, 
of the electrons of a conductor or a plasma in a magnetic field. It is shown that ordinary helicons are 
a particular case of solutions with a frequency that is independent of the amplitude. 

1. INTRODUCTION 

As is well known, slow electromagnetic waves, called 
whistlers or helicons, can propagate in a magnetized 
plasma, in the frequency interval between the cyclotron
ion and the cyclotron-electron frequencies, and also in 
metals and in semiconductors placed in a strong mag
netic field. Usually these waves have a relatively low 
amplitude and can be described in the linear approxi
mation. More interesting from the general point of view 
of nonlinear wave processes in continuous media, how
ever, are waves of finite amplitude. They can be also of 
practical interest. In this paper we consider waves of 
finite amplitude with helical symmetry. As we shall 
show, the problem of determining all the possible waves 
with helical symmetry such as helicons reduces to a so
lution of one nonlinear differential second-order equa
tion for a scalar function. We derive this equation and 
present some of its simplest solutions. 

2. SLOW ELECTROMAGNETIC WAVES WITH 
HELICAL SYMMETRY 

Let us assume that a slow electromagnetic stationary 
periodic wave, having helical symmetry, propagates in 
a magnetized plasma or in a solid conducting body 
placed in an external magnetic field. The latter means 
that all the quantities in such a wave change in space in 
such a way, that they depend only on r and the combina
tion /; = kz - m.l' of the cylindrical coordinates r, .J, 

and z. Here m is an arbitrary integer, corresponding 
to the multiplicity of the helix of the wave considered by 
us. 

The slowness of the wave enables us to neglect the 
displacement current. We assume further that, on the 
one hand, the oscillation frequency is high enough that 
we can neglect the displacements of the ions (or of the 
lattice) in the wave, and on the other hand it is much 
smaller than the cyclotron frequency of the electrons, 
i.e., the inertia of the electrons is negligible. For sim
plicity we neglect also the friction of the electrons 
against the wave or the lattice, i.e., we assume the con
ductivity to be infinite. This corresponds to the condi
tion ileTe >> 1, where Sle = eB/mec is the cyclotron 
frequency of the electrons and T e is their average col
lision time. Under these approximations, we have the 
following system of equations 

4.:te 
rotB= --n(v,-v,), 

c 
1 an 1 

rotE= --;;-iJt• E +-c-[v,B)=O, 

*[veBI =VeX B. 

(2.1) 

(2.2) * 

an I iJt + div nve = 0, div B = 0. (2.3) 

In these equations, Ve is the electron velocity, vi is 
the ion velocity, and the remaining symbols are stand
ard. We assume the plasma to be quasineutral, so that 
the electron and ion densities are equal to n, and the 
electron temperature is assumed to be zero. 

It is convenient to change over to a coordinate sys
tem that moves with the phase velocity of the wave v0 • 

In this coordinate system, the ions move with constant 
velocity Vi = - v0 , and the time derivatives vanish. 

By virtue of the helical symmetry, the equation 
div B = 0 takes the form 

1 a 1 a 
--rB,---(mBo-rkB,)=O. (2.4) 

r or r a; 
We see therefore that 

alj: 
rB,=----;;:-· 

~ 

mBo - krB, = tJ¢ 
ur' 

(2.5) 

where 1/J is an arbitrary function of r and /;. We intro
duce also 

I= mB, + krBfi. (2.6) 

Then the components of the magnetic field can be ex
pressed in terms of 1/J and I: 

B,=_!_ 0°~, Bo= i ( m~-1-krl) 
T ~ m2 + k 2r2 Or I ' 

B,= m•~k2r2(-kr:; -j-m/). (2.7) 

Analogously, from the equation div nve = 0 it follows 
that 

c axe 
rnvr=--

4ne a~ ' 
c axe 

mnVfte- krnVze=--, 
4ne or 

(2.8) 

where x is an arbitrary function of the variables r and 
/;. If we again introduce a quantity similar to (2.6), 

4ne 
ILe = -c-(mnv,. + krnV<>e), (2.9) 

then the components of the electron density of the cur
rent can be expressed in terms of Xe and f.J.e with the 
aid of relations analogous to (2.7). 

For ions it suffices to consider the particular case 
Vi = -v0 • It is simpler, however, to consider the more 
general case of helical flow of ions, which can also be 
described by the functions Xi and J.li• and then change 
over to the particular case axi/o!; = 0 and ilJ.J.i/Cl!; = 0. 

We now proceed to Eqs. (2.2). The first of them 
shows that in the stationary case the electric field is 
potential, i.e., E = vcp. Consequently, the second equa
tion takes the form 

[veB] = cV<jl, (2 .10) 
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from which follows B • vcp = 0 and enve • Vcp = 0, i.e., 
the force lines and the electron-current lines lie on the 
equipotentials cp = const. Written out in terms of the 
components, these conditions lead to relations of the 
type of the vanishing of Jacobians, from which it fol
lows that 

q>=cp('iJ) Xe=Xe(q>), (2.11) 

i.e., Xe and cp are functions of 1/J. In other words, Xe 
and cp are constant on the magnetic surfaces 1/J = const. 
The third component of (2.10), which we choose con
veniently to be the projection on Vl/J, leads to the rela
tion 

O')(e , Oq> 
ftc= 1-- 4nelm2 + k 2r2)n-. (2.12) d.p ' d.p 

We now consider Eq. (2.1). Its r-component and the 
difference between the -'-component and the z-compo
nent, multiplied by kr/m, lead to the condition: 

I=x.-- x;, (2 .13) 

and the sum of the -'-component of Eq. (2.1) and of the 
z-component, multiplied by m/kr, gives the relation 

fl~''i' + 2mkl I fl = lli -~.~., (2.14) 
where 

If we now substitute here I from (2.13) an9- iJ.e from 
(2.12), we obtain one nonlinear differential equation of 
second order for lfJ: 

~''I'+ 2mk(x.-x;)+~(x.-x,,)dxe -41!enddq> = lli. (2.16) 
fl2 fl . d'iJ 'I' II 

In this equation, Xe and cp are arbitrary functions of 1/J. 
As to the density n and the ion functions Xi and iJ.i> 
they are certain specified functions of r and !; • 

For the most interesting case of a cylindrical con
ductor or a plasma cylinder, they should be regarded as 
independent of !; , and if the ions are at rest in the lab
oratory system of coordinates, then we must put 

4ne 
~~~ =---mnvo, 

c 

4ne • 
x;=--kvoJ nrdr. 

c 0 
(2.17) 

Equation (2.16) describes the most general helical 
flows of magnetized electrons, neglecting their inertia 
and collisions. These flows, although complicated by 
the unusual configuration of the helical magnetic fields, 
have precisely the same physical nature as simple heli
cons or whistlers, and it is therefore advantageous to 
call them here helicons in a certain generalized sense. 

Of course, Eq. (2.16) in its general form cannot be 
solved analytically, so that it is of interest to consider 
some of the simpler particular cases. These include 
the helicons proper in a longitudinal magnetic field, and 
also problems involving the flow of current in an ideal 
conductor with allowance for the Hall effect. 

We begin with consideration of helicons proper. 

3. HELICONS 

We consider a simple but, as will be shown below, a 
most interesting case, when the functions xe and dcp/dl/J 
depend linearly on lfJ: 

')(e=A+Ck~>, 1medq>/d¢=D-L'iJ, (3.1) 

where A, C, D, and L are constants. 

In this case Eq. (2.16) becomes linear, and its solu
tion can be represented in the form 1/J = l/J0 + 1/J', where 
lf!o depends only on the coordinate, and the dependence 
of 1/J' on !; for each individual Fourier harmonic can 
be chosen in the form exp i!;. For 1/J' we obtain a ho
mogeneous second-order equation: 

_!_~ (-r- iJljl') __ 1_1jl' + 2mk2C ¢' + C2k2 'I''+ Ln¢' = O. ( 3•2) 
r iJr II iJr r fl2 fl 

We see therefore that at sufficiently large C and L the 
solutions have the form of functions that oscillate with 
r. In the particular case L = 0 and C = 1, Eq. (3.2) has 
a solution 1/J' = r corresponding to ordinary helicons 
propagating in an unbounded medium along the magnetic 
field. 

The equation for l/J 0 , which we shall not present 
here (it can be readily obtained from (2.16) by making 
the substitition (3.1)) enables us, given n, v0 , and the 
constants A, C, D, and L, to find 1/Jo and then, in ac
cordance with (3.1), also Xe• i.e., I0 • By the same token, 
we determine the most general form of the fields B~(r) 
and B~(r), a feature of which is that helicon-type waves 
of arbitrary amplitude can propagate in them, while the 
values of B~ and B~ averaged over the azimuth remain 
the same as before. In other words, the frequency of 
the helicons in such fields does not depend on their am
plitude. Equation (2.16) possesses this property only in 
the case of the linear dependence (3.1). Accordingly, the 
frequency of the waves does not depend on the amplitude 
only in the class of solutions (3.1). 

We now consider an even more particular case, when 
the density, the longitudinal magnetic field, and the lon
gitudinal current density are constant, i.e., n = const, 
Bz = Bo = const, and B~/r = const. In this case 

kuBo 
'¢o=---r2, 

2 

where k 11 = k ± mB~/B0r. 

(3.3) 

If the second relation of (3.3) is substituted in (2.13) 
and account is taken of (2.17) and (3.1), then we obtain 
after equating the coefficients of equal powers of r 2 

vo = _ kucBo C _ _ c_ B&o 
4nen 2nen r ' 

(3.4) 

A= mBo. (3.5) 

Relation (3.4) is none other than the dispersion equation 
for the phase velocity of the helicons, and the second 
term in (3.4) corresponds simply to the drift of the heli
cons at the electron drift velocity. 

If we substitute (3.1), (3.3), and (2.17) in (2.16), then 
we readily obtain by equating the coefficients of equal 
powers of {3 

(3.6) 

It is easy to consider also the case B_,"' 1/r, when an 
external current flows along the axis of the pinch. In 
this case L = D = 0, A = mB0 - %CkmrB~ and v0 

= - (ckE0/41Ten)C, i.e., the frequency of the helicon 
does not depend on B~ • 

We are thus left with only one arbitrary constant C. 
Equation (3.2) with L = 0 is, as can be readily verified, 
the usual equation for helicons, more accurately, an 
equation for the rB~ component of the unperturbed field 
B' satisfying the equation[11 

rot.B'=CkB'. (3.7) 
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This equation can be easily obtained in the linear ap
proximation from (2.1) and (2.2), and the natural fre
quency of the oscillations w = kv0 is connected with C 
by relation (3.4). 

We have thus shown that if the density, the magnetic 
field Bz, and the current density among z are homo
geneous, then helicons of arbitrary amplitude can prop
agate in the medium, and their frequency or phase ve
locity does not depend on the amplitude. This conclusion 
has been obtained for cylindrical waves, but pertains 
also of course to plane waves. We note in this connec
tion that the result obtained in [2 J, which differs from 
ours, namely that the frequency of a plane wave of the 
helicon ty.pe depends on its amplitude, is connected with 
allowance for very small additions due to the perturba
tion of the electron density in an oblique wave. 

The constant C is determined by the boundary condi
tions. For example, we can stipulate vanishing of the 
B~ component, and consequently also of 1/J 1 , on the 
boundary of the cylindrical conductor, say at r = R. The 
condition 1/Jr = R = 0 also follows from the vanishing of 
the radial component of the electron current, and as a 
result, the function xe, and together with it also 1/J (ac
cording to (3.1)) should not depend on {; at r = R. In 
such a solution, however, B~ and B~ differ from zero 
on the boundary of the conductor, so that it should be 
interpreted as oscillations in a conducting body with al
lowance for the Hall effect, surrounded by conductor 
with infinite conductivity, along which surface current 
could flow. If the conductor borders on vacuum then, 
as shown in [1 J, the presence of surface currents leads 
to a finite damping decrement of the waves even when 
T e - oo • Then the condition 1/J ~ = R = 0 determines the 
wave with the smallest damping decrementYJ 

It is possible to get rid of the damping connected 
with the surface currents by making n a smoothly de
creasing function of rYl In fact, for a small-amplitude 
wave it is easy to obtain from the system (2.1)-(2.3), 
in the particular case Bz = B0 = const, BJ = 0, and 
m * 0, a linearized equation for the perturbation I/J 1 : 

2mk2 k2 m 1 d!nn (3 8) 
f.'¢' +Q(r)--11'' +Q2(r)-ljl'=-Q(r)---l(/, . 

[)2 p p . r dr 

where Q = - ( 41TeV0 /ckB0 )n(r). i..et us assume that 
n- 0 as r - oo. Then, as can be readily seen, Q- 0 
as r- oo, and Eq. (3.8) has exponentially decreasing 
solutions: 1/J 1 ~ exp - kr. These solutions will hardly be 
affected by the boundary of the conductor with the vac
uum if this boundary is located at sufficiently large kr. 

We shall show that Eq. (3.8) actually has such solu
tions satisfying the boundary condition 1/J 1 = 0 at r = 0. 
In fact, we choose v0 such that Q is much larger than 
unity in the main region. Then in this region we can 
neglect in (3.8) the terms linear in Q and retain only 
the quadratic term. But the remaining equation, as can 
be readily seen, for example, in the quasi classical ap
proximation, has solutions that oscillate with r. By 
choosing Q it is possible to make one of the zeroes of 
this solution fall at the point r = 0, i.e., to satisfy the 
boundary condition r = 0 and cause thereby 1/J 1 to de
crease at infinity. 

Thus, if the density profile decreases with r, there 
exist in a homogeneous magnetic field helicons which 
are linear in the amplitude and localized in r. However, 

their nonlinear analog does not belong to the class of 
nonlinear helicons considered by us above, if for no 
other reason than the fact that the coefficients of the 
terms in (3.8), having the same structure as in (3.2), 
depend on the coordinates. Therefore the waves under 
consideration are not included in the class of helicons 
whose frequency and phase velocity are independent of 
the amplitude. This can be demonstrated also in a 
more direct manner. 

Indeed, it is easy to see that in the class of solu
tions (3.1), in the case under consideration when B.,.= 0 
and 1/! 0 = -kB0 r 2/2, we have 

k2CB0 4ne s' lo=mBo=x.-x;=A---r2 --k nv0rdr=con'L (3.9) 
2 c 0 

where Xe is substituted from (3.1) and Xi is expressed 
in accordance with (2.17). Differentiating (3.9} with re
spect to r we get nv0 = -(ckB0 /41Te)T = const, which 
leads in the case of v0 = const to homogeneity, 
n = const. If it is assumed that the profile of the ion ve
locities v0 is not homogeneous in r, and is such that 
v0 ~ 1/n(r), then it can be readily seen from 1/Jo that 
L = 0. But then the term with the density drops out of 
Eq. (3.2), and we again arrive at helicons that are not 
localized in r. 

4. FLOW OF CURRENT THROUGH A CONDUCTOR 
WITH HELICAL SYMMETRY 

If we put in (2.6) v0 = 0, i.e., JJ.i =Xi= 0, and assume 
n to be a function of r and {;, then we arrive at the 
problem of the flow of electric current, with allowance 
for the Hall effect, in a resting ideal conductor with 
helical symmetry (at UeTe >> .1). Equation (2.16} itself 
then takes the form 

, 2mki I di drp 
L'.¢+--+--=4nen-p2 ~ d¢ dljl ' 

(4.1) 

where I = Xe and rp are arbitrary functions of 1/J. 
Equation ( 4.1) is similar to the equation of helical 

equilibrium in magnetohydrodynamics:[4 ' 'J 

• 2mki I dl dp (4.2) 
"''l'+y+Td-¢=-4n-a¢, 

where p is the pressure. This of course is no accident, 
since (4.2) is, in some sense, a particular case of (4.1). 
In fact, in the case of hydrodynamic equilibrium of the 
ions, Vi = 0, we have 

Vp,= enE, (4.3) 

where Pi = nTi, Ti is the ion temperature, and it is 
necessary to add in the second equation (2.2) the addi
tional term e - 1 n V'Pe• where Pe = nT e is the electron 
pressure. This means that in the stationary equation of 
equilibrium for the electrons (the second equation of 
(2.2)) it is necessary to substitute in place of \lrp the 
quantity -(en) - 1 \lp, and this leads to the replacement 
of (4.1) by (4.2). 

The analogy between (4.1) and (4.2) shows that when 
n = const or, in the more general case n = n(rp}, the 
equation for the electron current reduces to an equilib
rium equation. It can be stated that the electrons should 
form an equilibrium configuration in the magnetic and 
electric fields. Accordingly, the only electron currents 
that can be realized are those having the analog of a 
hydrodymagnetic equilibrium. [BJ 
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In the case of azimuthal symmetry (m = O) and 
Bz = 0, as is well known from the theory of magneto
hydrodynamic equilibriumP l equilibrium is possible 
only with cylindrical symmetry. A similar conclusion 
holds also in this case. Namely, as seen from (4.1), 
when m = 0 and Bz- 0, i.e., 1/J - 0, condition di /Idcp 
= 8rr enk2r 2 should be satisfied, i.e., 

I= krR., = F(1~n), (4.4) 

where F is an arbitrary function. 
At n = const it follows therefore that I and B.1 are 

functions of r only, i.e., the current can flow only along 
cylindrical surfaces. This conclusion agrees with the 
results of l 6' BJ, where it was shown that when UeT e 
>> 1 the electric current does not flow into the convex 
parts of a corrugated conductor. As we see from (4.4), 
only in the particular case when n ~ r- 2 can the current 
I depend on t, and furthermore in arbitrary manner. 

5. CONCLUSION 

We have thus shown that the problem of finding all 
the possible waves of finite amplitude with helical sym
metry reduces to the solution of one nonlinear second
order differential equation. This equation has a class of 
formally linear solutions. These solutions have the fea
ture that their frequency does not depend on the (finite) 
amplitude. Ordinary helicons, including those propa
gating at an angle to the magnetic field, are contained 
just in this class of solutions. Unfortunately, in a homo
geneous sample the helicons have appreciable damping 

that does not depend on the collision frequency, owing 
to dissipation of the surface current. In the case of a 
density profile n(r) that decreases with r, it is possi
ble to obtain a situation wherein helicons of small am
plitudes are localized along the radius and have no 
strong damping as a result of surface currents, but 
such solutions do not enter in the class of waves with a 
frequency independent of the amplitude. 
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