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Subsonic conditions for the propagation of a laser spark, similar to those of a slow combustion, are 
considered. The steady state problem is formulated and approximately solved. Plasma temperature, 
wave velocity, and threshold power requirements of a nondecaying wave are determined. The results 
are in good agreement with published experimental data obtained with a neodymium glass laser. The 
feasibility of an optical plasmotron based on a C02 cw laser is discussed. The maintenance of plasma 
in ambient air requires - 2 kW of well focused light. The temperature of the resulting plasma is 
18,000°K, 

1. INTRODUCTION. COMBUSTION ANALOGY OF DIS-
CHARGE PROPAGATION 

THERE is a profound analogy between the processes 
of discharge (spark) propagation due to the liberation of 
electromagnetic energy from plasma and combustion. 
The chemical reactions that are practically absent in 
combustible mixtures at ordinary temperatures sharply 
accelerate on heating. If a mixture does not burn instan­
taneously throughout its volume, the energy transfer 
from heated layers to the neighboring cold and unin­
volved layers causes heating and ignition of the latter so 
that combustion propagates through the material. There 
are two possible propagation mechanisms: supersonic, 
or detonation, in which the mixture is heated up to the 
ignition temperature of the shock wave, and subsonic, in 
which combustion is slow and energy is transferred by 
thermal conduction. 

Similarly cold gas does not conduct electrical current 
and does not absorb electromagnetic waves in many 
broad frequency bands. The field energy is emitted in 
the gas as Joule heat or as a result of radiation absorp­
tion only if the gas is ionized. The stronger the ioniza­
tion the larger the emission of heat, and the former, 
while initially small, increases with temperature ac­
cording to the same type of law,. e-E/kT, as the rate of 
chemical reaction. Once a discharge occurred at some 
point, the transfer of energy from plasma to the neigh­
boring cold layers ionizes them and enables the propa­
gation of discharge to regions occupied by the field. 

Understanding of discharge phenomena was greatly 
aided by recourse to the physical models and methods 
of the well developed theory of eombustion and detona­
tion of gasesr1 ' 2 J. The analogy was used for the explana­
tion of the rapid propagation of a light spark observed 
in gas breakdown by a giant laser pulse. Ramsden and 
Savic£3 J advanced the idea of thE~ optical detonation wave 
and using the detonation theory formula computed the 
velocity of the plasma front that was in agreement with 
experimental data. A general hydrodynamic theory of 
supersonic light absorption wave and gas heating was 
developed inr4 J where the experimental wave tempera­
ture was computed and other rapid spark propagation 

mechanisms based on radiation and breakdown were 
discussed. Later it was shownrsJ that optical detonation, 
just as ordinary detonation, has its limits determined 
by losses. The minimum light intensity capable of sus­
taining a nondecaying regime turned out to be much 
lower than that required for gas breakdown. This means 
that with an external plasma source one can start a dis­
charge in a light channel with a sub-breakdown light 
intensity. 

The concepts of combustion theory were also used 
to help understand and explain the laws of a high-fre­
quency discharge in a gas flowr6 ' 7J, the basis of the 
electrodeless plasmotron. In this device the cold gas is 
blown in a tube through a solenoid containing a station­
ary high-frequency discharge. A continuous plasma jet 
at atmospheric pressure issues from the tube. The 
theory shows that the plasma torch is in many ways 
similar to the ordinary torch. The velocity of the 
normal discharge propagation along the cold gas, just 
as the velocity of the chemical flame, can be completely 
determined and depends on the flux of electromagnetic 
energy from the inductor and on thermal conductivity. 
Its equation is similar to the Zel'dovich formula for 
normal flame velocity£1J. Recently Frank-Kamenetski:l:' 
published some ideas on the stability of high-frequency 
discharge that were close in spirit to the principle of 
combustion theory raJ. 

Superhigh-frequency plasmotrons have been designed 
and are in operationr9 ' 10 • Their stationary discharge is 
also similar to combustionruJ. 

The combustion analogy was also applied to the theory 
of new phenomena involving the laser spark. Bunkin and 
othersr12 J observed slow propagation of a spark in am­
bient air that was ignited by special means at light in­
tensities below the breakdown threshold. The beam of a 
high power free running neodymium laser was weakly 
focused by a long-focus lens (diameter of focal spot-
3 mm; light intensity-of the order of 10 MW/cm2). The 
intensity was insufficient to produce optical detonation 
whose threshold under these conditions is -100 MW/cm2 

according torsJ. However when the pulse energy ex­
ceeded 730 J (intensities over 8-15 MW I cm2 ) the laser 
spark did appear and propagate symmetrically in both 
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directions of the light channel at velocities of 
~50 m/sec. The authors assumed that the propagation 
mechanism was the ordinary thermal conduction and 
that the front propagated in the moving gas as in the 
case of combustion in a tube with a closed end. Their 
computation of velocity derived from the Zel'dovich 
formula for a flame was found to be in agreement with 
experiment. The "combustion" temperature was deter­
mined experimentally using the measurements of laser 
light absorption by the spark which was strongly trans­
parent. 

This paper presents a more detailed discussion of 
the subsonic propagation of the discharge (spark) at 
optical frequencies. The problem includes the computa­
tion of plasma temperature as well as plasma velocity. 
In particular it is of interest to find the threshold condi­
tions of such a regime, i.e., to determine the minimum 
power and intensity of light that can still maintain 
plasma by radiation and to clarify the conditions that 
facilitate the "combustion." All this will also permit 
us the estimate the feasibility of maintaining plasma 
with cw lasers (using C02) and thus to judge the prac­
ticality of an "optical plasmotron" (the "light torch"), 
a device of considerable appeal. A brief note on this 
subject was published in[lsl. 

2. FORMULATION OF THE PROBLEM AND SIMPLIFI­
CATIONS 

Let a parallel axially symmetric light beam of radius 
R pass through the gas and encounter somewhere a 
light-absorbing plasma. The intensity of the light is too 
low to cause optical detonation. The shock wave formed 
by the initial ignition is now far gone beyond the plasma 
region and the pressure is equalized. The heat liberated 
in plasma inside the light channel slowly diffuses by 
conduction {and by radiation transfer) in all directions 
including that along the channel. The heated gas slowly 
expands, all velocities are subsonic, and the hydro­
dynamic process occurs at an almost constant pressure 
p that is close to the pressure of unperturbed gas. 

We consider the self-maintaining process in which 
the thermal wave propagating along the optical channel 
toward the beam does not decay because of continuous 
emission of energy. From now on we use the term 
"wave" to designate only the layer of plasma that is 
adjacent to the leading front of the heating process and 
that mainly affects the motion of the front and is respon­
sible for the maintenance of the regime. The axial ex­
tent (width) of the wave is of the order of R 1> even if 
plasma is transparent to the light beam when the ab­
sorption length lv » R and heat is liberated in a long 
column. On the other hand if the beam is absorbed in a 
thin layer lv « R, the width of the wave can only be 
smaller than R. 

Assuming that the beam intensity varies little in the 
time it takes for a gas particle to pass through the wave, 
we consider as usual the stationary regime in a system 
of coordinates in which the wave is at rest. Cold gas of 
density Po enters the wave in the direction of the beam 
at a velocity u equal in magnitude to the velocity of 
propagation of the wave through matter. 

!)The waves propagate here in both directions along the channel as 
observed in the experiments ( 12 ]. 

FIG. I. Diagram of heat leakage and gas expansion. Flow lines and 
isotherm are shown. 

The gas is heated and expands in the direction of its 
initial motion and to the sides. Once heated, the gas 
ionizes, absorbs light energy, and the liberated heat 
spreads to meet the flow of cold gas and to escape 
radially from the channel. 

The picture of the expanding material and heat is 
shown diagrammatically in Fig. 1. It is described by the 
energy and continuity equations: 

81' fJT 
PVxCp-+ PVrCp-

{)x or 

fJ fJT 1 fJ fJT 
=a;"-a;-+ -;:-a;:-r"-a,:-+ Sx,- til, (1) 

{) 1 {) -8 pv.,+--8 rpv,=O. (2) 
x r r 

Here p is density and T is temperature related to 
each other by the approximate condition of constant 
pressure (roughly speaking p ~ 1/T), while vx and vr 
are velocity components, cp(T) is specific heat capacity, 
X (T) is the coefficient of thermal conductivity, S is light 
intensity {flux density), K v(T) = l"j} is light absorption 
coefficient, and 4> is the divergence of the thermal radia­
tion flux equal to the difference between the light emis­
sion by plasma and its absorption by 1 cm3 per sec. The 
kinetic energy of slow motion is not accounted for in (1). 

The two-dimensionality of the process renders the 
solution much more complex and we now consider a 
simplified one-dimensional problem. At an axial dis­
tance of the order of a wavelength, i.e., ;S R, the heat 
propagates radially beyond the channel to a distance of 
also ::;;R. Furthermore in this region vr ~ vx. There­
fore the orders of magnitude of the quantities involved 
do not change when we neglect the radial expansion of 
gas; the light channel is enclosed in a tube, as it were, 
and we may consider axial velocities independent of 
radius and the wave front flat. Then vr = 0, and 
PVx = const = pou. 

We average (1) over the channel cross section. The 
radial portion of the thermal flux divergence gives an 
average volumetric energy loss due to heat leakage 
through the lateral surface of the channel: 
(2/R){X aT/Br)r = R" This quantity can be represented 
in the form 

T 

-A8/R2, 6= Ji..(T)dT 
0 

is the thermal flux potential corresponding to the mean 
temperature T of the channel and A is a numerical co­
efficient determined by the radial profile of the poten­
tial. The remaining terms of (1) can be left without 
changes, approximately considering T, S, and the other 
quantities as averaged over the cross section. 
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For example if the profile ® (r) is considered the 
same as in a cylinder with strongly cooled walls without 
axial gradients and with heat sources falling off along 
the radius according to the Bessel function J 0 ( {fr /R), 
where {3 = 2.4 is the first root, then ®(r) ~ J 0({3r/R), 
® = 0.43 ®(0), and A= {3 2 = 5.8. Under our conditions the 
effective cross section A is two or three times smaller 
because the temperature at the channel boundary is also 
high (see Fig. 1). 

These simplifications yield the equation 

dT d dT 
PoUCp-=-A-+F, 

dx dx dx 
(3) 

T 

F=&tv(T)-A8/R2 -<J), 0= J '-dT. 
0 

The light intensity in this equation obeys the relation 

dS / d.x = -Sy._.,. (4) 

Any rigorous accounting of the radiant heat exchange 
represents an extremely complex problem due to the 
insertion of the spectral radiation transfer equation into 
the system. Considerable simplification may be re­
quired depending upon specific eonditions. In the case 
of moderate pressures, such as the atmospheric pres­
sure which is of the greatest interest, the plasma is 
transparent to thermal radiation and <P is determined 
mainly by radiative capacity. Reabsorption is significant 
in some spectral regions (spectral lines) but the loss 
function <P(T) can be approximately determined for the 
plasma one way or another. 

The ultraviolet portion of plasma emission is com­
pletely absorbed in the cold region of the wave and par­
ticipates in gas heating; here <P < 0 and is not related 
to temperature. Even a purely radiative mechanism of 
wave propagation of this type is possible in principle. 2 > 

However as our analysis shows below, at atmospheric 
pressure the role of radiative heating does not exceed 
that of conduction and thus we now consider only the 
heat conduction mechanism of propagation, assuming 
that <P > 0.3 > 

The introduction of radiation losses in the form of a 
temperature function <P(T) closes the system (3) and (4). 
The order of the system can be decreased by introducing 
the thermal flux 

J = -'-dT /dx 

and then eliminating the x coordinate 

d! I.F(T, S) 
dT = - --~ --- poUCp, 

dS/ dT = S;r,...,/ J. 

(5) 

(6) 

(7) 

We now formulate the boundary conditions. In a cold 
gas in front of the wave the thermal flux vanishes, there 
is no heat emission or losses (F' = 0), and light intensity 
is determined by the initial power of the beam P = 7TR2S0 • 

The stationary case is possible only if the heat source 
function F also turns to zero at some high temperature 

2>This was discussed in [4] relative to the case of high light intensi­
ties where the wave is supersonic. 

3> At very high pressures when plasma is completely opaque another 
form of heat exchange, radiant heat conduction, can assume primary 
importance. In this case instead of inserting <I> into (I) and (3) we sim­
ply determine X (T) in a corresponding manner. 

(final wave temperature Tf). Otherwise heating does not 
stop and leads up to something like a heat explosion. 
The final temperature is at the maximum and the 
thermal flux at Tf also vanishes. Consequently the 
following conditions obtain: 

for T = 0 J "= 0, S = 8 0 , x = -oo, (8) 
where 

F(T, S) = 0, J = 0, x = +oo, T = Tr. (9) 

As we see the problem is predetermined, i.e., the solu­
tion is possible only for the selected value of the u 
parameter, the velocity of wave propagation. 

The stationary temperature Tf can be reached by 
virtue of two causes corresponding to two extreme 
cases of the problem. If the plasma is transparent to 
light, S ~ const = So in the wave and the final tempera­
ture is determined by the condition of loss compensation 
of thermal emission: 

F(Tr, So) = 0. (10) 

We readily see that such a regime is stable, i.e., it is 
realizable if in the region of the stationary point Tf 
losses rise faster than thermal emission as temperature 
increases. 

On the other hand if the beam is strongly absorbed 
in plasma, the stationary condition is reached even in 
the complete absence of losses because of the attenua­
tion of the light flux. In this case F = 0 when S = 0 and 
the final temperature can be determined only by solving 
the equations of the regime. This was analyzed inc6 J. 

The regime is achievable at optical frequencies only 
under high pressures and is not considered here. 

3. OPTICAL PROPERTIES OF PLASMA 

We now consider the data on optical properties of 
plasma necessary for further discussion. The absorp­
tion coefficient of laser light with frequency v corrected 
for stimulated emission can be computed from the con­
tinuous spectrum formula u4 J. The formula is conven­
iently represented in the following computational form 
(for the primary ionization region): 

0.14!;(v) P~tmXe2 c"""i''T (ehv/kT _ 1) _1 Xv= . em (11) 
(r/10'f"(hvcv) 3 

where ~ (v) is a function characteristic of each atomic 
• (!4 ] A • th d • f th • species , ""v 1s e epresswn o e contmuous spec-

trum boundary in plasma, and Xe = PeiP is the molar 
fraction of electrons determined by the Saha equation 

~=6.7·103 C-t (ro/10')'" e-IihT, (12) 
1- 2xe Ca Patm 

From the Ingliss- Teller equation for neutral atoms 

M.v/kT = 0.68 p,?;,;.,(r/10')-1,27. 

Figure 2 shows the results of computing neodymium 
laser light absorption (hv = 1.17 eV) in air. The follow­
ing mixture-averaged values were adopted: ionization 
potential I= 14.4 eV, gjga = 1.9, and~~ 0.7. The fac-
tor eh~v/kT ~ 1.2-1.5. The contribution from secon­
dary ionization was also approximately accounted for. 
Figure 3 shows the absorption of light from a C02 gas 
laser (hv = 0.124 eV) which offers some promise with 
respect to the continuous maintenance of plasma. In this 
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FIG. 2. Coefficients of neodymium laser light absorption in air. 
Curve 1-p = I atm, Kv max = 6 X I 0"3 cm- 1 ; curve 2-p = I 0 atm, 
Kv max= 0.34 cm-1 ; curve 3-p = 100 atm, Kv max= 18 cm-1 . 

FIG. 3. Coefficients of C02 laser light absorption in air. 

case hv « kT and absorption is mainly of brehmsstrah­
lung nature. Therefore we drop the factor ehi1v/kT 
from (11) and replace ~ (v) by the Gaunt factor g 
(g ~ 2.5): 

10,4 iatm Xe2 -1 
Xvcoo,)= (T"/iO•)'" gem (13) 

g = 0,55ln [27 (T" /104)'1• p~·~;m]. 

Under atmospheric pressure the absorption of neo­
dymium laser light by air is fairly weak: K max 
~ 6 x 10-3 em -1 according to measurements Y121 showing 
that K 11 < 7 x 10-3 cm-1 • The absorption of infrared 
emission from a gas laser is two orders larger: K 11 max 
~ 0.85 cm-1 • 

The first-order representation of radiation losses 
can be obtained from the formula for continuous spec­
trum emissivity of hydrogen plasma: 

=2~E}~m·1;c2 (1-j-0.027T0/f04lkW/cm3 • (14) 
~ (T'l1~)~ . 

The main role is assumed here by recombination 
emission, 84% of which is due to the capture of an elec­
tron at the lower atomic level. The small correction to 
the unity in parentheses corresponds to brehmsstrahlung 
radiation (the effect of secondary ionization can also be 
easily accounted for). 

Real volume losses differ from (14) because complex 
ions are not hydrogen-like and due to spectral line 
emission. Spectral lines produce a tremendous effect 
in the case of an absolutely transparent plasma. How­
ever when the hot column diameter is of the order of 
several millimeters, as is the case under the present 
discussion, the lines are strongly reabsorbed and their 
contribution to losses is approximately the same as that 
of continuous spectrum. 

Computations for air taking all these effects into ac­
count were performed inl15 ' 161 giving optical density 
tables for plane layers and hemispherical volumes with 
thickness {radius) d, for d 2: 1 em and T =:o 20,000oK. 
The average volumetric radiation losses computed in 
steps of optical density for p = 1 atm and the smallest 
size d = 1 em closest to the diameters of interest are 

('~ 

I~ 
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FIG. 4. Radiation losses in air at atmos­
pheric pressure for cylinders several mm in 
diameter. 
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not more than twice the figure obtained from the com­
pact formula (14). There are also computations and ex­
periments for nitrogen arcs at atmospheric pressure, 
T ~ 13 ,000-15,000° K and channel diameter of 3 and 
5 mm l17J. Radiation losses are in this case approxi­
mately twice the figures computed in optical density 
steps for d = 1 em. 

Combining all these data we plotted an approximate 
function of average volumetric radiation losses cp(T) in 
air plasma for p = 1 atm, T ~ 10,000-21,000°K, and 
channels several millimeters in diameter {Fig. 4). This 
function was used in our computations. We note that the 
accuracy of radiation losses is not a basic problem here 
because for small diameters these losses in general 
hardly exceed thermal conduction losses (which inci­
dentally is the case with arcsl171 ). 

4. THE SOLUTION FOR THE CASE OF TRANSPARENT 
PLASMA 

We begin with a model problem capable of an exact 
analytical solution that clearly demonstrates all the re­
lationships of this regime for the case of transparent 
plasma. 

We assume that for T < To no thermal emission ex­
ists, K 11 = 0, and for T > To thermal emission is con­
stant, i.e., K 11 = const as well asS= const =Sa. The 
possible range in such a substitution of the real curve 
K 11 (T) is fairly small. For example, in air at p = 1 atm 
and hv = 1.17 eV the "ignition" temperature To lies in a 
narrow interval 12,000 = 14,000°K and the "constant" 
K 11 ~ 4 x 10-3 em -1 (see Fig. 2). Furthermore we neglect 
radiation losses, an acceptable procedure in the case of 
channel diameters smaller than a few millimeters {for 
p = 1 atm), and assume cp(T)/;\ (T) = const which in gen­
eral is also acceptable. 

These simplifications linearize (3) 

Cp dE> d2E> A8 
(loU--=-----+ Soxv/3, 

I. d:c dx2 R 2 

IJ={O, 8<8o _ (15) 
.1, 8 > E>o 

We place the origin of coordinates x = 0 at the point 
where ® = ®a and find a solution that satisfies boundary 
conditions (8) and (9) and continuity conditions for tem­
perature and flow for x = 0: 

8 = Eloe--«dool for X < 0, 
e = E>r(1- e-'-''Xal I (a,+ a2)) for X> 0, 

1 A 
al,2=-[l"1+4Aa2/R2±1], a=--, 

2a · poUCp 

E>r= SoxvR2 /A, 8r~ (1 + a1/a2)E>o-

Solving the last equation for a and expressing ®fin 
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terms of beam power P according to the formula 
P = rrR2S0 = rrA®f/K v we find the propagation velocity 

u=}2A_?:__-,_!_-Pt/P -v p 
pocpR 1'1- Pt/2P Pt 

where 
Pt = 2nA8o/:<v, Elo = El(To). (16) 

Since u 2: 0 the regime exists (the wave does not 
decay) only under the condition that beam power exceeds 
a threshold value Pt. At threshold the wave does not 
propagate through the material; the emitted heat is 
sufficient only to compensate for the "idle" leakage of 
heat across the lateral surface of the channel. Here 
®f = 2® 0 and the widths of the heating region and that 
part of the thermal emission region giving rise to the 
"working" axial thermal flux are of the order of chan­
nel radius (01 1 = 012 = v'A/R). The effective width of the 
wave is 2R/v'A ;::j R. 

As the power increases the final temperature and 
wave velocity increase, the heating region narrows 
down (the counter flow of gas "squeezes" the thermal 
heating wave), and the working part of the thermal emis­
sion region expands. With moderate power excess over 
threshold the propagation velocity is 

and the wave velocity in heated gas is 

D ~ pou ~ 2-yA_:~ P-P1 

Pr R Pt ' 

(17) 

where Pf is density and Xf = X./pfcp is thermal conduc­
tivity at final temperature. 

With large power excess over threshold 
u ;::j (X./pocp)v'SoKv/®o which to some extent corresponds 
to the zel'aovich formula for the flame. 

It follows from (16) that the stronger the light ab­
sorption, the lower the "ignition" temperature (lower 
ionization potential) and thermal conductivity, the lower 
the threshold power. It does not depend on the channel 
radius (provided the radiation losses are small relative 
to conduction losses). 

We now consider the general problem, taking the 
real function K v(T) and radiation losses into account. We 
represent sources F in the form F = F +- F _ in the gen­
eral equation (6) and plot the curves of thermal emis­
sion F + = S K v and losses F _ = A® /R2 + c1> as functions of 
potential® (Fig. 5). The terminal state determined by 
(10) corresponds to the upper point of intersection of 
curves F + and F _. 

We integrate (6) over the entire temperature interval 
of the wave. Considering (8) and (9) we obtain 

11' f 8 r 

pou J llldw= J F(8)dEJ, 
(18) 

T o o 

where w = J cpdT is the specific enthalpy of the wave. 
0 

The threshold intensity St corresponding to zero velocity 
of the wave is determined by 

"t J F(EJ)dEJ ==0 (19) 
0 

This equation expresses the condition of compensation 
of thermal emission and losses; its geometrical inter-

FIG. 5. Thermal emission F+ 
and thermal loss F _ curves. Air, 
p = I atm, neodymium laser 
light, S = 1.5 X 104 kW/cm 2 , A 
= 2.9, cl> = o,p/2, R = 0.15 em. 
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pretation is the equality of the upper (a J and lower (a_) 
areas between curves F + and F _ in Fig. 5. If S < St the 
upper area is smaller and the regime does not occur; 
if S > St the upper area is greater, energy emission 
exceeds losses and the larger the difference between the 
areas the faster the wave propagates. 

We find approximately the propagation velocity u4 >. 
The heat flow J vanishes for ® = 0 and e = ®f. The 
point ®m of maximum heat flow can be regarded as a 
boundary between the working region of the wave and 
the heating region. The maximum value IJm I is the rate 
of heat transfer from one region to the other and satis­
fies the equation 

wf J 2 "'r 
pou J llldw+~= J F(8)d8, (20) 

w 2 e m m 

obtained by integrating (6) over the interval Tm < T 
< Tf. 

We see from (6) that for S = St and u = 0 the flow is 
maximum at a point where F = 0, i.e., at the lower point 
® 1 of inter section of curves F + and F _; here J~/2 = a+ 
according to (20). 

It can be shown (the verification is based on the 
evaluation of neglected terms after the solution is ob­
tained) that the above r.emains valid with sufficient ac­
curacy for any S and u especially near the threshold. 
Thus 

(21) 

To compute u we approximate function J(w) by a triangle; 
such was the relationship of J(®) and J(w) in the model 
problem discussed above. We then obtain from (18) and 
(21) _ef "'r _ 

PoU=~J Fd8 j(S Fd8)"'=E_O'+~O'-. (22) 
wr o 8 , wr fO'+ 

For S » St and a+ » a_ (22) coincides with r1aJ and the 
Zel'dovich formula for the flame. For S ;::j Stand a+ ;::j a_ 
the value of (22) is twice that ofDBJ. 

5. COMPUTATION RESULTS. FOCUSED BEAM. 

Numerical computations were performed for air at 
atmospheric pressure. Thermal conductivity data were 

4> It is interesting that (3) describes the transformation of phases 
with different temperatures and densities in interstellar gas heated by 
cosmic rays and cooled by radiation [ 18]. Condition ( 19) determines 
pressure in steady state. The phase transformation rate p0 u in an un­
stable state is computed in [ 18 ] somewhat differently than here. 
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s. 1 er. Tr,104 
wr. kT/g I k~i~m I T,,l04 a+, I a_, I u 

kW/cm2 kW/cm2 deg deg (kW/cm2)2 .<kW/cm2)2 u, misec 

Neodymium glass laser 

1.26·10'1 0.29 1.7 8.6 

I 
0.17 

I 
1.2 1..69 1.69 0 

1.5·10' 0.31 1.8 9.4 0.17 1.2 3.1 LG 1.0 
2.0·10< 0.34 1.9 9.8 0.17 1.1 6.8 1..5 9.8 

C02 gas laser 

0.94·10'1 0.31 1.8 9.4 
1.0·10' U.32 1.8 9.4 
1.2·10' 0.32 LB 9.4 
1.5·10' 0.39 2.! 11 

*Air, p =I atm, A= 2.9, <I>= op/2. 

8,kW/cm 
X, 10, 2/cm-deg 

Mf---+--+---+---+----ii-

taken from[191 and used to plot the ®(T) curve (Fig. 6). 
The coefficient A characterizing conduction losses was 
assumed equal to one- half of the maximum possible 

I 

A= 0.5 x 5.8 = 2.9 in accordance with the statement 
made in Section 2. Radiation losses were also reduced 
by half: q, = 0.5cp. As we said at the end of Sec. 2, the 
portion of heat radiation which propagates in the direc­
tion of the light channel against the beam is almost com­
pletely absorbed in the heating region (since the radia­
tion is mainly ultraviolet) and consequently it is not 
"lost." Since the effective thickness of the wave ~ R, 
the radiating wave volume is a relatively thin disc so 
that a noticeable portion of the total radiation is emitted 
in the indicated direction. It should be noted that in the 
final analysis the remaining radiation also is not com­
pletely "lost." The radiation absorbed near the wave 
beyond the channel boundary helps to heat the gas in the 
vicinity of the lateral channel surface and to reduce 
conduction losses (decreases A). Computations were 
performed for R = 0.15 em, as in the experiments re­
ported in[121 , for frequencies of neodymium and C02 
lasers. The computation results are given in the Table; 
see also Fig. 5. 

The computed threshold for neodymium laser St !':; 1.3 
x 104 kw/cm2, Pt !':; 920 kw is in excellent agreement 
with the experimental value St l'::l (0.8-1.5) 
x 104 kw/cm2 ll2J. Since both the conduction and radia­
tion losses were reduced to one-half of the maximum 
possible, the upper limit of the threshold value St was 
only twice the computed value. Radiation losses for 
R = 0.15 em are approximately the same as conduction 
losses. For the same R = 0.15 em the gas laser thres­
hold St !':; 102 kw/cm2, i.e., at the power Pt :::::~ 7 kw we 
must consider the fact that the output frequency of a gas 
laser is an order lower than that of solid state lasers so 
that light absorption is two orders stronger and the 
regime threshold is two orders lower. The plasma tem­
perature is approximately 18,000° K. 

We note that the elementary formula (16) for thres-

0.18 

I 
1.2 1.65 1.65 0 

0.18 1.2 2.2 1.6 0.48 
0.18 1.2 3.9 1.6 1.3 
0.17 1.2 8.4 1.4 2.4 

hold power yields good results. In fact it is clear that 
the "ignition" temperature To must be represented by 
T1 which according to the Table is fairly stable: To:::::~ T 1 

!':; 12,000°K, ®o :::::~ 0.17 kw/cm. For neodymium lasers 
the "constant" Kv :::::~ 4 x 10-3 cm-1 and from (16) Pt 
:::::~ 800 kw that practically coincides with the result of a 
more rigorous computation (this also applies to the C02 
laser). A comparative evaluation of radiation flow which 
is of the order of 'P(1k)R/ 4 with the conduction flow IJ I 
shows that they are more or less the same. This indi­
cates an approximately the same role played by the 
conduction and radiation mechanisms of wave propaga­
tion (the effect of the latter was accounted for to some 
extent by the fact that we reduced radiation losses in 
half). 

The rates of wave propagation in heated gas in the 
one-dimensional case of D :::::~ Pou/pf turn out to be of the 
order of 200 m/sec that is a few times higher than ex­
perimental values[121 . This is due to the fact that the 
actual combustion does not quite follow the process in a 
"tube with a closed end." The heated gas shows a 
strong lateral expansion and does not remain at rest as 
in the tube with the closed end. Therefore the situation 
resembles more an intermediate state between "closed" 
and "open" "tubes" and the actual wave velocity in the 
laboratory system of coordinates is a few times smaller 
than D. 

In the case of small R ~ 0.05 em radiation losses 
are significantly lower than conduction losses, St - R2 , 

and the threshold is minimal. For a C02 laser with 
A= 2.9 we have Pmin :::::~ 4 kw. The most favorable con­
ditions for the maintenance of plasma are best realized 
by a sharp focusing of the beam. The discharge is then 
localized in the focal region and the stabilized combus­
tion region is static. The consideration of the spherical 
model more relevant to our case enables us to improve 
the accuracy of coefficients A and Pmin· 

Let the light be absorbed only within the sphere R in 
which heat emission F + is homogeneous and radiation 
losses small. The total energy Q = 41TF ft3 /3 is removed 
to infinity by heat conduction. Solving the conduction 
equation we find Q = 101T®R/3, where® is averaged over 
the volume of the sphere. We set Q = PtK(O)l and 41TR3/3 
= 1rr{0 cl, where rfoc is focal radius, l = 2rfocf/r 1 is the 
length of the caustic, f is the focal length, and r 1 is the 
radius of the initial beam. For threshold power we ob­
tain Pt = 1TA'O/K with A'= 1.9(r 1/f)213 . For example for 
f/r1 = 2 we have A' = 1.2 instead of A= 2.9 assumed 
above. Consequently it is possible that - 2 kw is suffi­
cient to maintain plasma in atmospheric air by a well­
focused C02 laser beam. The conditions of maintaining 
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plasma are liberalized at incrE~ased pressures (roughly 
speaking Pt ~ K~ax ~ p-2 ) and in gases with low thermal 
conductivity (such as xenon). It is significant that plasma 
can be continuously translated in space by moving the 
beam together with the focal region at a velocity not 
exceeding the order of u (see Table). 

The author is indebted to G. I. Barenblatt for interest 
in this work. 

1 Ya. B. Zel'dovich. Teoriya. goreniya i detonatsii:' 
gazov (Theory of Combustion and Detonation in Gases), 
AN SSSR, 1944. 

2 L. D. Landau and E. M. Lifshitz, Mekhanika splosh­
nykh sred (Fluid of Mechanics), Gostekhizdat, 1954 
(Addison-Wesley, 1958). 

3 S. A. Ramsden and P. Savic, Nature N4951, 1217 
(1964). 

4 Yu. P. Rai'zer, Zh. Teor. Eksp. Fiz. 48, 1508 (1965) 
(Sov. Phys.-JETP 21, 1009 (1965)). 

5 Yu. P. Rai'zer, ZhETF Pis. Red. 7, 73 (1968) (JETP 
Lett. 7, 55 (1968)). 

6 Yu. P. Rai'zer, Zh. Prikl. Mat. Tekh. Fiz. 3, 3 
(1968). 

7 Yu. P. Rai'zer, Usp. Fiz. Nauk 99, 687 (1969) [Sov. 
Phys.-Uspekhi 12, 777 (1970)). 

8 0. A. Frank-Kamenetskir, Vtoroi:' Vsesoyuznyi:' 
simpozium po goreniyu i vzryvu (The Second All- Union 
Symposium on Combustion and Explosion), October, 
1969, Erevan, Abstracts of reports. 

9 V. P. Aksenov, L. M. Blinov, V. P. Marin, L. S. 
Polak, and v. S. Shchipachev, Sb. Nizkotemperaturnaya 

plasma (Coli. Low Temperature Plasma), Proc. Intern. 
Symposium in Moscow, 1965, Mir, 1967. 

10 L. M. Blinov and G. B. Lysov, Sb. Ocherki fiziki i 
khimii nizkotemperaturnoi' plazmy (Coli. Essays on 
Physics and Chemistry of Low Temperature Plasma). 
L. S. Polak, Ed. Nauka, 1970. 

11 Yu. P. Rai:'zer, Sb. Ocherki fiziki i khimii nizkotem­
peraturnoi:' plazmy (Coli. Essays on Physics and Chem­
istry of Low Temperature Plasma). L. S. Polak, Ed. 
Nauka, 1970. 

12 F. V. Bunkin, v. I. Konov, A.M. Prokhorov, and 
V. B. Fedorov, ZhETF Pis. Red. 9, 609 (1969) (JETP 
Lett. 9, 371 (1961)). 

13 Yu. P. Rai:'zer, ibid. 11, 195 (1970) [11, 120 (1970)). 
14 L. M. Biberman and G. E. Norman, Usp. Fiz. Nauk 

91, 193 (1967) [Sov. Phys.-Uspekhi 10, 52 (1967)). 
15 L. M. Biberman, v. S. Vorob'ev, G. E. Norman, 

and I. T. Yakubov, Kosmich. Issled. 2, 441 (1964). 
16 1. v. Avilova, L. M. Biberman, v. S. Vorob'ev, 

v. M. Zamalin, G. A. Kobzev, A. N. Lagar'kov, A. Kh. 
Mnatsakanyan, and G. E. Norman, J. Quant. Spectr. Rad. 
Transfer 9, 1969, p. 89, 113, 1285. 

17 E. I. Asinovskii', E. V. Drokhanova, A. v. Kirillin, 
and A. N. Lagar'kov, Teplofiz. Vys. Temp. 5, 739 
(1967). 

18 Ya. B. Zel'dovich and s. B. Pikel'ner, Zh. Eksp. 
Teor. Fiz. 56, 310 (1969) [Sov. Phys.-JETP 29, 170 
(1969)). 

19 V. Penski, Proc. Fourth Symposium on Thermo­
physical Properties. April, 1968, p. 189. 

Translated by J. G. Adashko 
259 


