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Geometric properties of typical configurations in Ising type models are considered. The corre
sponding probabilities are studied as functions of the parameters of the Gibbs distribution. It is 
shown that these probabilities suffer from singularities in the interval J..1. = 0, - f3cr < (3 < f3cr· 

IT is usually considered that models of the Ising type 
exhibit essential singularities only related to the transi
tion from the totally disordered to the ordered state 
with nonvanishing magnetization, or are related to the 
appearance of long-range order. U the Ising model is 
treated as a model for the classical lattice gas, then 
the first type of singularity is related to the transition 
from a one-phase system to a two-phase system. 

This point of view is founded on the fact that, con
sidered as functions of the parameters of the system, 
e.g., temperature and chemical potential, the correla
tion functions have singularities only at such transi
tion points. There exist however properties of the 
configurations as a whole, such that the corresponding 
probabilities exhibit singularities of a different type. 
These probabilities have no simple expressions in 
terms of the correlation functions. The purpose of the 
present paper is to describe these properties and the 
problems related to them. 

1. CONDUCTION PROPERTIES .. GEOMETRIC 
DESCRIPTION 

In the lattice gas interpretation of the Ising model 
an index 1 is attributed to a particle of spin 7'2 and an 
index 0 to a particle of spin -7'2 • Thus to any spin 
configuration there is associated a configuration of 
zeros and ones. In the sequel we consider only the two
dimensional case. Let the accessible volume be a 
square nn of side n, and assume that the particles 
are situated at the integer-valued sites of a lattice. 

We consider the question whether for a given con
figuration X = { xd, Xi = 1, 0 in the VOlume nn there 
exists a broken line consisting of horizontal and verti
cal line segments of unit length, passing only through 
lattice sites with Xi = 1 and joining opposite sides of 
the square. 

U such a broken line exists and joins the vertical 
(horizontal) sides of nn it is natural to call the con
figuration x "conducting along the ones in the hori
zontal (vertical) direction.'' U such a line does not 
exist, it is natural to call the appropriate configuration 
nonconducting along the ones in the corresponding 
direction. Similarly, one defines conduction along 
zeros. Conductivity in one direction implies noncon
duction in the other. The following list enumerates all 
logically possible types of configuration from the point 
of view of conductivity. 

1. Conduction along ones in both directions. Non
conduction along zeros in both directions. 

1'. Conduction along zeros in both directions. Non
conduction along ones in both directions. 

2. Nonconduction along both ones and zeros in both 
directions. 

3. Conduction along ones and zeros in the horizontal 
direction. 

3'. Conduction along ones and zeros in the vertical 
direction. 

4. Conduction along ones in one direction, noncon
duction along zeros in both directions, or the same 
with ones and zeros interchanged. 

In order to determine the type to which a given con
figuration x belongs we surround those sites i where 
Xi = 1 by unit squares. The totality of such squares 
decomposes into connected components. The boundary 
of each component is a closed broken line. The bound
aries of different components may have only vertices 
in common. 

Thus, to each configuration one associates a definite 
set of closed contours. Such contours seem to have 
been used for the first time by Peier ls [lJ and in the 
closely related papers of Griffiths[ 2l and Dobrushin[3 l. 
These contours differ from the contours and graphs 
used in the well-known cycle of papers by Domb, Sykes 
and collaborators on virial and other expansions for 
various lattices and potentials. 

Let r 1( x), ... , rk( x) denote the boundaries of con
nected components for the configuration x. Two bound
aries ri1(x) and ri/X) will be called contiguous if 
they have a common vertex. The boundaries 
ri1(x), ... 'ris(x) form a chain if rir-1 and rir are 
contiguous for r = 1, ... , s. The set of all boundaries 
can be decomposed into chains. 

In terms of the boundaries r 1( x), ... , rk( x) the 
fact that a configuration belongs to one of the enumer
ated six types is determined in the following way: 

1. Among the contours ri(x) there is one which 
intersects all four sides of the square {~n· 

1'. There does not exist a chain of contours which 
joins opposite sides of the square. 

2. There exists a chain which joins all four sides 
of the square. 

3'. There exists a chain which joins only the verti
cal sides of the square and which does not intersect the 
horizontal sides. 

3'. There exists a chain which joins only the hori-
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zontal sides and does not intersect the vertical sides. 
4. It is relatively difficult to describe this type, and 

we do not give it here, since we will not encounter it 
below. 

It makes sense to investigate conductivity properties 
also for other lattices. Thus, for a hexagonal lattice 
the different contours r i constructed in a similar 
fashion may not have common vertices. Therefore 
each chain of contours consists in fact of a single con
tour only. In a certain sense it is more natural to in
vestigate the conductivity of a hexagonal lattice, since 
here the different components do not intersect at all 
and are always at a positive distance from one another. 

2. THE GIBBS DISTRIBUTION. STUDY OF THE 
PROBABILITY OF CONDUCTION 

Let a Gibbs distribution (grand canonical ensemble) 
be defined on the configurations x by 

p-f.r(XJ+~tS{x) 

r (x) = -0---:-::-:--
- ~(B,p/R,) 

where N(x) is the particle number, (3 and 11 are 
parameters and Z is the grand partition function. The 
parameter (3 is the reciprocal temperature in units in 
which the Boltzmann constant is one and 11 is the 
chemical potential multiplied by (3. It is convenient to 
assume that - oo < 11 < oo, - oo < (3 < oo. The physical 
meaning of (3 < 0 consists in going from a ferromag
netic Ising model to an antiferromagnetic one. We 
shall be interested in finding out to which of the six 
types of configuration a typical configuration be longs 
for different values of (3 and 11 • 

1. Single-phase region for 11 > 0. Under these con
ditions the average density of ones is larger than )'2 • 

One can prove rigorously (cf.[ 4 • 51 ) that for (3 > ln 5 the 
typical configurations have one large contour which 
intersects all four sides of the square ~~n- The length 
of the remaining contours or chains does not exceed 
c ( {3) ln n. Thus, in this case the typical configurations 
belong to the first type. In other words, the probability 
for conduction along ones in both the horizontal and 
vertical directions tends to one as n - oo. It is natural 
to assume that the configuration type is conserved 
throughout the whole region under consideration. 

2. Single-phase region for 11 < 0. Under these con
ditions the average particle density is smaller than )'2 • 

Here for all typical configurations the length of each 
chain does not exceed c ( f3!l) ln n, and therefore such a 
configuration belongs to the first type, i.e., the proba
bilities of conduction along ones tend to zero, those 
along zeros tend to one in both directions. 

As 11 - 0, (3 > f3cr the limits which are obtained 
are different, depending from which side 11 approaches 
the limit. Therefore on the half-line 11 = 0, (3 > f3cr 
the configuration type depends on additional parameters, 
e.g., on the boundary conditions. 

Thus, outside the half-line 11 = 0, {3 > - f3cr we have 
in each quadrant of the plane an unchanged configura
tion type. It will be shown later that in the interval 
- f3cr < (3 < f3cr a new configuration type appears. This 
means that the whole segment - f3cr < (3 < f3cr is criti
cal from the viewpoint of conductivity. The idea that a 
singularity occurs for density ?'2 ( 11 = 0) belongs to 
I. M. Lifshitz. 

3. - f3cr < (3 < f3cr• 11 = 0. The average density of 
ones is % and the configuration is symmetric with 
respect to an interchange of zeros and ones and vice 
versa. Here the situation is somewhat different for 
quadratic and hexagonal lattices. 

In the case of a quadratic lattice the typical con
figurations seem to belong to the second type. A theo
retical investigation of this case is fairly complicated 
even for (3 = 0, when the individual coordinates Xi are 
independent and take on the values 1 and 0 with proba
bilities )'2 • We have modeled this case using an elec
tronic computer. 

In order to elucidate the conduction properties we 
have constructed five configurations in a square of 
30 x 30 sites. Random numbers were selected by 
means of a random number program proposed by 
Chentsov[ 6 J. All five configurations turned out to be
long to the second type. An analysis of these configura
tions shows that one can traverse a distance along the 
ones which is by an order smaller than the side of the 
square. 

Further three configurations have been obtained in 
the rectangle 20 x 40 (20 is the width). These configu
rations also turned out to belong to the second type. 
But here one can traverse along ones a distance of the 
order of ?'2 the width. 

Apparently if the admissible volume nn is a rec
tangle for which the ratio between width and length 
tends to zero, then already for a relatively slow 
vanishing the typical configurations will turn out to be 
conducting along ones and zeros in the vertical direc
tion, i.e., will belong to the type 3'. This is true and 
can be proved theoretically if the width does not exceed 
a power of ( ?'2 - .::) of the length for any .:: > 0. 

Thus, for (3 = 0 for a square nn the most likely 
answer is that the typical configurations belong to the 
third type. As in the other cases, we assume that this 
type is conserved for the whole interval - f3cr < (3 

< f3cr· 
A theoretical investigation of the conduction proper-

ties is difficult owing to the absence of an answer to 
the following question. The geometrical construction 
of the contours in Sec. 1 can be carried out simply if 
one has the configuration of particles throughout the 
whole plane. There appears a new possibility consist
ing in the appearance of contours of infinite length. If 
one considers that the probability distribution in the 
whole plane is the limit of finite-volume Gibbs distri
butions (cfY 1), it can happen that there is a positive 
probability for infinite contours. Logically such a 
possibility cannot be excluded, although it is little 
realistic, and seems to be extremely hard to estimate 
theoretically. We have constructed a computer model 
for this probability for (3 = 0 and various /1. 

Each contour r which is part of the boundary can 
be obtained as a trajectory of a random walk of Markov 
type, but with infinite memory. Let the first step con
sist in a transition of the broken line l with probability 
1 from the point (0, O) to the point (1, 0). We place at 
the point ( )'2, %) the number 1 and at the point ( ?'2, - )'2) 
the number 0. 

Assume already constructed a broken line consist
ing of k segments l1, ... , lk and such that in the points 
of the shifted lattice (by ?'2 in each coordinate) have 
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been placed the numbers 1 and 0. Let the endpoint of 
the broken line be at the site ( i1, i2) and the preceding 
endpoint at the point ( i1 - 1, i2). Then at the point 
( i1 - %, i2 + %) there will be a 1, and at the site 
( i1 - Y2, h - %) there is a 0. Then at the next step of 
the random line one will observe the point z 1 = ( i1 + %, 
i2 + %). If there already is a 0 at the point z1, the 
broken line moves upward with probability 1 and will 
be at the point ( i1, i2 + 1 ). If there is a 1 at z 1 one will 
observe the point z2 = ( i1 + %, i2 - }'2). If there is a 1 
at this point, the broken line will move downward with 
probability 1, to the point ( i1, i2 - 1 ); if there is a 0 
the broken line moves horizontally with probability 1 
into the point ( i1 + 1, i2). 

If there is no number yet at z 1, one makes a 
Bernoulli test with probability of success p and failure 
q. In case of success one puts 1 at z1 and 0 in case of 
failure. Now at z1 there is a number and we repeat 
the action as explained. If there is no number yet at 
z2 we subject it to a Bernoulli test with the same prob
abilities and continue moving the broken line as ex
plained. Other cases of the position of the last segment 
are treated analogously. 

We are thus led to a random walk. The trajectory of 
this walk is reversible if the moving point returns to 
the point ( 1, 0). The probability of an infinite contour 
is the probability that the trajeetory be irreversible. 

The described random walk was modeled on an 
electronic computer. The broken line started from the 
point (0, 0) and the first step was to the point (1, 0). 
The walk was considered finished either when the 
broken line returned to the point (1, 0) or when it 
reached the boundary of a square of side length 30, 
centered at (0, 0). The count was also terminated if 
the number of steps exceeded 500. The following re
sults were obtained in this manner: 

Thus, for p = 0.5 only 4.~ of all the broken lines 
did not return to the origin. It seems that a substantial 
majority of the lines which did not return was due to 
the fact that the computation was done only for a square 
of side-length 30. As the length of the sides of the 
square is increased it would seem that these lines 
would also close. From the results of the computation 
at p = 0.5 it seems most likely to hypothesize that the 
probability of an infinite contour vanishes. 

The results of a computation for p = 0.45 show that 
the typical picture of the contours is the following. 
There are exterior contours which are not surrounded 
by any other contours. Exterior to these contours 
there are zeros, interior, there are ones. Inside these 
extreme contours there are contours which have ones 
to the outside and zeros to the inside. The results of 
the computation referred probably to these latter types, 
and this explains why they all closed. 

For p = 0.55 the preceding picture changes in the 
sense that the zeros are replaced by one and conversely. 

To tal number 
of broken 

lines 

0.5 
0,45 
0.55 

Number of 
closed broken 

lines 

480 
480 
480 

Probabil-
ity of 
ones 

45~ 
1,80 
306 

Number of 
broken lines 
going to the 
boundary of 
the square 

21 
0 

154 

Number of 
broken lines 

which did not 
close after 

500 steps and 
stayed inside 

the square 

1 
0 

20 

I 

z 

Now the counting refers to the external contours and to 
the internal contours inside them which have ones on 
the outside. It is natural to expect that the 174 lines 
for which the computation was interrupted correspond 
to external contours. It follows that the fraction of ex
ternal contours is not smaller than 35%; this shows 
that the disappearance of external contours for p = 0.5 
goes on pretty sharply. 

If one considers that for p = % the probability of 
infinite contours vanishes, one obtains the formula 

., 
n= ,En ,E p(r)~ 2, 

' length of T = n 

where rr is the average number of segments in the 
lattice which belong to the boundary of the configura
tion (the number of segments in the square On equals 
2n2). On the other hand it is easy to show that 

2:: n2 .E p(f)= oo. 

length of T = n 

This implies that the probability for a contour of 
length n decreases according to a power law, with 
exponent between 1 and 2. We have constructed a histo
gram of the distribution on a sample of 480 contours. 
Its form in a logarithmic scale is given in the figure. 
It shows that the most probable value of the power is 
one. 

For J.l ¢ 0 the appropriate distribution decays ex
ponentially. Apparently the exponent has a singularity 
for J.l = 0 along the whole segment I f31 < f3cr. but the 
character of this singularity is unknown. 

For f3 < - f3cr there is a curve separating the anti
ferromagnetic phase from the disordered phase. From 
the point of view of conductivity the configurations with 
antiferromagnetism belong to the second type. Thus, 
inside this curve the typical configurations belong to 
the second type. It is likely that the separation curve 
also serves as a curve of singularities. 

The expounded facts referred to a square lattice. 
For a hexagonal lattice the situation for the segment 
I f31 < f3cr, J.l = 0 seems to be changed. No chains of 
contours are possible in this case and therefore here 
configurations of the second type have a substantially 
lower entropy, and therefore their probability tends to 
zero. 

In this case the existence of a lim~ting contour 
which connects the opposite sides of a square On im
plies that the conduction along ones in any direction 
leads to conduction along zeros in the same direction. 
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Owing to isotropy, the probabilities of conduction in the 
horizontal and vertical directions are asymptotically 
equal to %. However, if one fixes a typical configura
tion in the whole plane and investigates the conduction 
properties inside the square .lln, this property will 
vary quite irregularly with the variation of n. For 
about half of the values of n there will be horizontal 
conduction, and for about half, vertical conductivity. 

The contents of this paper are also related to the 
problems referring to the so-called "soaking" prob
lems (cf. in particular the papers of M. Fisher[aJ, 
Hammersley[ 9J and Elliott et al. (Io] ). 

The authors express their gratitude to I. M. Lif
shitz for very useful numerous discussions of the whole 
circle of problems considered above. We are also 
grateful toN. E. Vasil'eva for technical aid. 
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