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A method is indicated for solving the Maxwell equations for metals; the nonlinear case is considered 
when wto << 1, under conditions of a normal skin effect, for an arbitrary dependence of the magnetic 
moment and of the conductivity on the magnetic field strength. It is shown that the surface impedance 
depends exponentially on the alternating field amplitude and that in some cases this can be observed 
experimentally. 

1. INTRODUCTION 

NoNLINEAR effects in metals placed in an electro
magnetic field are usually small. However, as noted 
in[ll, even in a relatively weak alternating field and in 
a constant quantizing magnetic field H, quantum oscil
lations of the magnetic moment M and of the conduc
tivity C1 give rise to a nonlinearity. An external
alternating-field amplitude h on the order of the period 
of the quantum oscillations, i.e., h ~ H( etiH/ cS), suf
fices for this purpose (S-area of extremal cross sec
tion of the Fermi surface). 

Whereas M and C1 in metals can depend strongly on 
the magnetic field, they do not depend on the electric 
field. This is connected with the fact that the metal 
becomes strongly heated even in very weak electric 
fields and melts prior to the appearance of a depend
ence on the electric field. 

We note that the amplitude E 1 of an alternating 
electric field of frequency w in metals is much smaller 
than the amplitude h of the electric field (E 1 ~ ..J w/ah). 
Usually in metals w/a $ 10-10 (w/a is equal to the 
ratio of the displacement current to the conduction 
current). Therefore, if for some reason M and C1 were 
to depend on the electric field, this could be readily 
taken into account by perturbation theory! the small 
parameter of the expansion being ( w/ a )1 2 • 

In this paper we confine ourselves to the case when 
wto « 1 (to is the free path time) and when the condi
tions of the normal skin effect are satisfied, i.e., the 
current and the magnetic moment are connected with 
the alternating field locally in terms of the coordinate. 
This case is, on the one hand, the simplest to analyze 
and, on the other hand, the most interesting from the 
physical point of view: all the nonlinear effects reach 
a maximum value as a result of the local field depend
ence of the current and of the magnetic moment as 
functions of the coordinate, and also because the sys
tem can "follow" in time the variation of the external 
fields (the condition wt0 « 1). 

It turns out under these conditions (see Sec. 2) that 
the amplitude of the magnetic field on the surface of 
the metal at the fundamental frequency w is much 
larger than the amplitude of the magnetic field on the 
surface at all other frequencies (see[ 2l). Physically the 

smallness of the multiple- harmonics on the surface of 
the amplitude of a magnetic field is a consequence of 
the boundary conditions (the continuity of the tangential 
components of E and H on the boundary of the metal) 
and of the fact that inside the metal the amplitude of 
the electric field is much smaller than the amplitude of 
the magnetic field, while outside the metal they are 
equal. Therefore for multiple harmonics, when there 
is no incident wave of corresponding frequency, and 
there is only a reflected wave, the amplitudes of the 
electric and magnetic fields become equal to each 
other, owing to the "joining together" on the boundary, 
i.e., a factor (w/a)112 appears for the amplitude of the 
magnetic field of the multiple harmonic on the surface. 

This brings about a situation wherein the reflection 
and absorption of electromagnetic waves in metals, in 
the main approximation in the parameter (w/a)l/2, is 
characterized in the nonlinear case by a single quantity, 
namely the surface i~edance, and only in the next ap
proximation in (a/ w) 2 does the transfer of energy 
from the fundamental harmonic to the multiple har
monics become important for the solution of the prob
lem for the exterior of the metal. 

We shall assume throughout that the amplitudes of 
the multiple harmonics are small compared with the 
amplitude of the magnetic field of the fundamental fre
quency, not only on the surface but also in the interior 
of the metal. This assumption, for example, is justi
fied when hax/aH « 1 (x is the differential magnetic 
susceptibility). The result obtain.ed under this assump
tion differs only by a factor on the order of unity from 
the general case, and it can be readily shown that this 
factor depends very little on the magnetic moment and 
on the conductivity. This assumption greatly simplifies 
the solution of the problem, because in this case 
Maxwell's equations reduce to an ordinary differential 
equation. 

At a certain isotropy of M and C1, the obtained 
equation can be solved exactly (the most important con
sequence of isotropy is that M and C1 depend only on 
one component of the alternating field; the formulation 
of the problem is described in detail in Sec. 2). 

It was possible to solve the equation (see Sec. 3) 
with the aid of the following procedure. In the linear 
case, the magnetic field in the metal is given by 
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l!(y,t)=hexp{- (i+i) : l'2nwO'+iwt}. 

If we assume in this expression that w is pure imagi
nary ( w =- iE ), then the phase of the magnetic field is 
independent of y: 

{ y -- } JI(y,t)=hcxp --;;-1'4:w:r+iwt . 

This property of the linear equation, namely that the 
phase of the magnetic field is independent of y at 
imaginary w, remains in force also in the nonlinear 
case. 

As a result we obtain for the magnetic-field ampli
tude, at imaginary w, a nonlinear differential equation 
that reduces, with the aid of the standard change of 
variables, to a differential equation of first order rela
tive to the square of a new unknown function. This 
unknown function is equal to the surface impedance, 
accurate to a certain multiplier. 

The expression obtained for the surface impedance 
leads to a number of new effects (see Sec. 4), namely, 
to an exponential dependence of the impedance on the 
amplitude of the alternating field. 

In Sec. 5 we consider surface impedance at multiple 
harmonics. 

2. FORMULATION OF PROBLEM 

Assume that an electromagnetic wave of frequency 
w is normally incident on the surface of a half-space 
filled with metal and situated in a constant magnetic 
field 1> < We take the normal to the surface to be the 
y axis. 

Let the metal be placed in a homogeneous magnetic 
field< Let the homogeneous magnetic-induction vector 
corresponding to this field be directed at an angle a 
to the surface of the metal, and let the projection of 
this vector on the surface be the z axis. 

We confine ourselves to the case when the polariza
tion of the magnetic field of the incident wave has only 
a projection along the z axis, and the vectors H and B 
in the metal lie at all time in the yz plane, while the 
conductivity tensor is diagonal. Then 

and Maxwell's equations take the form 
{If!, 4:ur . DEx 1 DB, 
ay-e=-~~--£,. -fiy-'=c ·{it-, 

rJB, 
Dt. =O, (2.1) 

while M and a are connected with H by 

B, =if,+ 4:111I(H,, B,) or conversely IJ, = f(JJ,, H,), (2.2) 

a=~' o(Bu, BJ. (2.2a) 

Since it follows from (2.1) that 

the system of Eqs. (2.1), (2.2), and (2.2a) contains By 
only as a parameter that can be fixed. The components 
Bz, Hz, and Ex which remain to be determined will 

1lNon-orthogonality of wave incidence need not be taken into ac
count at the fundamental frequency, because the surface impedance 
does not depend on the angle of incidence (see (3 ] ). The proof given 
in [ 3 ] for this fact is not affected by the nonlinear dependence of M 
or a on H, because this proof is actually based only on the fact that 
(w/a)'h ~ I. At multiple harmonics, on the other hand, the impedance 
depends on the angle of incidence (see Sec. 5). 

henceforth be designated for brevity without sub
scripts2>. 

It is necessary to calculate from (2.1), (2.2), and 
(2.2a) the surface impedance (for a definition see[ 5 l), 
which assumes for this choice of axes the form 

E 
~=-nl-~o. (2.3) 

We eliminate the fields E and B from the system 
(2.1), (2.2), and (2.2a), and obtain for H the equation 

( l--4:tx(f!)) iN~=~n_~(~i] fJJI L Dlnlcr(H)l( Dlf\}2 
" · dy2 c2 dt ' DB Dy ' 

(2.4) 

where 

In (2.4) we used the fact that, as follows from (2.2), 
DB all aB an 
m=T-4nx(ii)Tt a;;= 1-~tnx(li) i!y 

We represent the alternating part of the magnetic 
field H(y, t) in the form of a Fourier series 

JJ(y,i)=' }2lhe'''"'', 
h<F-0 

/Lk(y)= lh' (y). 

We take the Fourier transform of (2.4): 

, d'Jh 4:w (0) . 
(1-· -wz(O))--:-- -...,--,wklh 

ely' c' 

2:tfto) 

oo s { ~II =<;- dte-""'' 4n[z(I/)- x(O))-a 2 
-Jl 0 y 

lt:t <711 a ln I a I ( iJH ) 2} +·-,-[a(ll)- o(O))·---+-..,---~ - . 
c· dt oB cJy 

(2.5) 

(2.4a) 

To determine the surface impedance, it is necessary 
to find not the general solution of (2.4), but the particu
lar solution satisfying the boundary conditions 

a) If (y, t) lv-w -~ 0, 

b) lh(O) = E,,(O) for lkl of= 1. 

Here Ek(Y) is the Fourier_eomponent of E(y, t). 
E(y, t) is determined from (2.1): 

(2.6a) 

(2.6b) 

. c aiJ (2 ) E(u,l)~=--. .1a 
4na iJy 

We note that the solution H(y, t) of Eqs. (2.4), 
. satisfying the conditions (2.6a), (2.6b), and (2.1a), 
satisfies also the relation 

11ldOll~lli,(O)I for lkl¥=1. (2.7) 

Indeed, if we denote the right side of ~2.4a) by 
lik1 A(y), where lik1 = (1 + i)(27rwa(O)k) 1 :Yc, we get 
for the Hk(Y) satisfying (2.4a) and (2.6a): 

(2.8a) 

where Ck is an arbitrary constant. 
Using (2.1a), we obtain 

Ek(y)= _c_ (- ~) {C. PXp ( - .!!._) + s~ dt]A (l])ch.'!.=J!..} .(2.8b) 
4no 6• o. Ok 

ll 

Regarding (2.8a) and (2.8b) at y = 0 and (2.8b) as a 
system of three equations with three unknowns Ck, 
Ek(O), and Hk(O), we obtain 

2)The writing down of (2.2) in the form of the second equation 
alone is inconvenient, since oH/oB ="' 0 near phase transitions (see (4 ]) 

and therefore df/dH _,. =. 
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lh(O)= -(1 + i) V wk_ ~JdljA(~)cxp (-.!!_). (2.9) 
8:rw 0 6, 

Since 
llt(O) ~ fdljll(l])exp { _.!!_) 

;, 6, 

(see (2.8a)), it follows that Hk(O) ~ (w/a) 112 H 1(0). 
This proves (2.7). 
To determine the impedance at the fundamental fre

quency we put for H(y, t) in (2.4) 

l!(y,t) = l11(y)r:"'' -!-f1 1"(y)·- 1'" '= htr{y} sin (wi-- fl(y)), (2.10) 

where, by definition, it is assumed that 

<p(O)= 1, 
1 

lit (y) =- h">(u\ e-i~(J' 2i ' J' • 

Taking the Fourier transform in (2.4) and using 
(2.10), we get 

d2H1 4niw d21It 
- ·--- [ oo(hq )+ o"(h'f.) ]lit= 4;-(xo(h<p)-
dyz c2 dy2 

d21!1' . . ( Dlnlo(h<i'J I)[· d1!1 dlft' . 
+4T£;.:2 (h<p)----e- 2 •~\YJ-i ---- 2---e-•r<YI 

dy 2 DB 1 dy dy 

--- (-d_!i_:_) z eiB(vJ]- i (~I a (h'~) ( dlft' )2 e-3i~<u>, (2 .11) 
dy DB a dy 

where 

'::.:rLw 

w j' -.>- dt a (h<p sin wt) cos k wt, 
~n o 

k even 

k odd 
21£/(J) 

(>) s - dt a (h<p sin wt) sink wt, 
2:t 0 

The function a in (2.12) stands for a or x or 
a ln I a 1/oB. 

(2.12) 

To obtain (2.11) we used the following properties of 
periodic functions: 

1) The integral of a periodic function over the period 
does not depend on the integration limits; 

2tr 

2) fA (sin ~)cos£ d£ = 0. 
·a 

Thus, to determine the surface impedance (see (2.3)) 
and (2.1a) it is necessary to solve (2.11). 

3. DERIVATION OF LINE.AR EQUATION FOR THE 
SQUARE OF THE SURFACE IMPEDANCE AT THE 
FUNDAMENTAL FREQUENCY, AND CALCULATION 
OF THE SURFACE IMPEDANCE 

Let us consider the solution of (2 .11) at complex 
values of the parameter w. We put iw = t::, where t:: is 
a real quantity. Since Eq. (2.11) is linear with respect 
to the phase factor exp[ -i,B(y)J (H 1 ~ exp[ -i,B(y)J and 
Hi~ exp[(y)]), the function ,8 is independent of y at 
real values of t::, and the following equation is obtained 
for cp (see (2.10)) 

d2<p ( d<p) 2 
--. +a(<p) - -b(<p)=O, 
dy" dy 

(3 .1) 

where 
h 3(ii In I a (h'f) II DB) 1- (iJ In I o(lup) 1/DB\a 

a(tp) =-? 1- 4n[xo(/up)- xz(lup)] 

From (3.1) we must determine ~- Using (2.1a) and 
(2.10), as well as the definition (2.12), we transform 
(2.3) into 

b = -· -4(~ [(-;-h)) 0 + Cr1/;J) J::~ I yo•O • (3 .2) 

We introduce in (3.1) a new unknown function p(cp) 
= d cp / dy, d2 cp / dy 2 = pdp/ d cp, and then (3 .1) takes the 
form 

dp" / rl<p -1- 2a (q;) p' -- 2b (<:p) = 0 (3 .1a) 
or 

~ ~ 

~ [ 1hxp { 2 fa (•p')drp'}] = 2b (•e )Pxp{J a (qi) alf'l. 
d<p "o o J 

From this we get 
q:_ ql If' 

p2 ('f)cxp {2 Ja(<p')d<p' }--p2 (0)= 52b(rp')cxp{2 5 a(<p")rlqi'}dq,'. 
0 0 0 

Since p2( 0) = 0 (the condition at y = oo ), we get .. 
p~(cp}= 52b(q/}cxp{ 2 5 a(q/')drp"} drp', 

0 • 

I I '! 

p(1)=- (2 J dcpb(cp)exp{ -2 J a(cp')d,r'}) '. 
u ~ 

The minus sign is due to the fact that we chose a solu
tion that decreases at infinity. 

Changing over to real w, 31 we have for the imped
ance (see (3.2)) 

-- I 

~-( 1 + ') "j/ w [( 1 ) ( 1 ) }(J 2qldtp[uo(hrr)+u,(hq;)] 
- 1 '8; u(h) 0+ .u(h) 2 · 0 1-4n[xo(lup)-x2(1up)] 

xexp {h J dq>'[3(8lnlo(hrrl!/J~)I-(D_2r!_i_<J_(h'f') I/8B) 3] })''• ( 3_3) 
- • 1-4,"t[Xo(hrp')- z;(h,p')] 

The indices designating the functions a, 1/a, 
a ln I a 1/oB, and x in formula (3.3) are defined in 
(2.12). 

4. INVESTIGATION OF SURFACE IMPEDANCE 

Formula (3.3) can be rewritten in a more compact 
form: ;-ro (' 2<j'd<p 

6 = (1 + i) 1 -sn- .~ ;; (h~JfT-=-4-;x (hrPJl 

f (- drp'8lni_l(hrp')[/DB 1)'', (4 .1) 
~<exp h ~ 1- 4nx(ltrp') I ' 

where x(hcp), a(hcp), and a(hcp) are the time-averaged 
differential susceptibility x and the conductivity a. 
The exact meaning of the averaging is clear from (3.3) 
and (2.12). 

We note first that the integrand in (4.1) is always 
positive, since only 1 - 41TX > 0, corresponding to 
BH/oB > 0 can be realized thermodynamically (seef41 ). 

The factor (1 + i)Jw/81Ta in (4.1) is the impedance 
in the linear case (see[ 5 1). The factor (1 - 411X(hcp)) is 
due to the difference between B and H (see, for ex
ampleYl), where its value is given for the case 
x = const and as an estimate for the general case). 

In addition, there arises in (4 .1) an exponential de
pendence on the amplitude h of the alternating field. 
This exponential dependence is important when the co-

3lSee (5 ] concerning the analyticity of t with respect tow. 
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efficient in front of the second derivative in (2.4) is 
smaller than the coefficient in front of the first deriva
tive, i.e., it is perfectly analogous to the exponential 
function arising in the WKB method. 

Let us stop to discuss in somewhat greater detail 
the oscillatory dependences of M and of a on the 
field (the de Haas-van Alphen and Shubnikov-de Haas 
effects). In this case the dependence of a on H can be 
neglected, but it is necessary to take into account the 
dependence of a ln I a 1/a B on H, because a consists 
of a smoothly varying large part and a rapidly alter
nating small increment (see, for example/41 ). 

We shall assume that the constant magnetic-induc
tion vector B is parallel to the surface of the metal, 
the conductivity tensor is diagonal, and the Fermi sur
face is isotropic. Inasmuch as for the quantum oscilla
tions M and a depend only on I B I, the component of 
the alternating field perpendicular to B has no signifi
cance in the first approximation in h/B under the sign 
of the rapidly alternating function: only the projection 
of the alternating field H on B will make a contribu
tion. Let further x and a be given by 

X = )(o ,E 1-11 cos ( nl :- a1 ) , 

l 

olnlcrl ~ ( H ) --as-= x l...J v1 cos nl B- ~~ , 
l 

(4.2) 

where az = nl + ao, (3z = nl + f3o, n = cS/e:liB, Xo, Ill, az, 
K, and vz are expressed in terms of the coefficients of 
the Lifshitz-Kosevich formulas; Xo ~ n 312 (vF/c)2 and 
K ~ n112/B (for details see[4 l). 

In (4.2), x and a ln I a I/ a B are expressed in terms 
of the alternating magnetic field H, and not in terms 
of the alternating field of the magnetic-induction vec
tor B1 (see (2.2)). In the presence of only one conduc
tion band, such a change of variables was made in ex
plicit form in[6 l. 

Using (4.2), (2.12), and (3.3) we get for !; 

-. ;-ro- ( 1 2rpdrp 
~ = (1 + i) V ~:>ncr 5 n 

1 - 4nxo L !lt cos a1 (10 - 12) 

0 1 

1
1 .E 'Yz sin ~ 1 (3!1 - 1 3) drp' l )''• 

xexp xhS 1 --.. 

• 1-4ny..o4[L1 cosa1{Jo-l2) 1 

(4.3) 

In this formula, the arguments of all the Bessel func
tions J 0 , J 1, J 2, and J 4 are equal to nlhcp /B. In writ
ing down (4.3) we used the Bessel formula, which is 
represented in the form of an integral of a Bessel 
function of integer order. 

A more attentive analysis of the integrand in (4.1) 
and (4.3) leads to the following conclusions: 

a) There is a factor ( 1 - 47TX (hcp)) in the exponen
tial and in front of the exponential in (4.1). The value 
of ( 1 - 47T x (H)) tends to zero near the magnetic phase 
transitions-see[4 J (we emphasize that here x( H), un
like x(hcp) is the magnetic susceptibility not averaged 
with respect to time. 

The quantity (1 - 47Tx(hcp)) can also tend to zero 
near the phase transitions. To this end it is necessary 
to have h « Hx (that this is indeed the case can be 

verified with the aid of (3.3) and (2.12)), where Hx is 
a characteristic magnetic field, at which 

.JJ!! + rT!zl-_!(Jl). ~ 1 (4.4) 
x(H) 

for certain values of p satisfying the condition 0 < p 
< 1 (for quantum oscillations, Hx = B/n). 

b) In order for a ln I a (hcp) 1/aB not to be much 
smaller than a ln I a( H) I/ a B (non-averaged conductiv
ity), it is necessary to have h <:' Ha (this can be veri
fied with the aid of (3.3) and (2.12)), where Ha is a 
field characteristic of the conductivity and can be de
fined in analogy with (4.4). 

c) For large alternating-field amplitudes h » Hx, 
Ha we have in the case of quantum oscillations 

l5:(hrp)l~lx(H)I, ~~r;~h'f)ll<l oinl;~!lllj. 
This is expressed mathematically by 

lv(A)IA-~-+ 11-~cos(A--~n -~). (4.5) 
:1.4 2 4 

The smallness of the time-average quantities is due to 
the fact that x and a ln I a I! a B are functions of H and 
oscillate rapidly about zero. 

Thus, for large h all the effects will be greatly 
weakened as a result of averaging with respect to time. 

d) Time averaging for large h will not lead to a 
decrease of the effect if phase transitions occur 
periodically in time as a result of variation of x. 4> As 
a result, although the rapid oscillations still remain, 
their mean value will not be small, namely, the oscil
lations will be not about a mean "zero" but about 
some constant different from zero. This is analogous 
mathematically to 

1 1 1 

Jim f sin A:r dx = 0, no lim J sin2 Ax dx = -;~-. 
~ ~.,0 A-.,.~Y> 0 ~ 

The properties a)-d) of formulas (4.1) and (4.3) 
lead to the following effects: 

1) Let 

1 -- "'"z"'"' (Jl) > o. (4.6) 

Here x, unlike x, is the magnetic susceptibility not 
averaged with respect to time, and depends not on hcp 
but on H(y, t). The maximum in (4.6) is taken at fixed 
B and h for all y and t. 

It follows from (4.3) that when h ~ B/n the imped
ance !; oscillates with changing B. As soon as we get 
h <:' B/n, the oscillations disappear and are replaced 
by absorption-an increase in the modulus of the im
pedance. The transition from oscillations to absorp
tion occurs when the integrand in (4.3) begins to oscil
late with changing cp • 

The oscillations in the absorption are of interest in 
the region of amplitudes h ~ B/n. When h « B/n the 
oscillations are small to the extent that h is small. 
When h >> B/n, the impedance !; barely differs from 

4>Thermodynamically stable states correspond to 41TX(H) < I. At 
large X there occurs stratification into domains. Transitions from a 
homogeneous state to a state with inhomogeneous B are possible also 
when 41TX < I. This gives rise to periodic structures (see [4 )). It is of 
no importance to us whether a periodic or a domain structure is pro
duced as a result of the transition. It is only important that a phase 
transition be actually realized, rather than, say, a metastable state. 
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the usual impedance because of the averaging of the 
alternating field with respect to time (see c)). 

2) Let now 

1-4rr;<max (JJ) < 0, but 1-4rrx (0) > 0. 

As in the preceding case 1 ), at first there are oscil
lations, which then give way to absorption with increas
ing h. The difference lies in the fact that because of 
the property d) the impedance ~ does not decrease 
with increasing h. It is therefore possible to detect 
experimentally the appearance of a domain or periodic 
structure, owing to the difference between ~ in this 
case and !; in the case 1) h » B/ n. 

3) We call attention to an effect predicted in[ 7 l, 

which arises when 1 - 47TXmax(H) « 1. 
The essential feature of this effect is that at arbi

trarily small alternating-field amplitudes (h « B/n), 
the value of !; oscillates at a function of B, and the 
smaller h the more pronounced the oscillations, their 
amplitude being proportional to 

[ 1 ln{i + 4:r.xo(nh/B) 2 }]'!, 
4rr.xo(nh/B) 2 1- 4nxo · 

4) Besides the effects considered so far, which are 
connected with the pre-exponential factor in (4.1) and 
(4.3), there are effects in which there appears an ex
ponential dependence of !; on h. For such effects it is 
necessary that, first, the factor 1 - 47Tx(hrp) be close 
to zero, i.e., a smooth dependence of x on H is re
quired (see a)), and second, at the same values of H 
as in the first case, the value of a should vary rapidly 
as a function H, so as to be able to realize the condi
tion b). Therefore, it is necessary to have 

llx? lfo, (4. 7) 

and then in the range h of the alternating field 

(4.7a) 

it is possible to observe an exponential dependence of 
!; on h. 

The condition (4.7) can be realized, for example, in 
the case when there are two bands in the metal, one 
with a large number of electrons and the other with a 
small one. 

Another example of the possibility of realizing (4.7) 
is as follows: We have a ferromagnet. The value of x 
is determined by the ferromagnetic properties. In ad
dition, there are at low temperatures also quantum 
oscillations of a, which determine the value of 
a 1n I a II a B. 

When conditions (4.7a) are satisfied, there will be 
observed an anomalously large increase of !; • Depend
ing on whether the quantity [1 - 47TXmax(H)] is larger 
or smaller than zero, the dependence will be different
see c) and d). When 1 - 41TXmax(H) < 0, the exponen
tial growth will be faster. 

With increasing !; , the nor mall skin effect ( o « r) 
gradually becomes anomalous ( r » o) ( o -depth of 
skin layer and r--radius of the electron orbit in the 
magnetic field). In constructing a consistent theory in 
the nonlinear case of anomalous skin effect, it turns 
out that for the square of the surface impedance p2 ( rp) 
(see Sec. 3) one obtains a linear equation, but unlike 

the case of the normal skin effect (see (3.1a)), this 
equation is integra-differential. 

5) If h > B/n112 , there occurs in the case of quantum 
oscillations (see (4 .3)) an exponential growth of !; in 
the presence of only one conduction band (and not two 
with greatly differing carrier numbers, as was re
quired for effects in case 4) under the condition 

1-4nxmax(l/) < 0 (cf. d). 

6) Besides the exponential growth of the absorption, 
an exponential decrease of absorption is also possible. 
It can occur, for example, under condition (4.7a) in 
thin plates. The thickness of the plate is determined 
by the fact that the exponential of (4 .1) contains a nega
tive quantity at all rp. 

7) For the quantum oscillations upon change of the 
constant field B, superposition of the effects of cases 
4) and 6) leads to oscillations of !; as a function of B, 
with the amplitude of the oscillations being exponen
tially dependent on h. 

DEPENDENCE OF THE SURFACE IMPEDANCE AT 
MULTIPLE HARMONICS ON THE ANGLE OF 
INCIDENCE. NONLINEAR QUANTUM PSEUDORESO
NANCE 

Let us consider the surface impedance at higher 
harmonics. We assume first that the electromagnetic 
wave is incident perpendicularly on the surface of the 
metal. 

To find the impedance at multiple harmonics, it is 
necessary to substitute in (2.4) an alternating magnetic 
field H(y, t) in the form of a sum of two terms. The 
first term is the field at the fundamental harmonic 
(see (2.10)). The second term is a field representing 
a superposition of all the multiple harmonics (see 
also (2.5)). Recognizing that the second term, by as
sumption, is small compared with the first, we can 
linearize Eq. (2.4) relative to the second term. As a 
result we obtain a linear partial differential equation 
with variable coefficients in terms of the field of the 
multiple harmonics. The highest derivative is of second 
order with respect to the coordinate and of first with 
respect to time. 

This equation cannot be solved exactly. A solution of 
this equation in the form (2.9) is not more than an 
estimate, since the right-hand side of (2.9) contains the 
field of the multiple harmonics. The method described 
in Sec. 2 can only be used to prove that the field of the 
multiple harmonics is small on the surface, but t is 
value cannot be determined by this method. 

The nonlinear problem for multiple harmonics can 
be easily solved in the limiting case of weak non
linearity ( 411 xmax< H)) « 1) for the quantum oscilla
tions. In this case the dependence of a and Ba/BB on 
H(y, t) can be neglected, and the method described in 
Sec. 2 and leading to (2.9) yields a solution of the 
problem 5>. 

The most interesting region in this case is h » B/n. 
The amplitude of the reflected wave at multiple har
monics Hk first increases slowly with increasing num-

S) A preliminary report of the effect described below is contained 
in [2). 
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ber of harmonics, and then at k = nh/B there is a 
sharp increase of the amplitude Hk, by a factor 
( nh/B )11S, followed by a rapid decrease. The width of 
the growth region is ~ ( nh/B r 2/ 3 (measured along the 
k(nh/Br 1 axis, on which the growth occurs at the 
"unity" point). This increase of the amplitude of the 
nonlinear harmonic is called a pseudoresonance 
(see [21 ). 

From the data given in this section and in Sec. 2 it 
is clear that inasmuch as the main approximation in 
(w/a)l/ 2 of Eq. (2.4) for the multiple harmonics vanishes 
as a result of the boundary conditions, it is necessary 
to take into account the dependence of the surface im
pedance on the incidence angle of the wave, since this 
yields corrections of the same order ( ~ ( w/a )112 ). 

6. CONCLUSIONS 

1. We have shown that in the main approximation in 
(w/a) 112 in the nonlinear case the reflection and absorp
tion of electromagnetic waves in metals is character
ized, just as in the linear case, by a single quantity
the surface impedance. This is always valid for metals 
in the frequency region w << a, whether the skin effect 
is normal or anomalous, and for domain as well as 
spatially-periodic structures. 

2. In the linear case, the surface impedance depends 
exponentially on the amplitude of the alternating field, 
as can be observed experimentally (see cases 4)-7) 
of Sec. 4). 

3. It is shown in Sec. 4, that the absorption of elec-

tromagnetic waves depend strongly on whether the 
metal is homogeneous or breaks up into domains. 

4. It is shown in Sec. 5 that at multiple harmonics 
the surface impedance depends on the angle of inci
dence of the electromagnetic waves. 
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