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An expansion of the thermodynamic functions in a series in powers of the density of impurities is con­
structed for a system of magnetic impurities in a metal. In a weak magnetic field such a series is 
simultaneously a high-temperature expansion. In a sufficiently strong field the obtained expressions 
are valid at all temperatures. 

THE interaction of magnetic impurities in a normal 
metal is achieved by means of indirect exchange via the 
conduction electrons. This interaction slowly decreases 
with distance between the impurities and therefore may 
exert a substantial influence on the thermodynamics 
even for small impurity concentrations. After averaging 
over the conduction electrons the effective Hamiltonian 
of the impurities may be written in the form u, 2 J 

(1) 
ij 

where H denotes the magnetic field, fl denotes the gyro­
magnetic ratio, and the interaction between spins at 
large distances is given by 

cos 2poR 
V(R)=Vo--R-3 - for poR~L (2) 

The interaction influences the thermodynamic functions 
if it is not small in comparison with the temperature, 
V(R) :;: T. Therefore, the volume in which the interac­
tion is significant is inversely proportional to the tem­
perature. For large temperatures and small concentra­
tions the probability of finding two impurities in such a 
volume is small, and the thermodynamic functions may 
be obtained by an expansion in powers of the density of 
impurities. 

The distribution of the impurities in a metal does not 
depend on the temperature. Therefore, it is necessary 
to calculate the thermodynamic functions for a given 
position, and then to average with respect to the various 
mutual positions of the impurities. 

The free energy of N impurities is determined by the 
formula 

In order to obtain a virial expansion it is convenient 
to introduce quantities f defined by the recurrence rela­
tion 

f;=F;, 

F;; ... n = I:tn + _.Efkr + • • • I: fkr ... m + /;; .. n, { 4 ) 
kr kr ... m 

where the summation is carried out over different sets 
of the indices ij ... n. The function f vanishes if the dis­
tance between any two impurities tends to infinity. For 
example, 

/;; = F;;- (F; + F;). (5) 
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Averaging expression (4) over the distribution of the 
impurities and going to the thermodynamic limit N - oo, 
we obtain an expansion of the free energy in powers of 
the density. For the first term in formula ( 4) we obtain 
the expression 

(6) 

In order to calculate the subsequent terms in the ex­
pansion, it should be noted that those impurities are 
essential when the distance between them is determined 
by the condition V ~ T. At not too high temperatures 
these distances are large in comparison with inter­
atomic distances, and the distribution of the impurities 
can be regarded as independent. Therefore, for the sec­
ond term of formula (4) we obtain 

F<2>=-TN::._JdR [ V(R) · IJ.H] 
2 CJl 1' ' T ' (7) 

cp(y;z)=In{E sh:~~z~2;2) exp[u(S(S+1)-+J(J+1) )]} 
J=O 

_ Zln shz(S + 1/ 2) • 

sh(z/2) 

Here n denotes the impurity concentration, and the 
interaction V(R) is determined by expression (2) and is 
the product of the smooth function R-3 times the rapidly 
oscillating function cos 2poR. Therefore, it is convenient 
to carry out the integration in formula (7) by first aver­
aging the integrand over the period of the oscillations. 
Changing the order of averaging and integration, we ob­
tain 

(8) 

For large values of y this integral diverges logarith­
mically. It is necessary to cut if off at distances of the 
order of interatomic distances: 

4 [ V0n ( IJ.H)] F<2>=--NnV0 S(2S+1)ln--+<1>2 - . 
3 T(a3n) T 

(9) 

All physical quantities are obtained by differentiation 
of the free energy with respect to temperature or field 
and do not depend on the cutoff parameter a. The integ­
rals which appear upon averaging the next terms in 
formula (4) converge at small distances. After averag­
ing over the distribution of impurities we obtain 

( nV0)m-l (IJ.H) F<ml=-NT T <Dm T . (10) 
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The dependence of the interaction V(R) on the tempera­
ture, impurity concentration, and magnetic field was not 
taken into consideration in the derivation of formulas 
(7) and (10). Such a dependence arises at distances 
comparable with vF/T, the mean free path and the 
Larmor radius, vF/iJ.H. In the ranges of temperatures, 
fields, and concentrations under consideration these 
distances are large in comparison with the average dis­
tance between impurities, and they are not essential for 
calculations of the thermodynamic functions. The ex­
change interaction of the conduction electrons with the 
impurities is usually small, and in the derivation of 
formula (2) it has been taken into account in the Born 
approximation. This is valid if the temperature T or 
the magnetic energy IJ. H are larger than the Kondo tem­
perature. 

Indirect exchange via conduction electrons not only 
leads to the pair interaction (2) of impurities, but it 
also leads to various unpaired forces. Over atomic 
distances these forces are smaller than the pair forces 
within reasonable limits for the smallness of the ex­
change interaction between the conduction electrons and 
the impurities. In addition, these forces fall off more 
rapidly with distance than the pair forces do. Therefore, 
the unpaired forces are unessential for a determination 
of the thermodynamic functions. 

Summing all of the F(m) we obtain 

F=-NTIJ) (nV0 j.tH) 
T ' T . 

(11) 

Thus, in the range of temperatures under consideration, 
smaller than Vo but larger than the Kondo temperature, 
the free energy does not depend on the three parameters 
n, H, and T, but only on their ratios. Such a result was 
obtained inl3 J by a different method. The approach set 
forth above is convenient in that it makes it possible to 
find the free energy in the form of a series in powers of 
the first argument. In the case IJ.H ~ T this series gives 
a high-temperature expansion of the free energy. 

For IJ.H :;::: T the series represents an expansion in 
terms of the parameter nVo/!J.H. In a sufficiently strong 
field, when this parameter is small, a sum of the first 
terms of the series correctly describes the thermc­
dynamic functions at arbitrarily low temperatures. The 
free energy is given by formula (6) to first order in the 
impurity density. Let us consider the quadratic term in 
more detail. Differentiating expression (9), we find the 
heat capacity when the magnetic field is equal to zero: 

82F 4 nVo (12) 
C=-T ar2 =3"NT8(28+1). 

The obtained formula is valid for nV0 « T. From Eq. 
(12) it is clear that the heat capacity increases upon a 
reduction of the temperature. According to Nernst's 
theorem the heat capacity vanishes at quite low tempera­
tures. Therefore the function C(T) has a maximum at a 
temperature of the order of nV0 • 

If, in agreement with experiment, it is assumed that 
the heat capacity depends on the temperature linearly 
for T < nVo, then in order of magnitude the coefficient 
can be found from the condition for matching with form­
ula (12): 

C ~NT I nVo. (13) 

At low temperatures the heat capacity does not depend 

on the concentration of impurities, and for a weak inter­
action Vo it is much larger than the heat capacity of the 
conduction electrons. 

For IJ.H » T with logarithmic accuracy we have 

IJ)2 = -8(28 + 1)ln(jlfi IT). (14) 

Substituting (14) into formula (9) we verify that in this 
limit the free energy F<2 > does not depend on the tem­
perature. Differentiating (6) and (9) with (14) taken into 
account, we obtain the following expression for the mag­
netic moment in a strong field: 

[ 4 V0n ] M=118N 1---(28+1) . 
3 11H 

(15) 

Formula (15) is applicable when the second term inside 
the square brackets is a small correction. 

For spinS= 1/2 we present the dependence of F<2 > 

on temperature and field for an arbitrary relation be­
tween them. In this case the function 4>2 in formula (9) 
is given by 

1 . j.tH 
<1>2=Re¢[-z-;nln(1+2chr)]· (16) 

Here lj;(x) denotes the logarithmic derivative of the 
r-function. The remaining thermodynamic quantities 
can be obtained by differentiation of the free energy. 
For example, for the heat capacity in a strong field, 
IJ.H >> T, IJ.H » nVo, we obtain the formula 

(17) 

Thus, in a strong field the heat capacity depends on the 
temperature linearly and falls with increasing magnetic 
field. 

In a weak field the susceptibility may be written in 
the form 

..,.-1- 3 (T+T") 
'" - Nf128(8+1) ' 

T' =~nV0 cdy {1-~}. 
3 J y2 B 

A= .EJ(J+1)(2J+1)exp{- ~ /(1+1)}, 
J=D 

28 

B= 28(8 + 1) ,E (21 + 1)exp{- ~ J(J + 1) }· 
J=D 

(18) 

(19) 

Formula (18) is applicable at not too low temperatures, 
T » T*. For the case of spin S = 1/2 

T • 16 , [ 1 In 3 J •;, = 9:rtnVolmljl 2 -i2;" ~0.044nV0 • (20) 

This expression may be obtained by differentiation of 
the free energy (16) with respect to the field. For the 
case of large spin 

Ts* = 8lgn V0 ln S. (21) 

We note that in the classical limit, when S- co, !J.S 
= const., V0 S2 = const, the second term on the right hand 
side of (18) vanishes. 

Expressions similar to formula (18) may be obtained 
by the method of a self-consistent field. The quantity 
T*, obtained by this method, corresponds to the first 
term of an expansion of formula (19) in powers of the 
interaction and is proportional to the integral of the 
interaction potential. In such an integral the region of 
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small distances of the order of interatomic distances is 
important. In the exact expression (19), for not too high 
temperatures, a3Vo >> T, such distances are not impor­
tant. This difference is associated with the fact that the 
self-consistent field method does not take spin correla­
tions into account, which are large for small distances 
between the impurities, where V » T. Therefore many 
of the results obtained by the method of the self-consis­
tent field appear doubtful to us. In particular, conclu­
sions about the ferromagnetism of such a system at low 
temperatures are unconvincing. 

An additional reason concerning the absence of im­
purity ferromagnetism arises upon analysis of formula 
(15}. Usually in ferromagnetics at zero temperature the 
magnetic moment reaches saturation even in a weak 
field. From formula (15) it is clear that the moment of 
an impurity at zero temperature does not reach satura­
tion even in a strong field. By considering the system 
placed in an inhomogeneous magnetic field, in similar 
fashion we convince ourselves that a transition to a 
helical structure with a nominal spin is not possible. It 
is impossible, however, to regard a transition into a 
ferromagnetic or antiferromagnetic state with non­
nominal spin as excluded. A phase transition would be 
indicated by the presence of a singularity in the function 
<P in formula (11). It appears more plausible to us that 
the ground state of a system of magnetic impurities is 
paramagnetic. On this, apparently, the indications are 

that a singularity in the temperature dependence of the 
thermal conductivity is not observed experimentally 
(see, for example, [3 J ). Only a smooth maximum is ob­
served in this dependence, which was explained above 
without including any arguments about magnetic order­
ing. 

In connection with a comparison with experiment, it 
is necessary to keep in mind that in addition to the 
values of the spin and magnetic moment of the impurity 
the theory only contains one adjustable parameter V0 • 

The temperature dependence of the heat capacity and of 
the susceptibility has been studied experimentally, and 
also the dependence of the moment on the magnetic 
field. [3 J Formulas (12), (15), (18), and (19) obtained 
above describe the experimental results well. 
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