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Self-induced transparency of a gas in a magnetic field by passage of a polarized light pulse is inves­
tigated. It is shown that the external magnetic field decreases considerably the number of resonant 
atomic transitions for which self-induced transparency of the medium is possible. An analytic solu­
tion for a linearly polarized light pulse propagating without change of its shape or loss of energy is 
found in the case of atomic transitions involving a change of the total momentum 1 :o= 0, 1/2 - 1/2 
and 1 - 1. In the presence of self-induced transparency, the direction of rotation of the light-pulse 
polarization is opposite that of Faraday rotation in a monochromatic wave. 

THE self-induced transparency of a resonant medium 
in the propagation of an ultrashort intense light pulse 
was predicted theoreticallyl1J and was recently investi­
gated experimentally in a solidl2 J and in a gasl3J. 
Subsequently, this phenomenon was used many times 
in the investigation of nonlinear properties of a medium. 

The physical cause of the self-induced transparency 
is the absorption of photons by resonant atoms on the 
leading front of a moving light pulse, followed by induced 
emission of the excited atoms on the trailing edge of the 
same pulse. As a result, the light pulse moves under 
certain conditions in a resonant medium without distor­
tion of its profile and without energy loss. 

It was noted inl4J that level degeneracy influences the 
self-induced transparency when the spectral line is 
homogeneously broadened. It turned out that the motion 
of a light pulse without change of profile[l' 2 J is possible 
if the resonant atomic transitions are accompanied by a 
change of the total angular momentum 0 = 1, 1 - 1, 
1/2 - 1/2, and 3/2 :o= 1/2. In the case of atomic transi­
tions j - j ( j > 1), self-induced transparency is possi­
ble for light pulses with several maxima, whereas for 
atomic transitions j :o= j + 1 ( j 2: 1) the phenomenon of 
self-induced transparency does not occur at all. 

In an external magnetic field H, the effect of self­
induced transparency acquires new features. In particu­
lar, the dependence of this effect on the degeneracy of 
the levels and on the type of the atomic transition be­
comes stronger. We assume further that the degeneracy 
of the levels is due to the different orientations of the 
total angular momentum. Such a situation is realized, 
for example, for atoms (molecules) of a gas. The neces­
sary condition for self-induced transparency in a gas is 
smallness of the duration of the light pulse compared 
with the time of irreversible relaxation, which is deter­
mined by the atomic collisions and by the spontaneous 
emission. At the same time, the time of the Doppler re­
laxation can be either larger or smaller than the dura­
tion of the light pulse. 

Self-induced transparency of a gas in the presence of 
a magnetic field occurs only for resonant atomic transi­
tions with change of total angular momentum 1 :;= 0, 
1/2- 1/2, and 1- 1. In other cases, motion of the 
light pulse without deformation or loss (21T-pulse) is not 
realized. The direction of rotation of the polarization of 

a 21r-pulse is opposite to the usual Faraday rotation in a 
monochromatic wave, and the absolute magnitude of the 
angle of rotation of the polarization of a 21r-pulse is 
larger or smaller than the Faraday angle, depending on 
the parameters of the experiments. From the angle of 
rotation of the 21r-pulse polarization it is possible to 
calculate the g-factors of the resonant levels. The fore­
going singularities of self-induced transparency has 
been established for linearly polarized pulses moving 
along the magnetic field. 

Assume that the Zeeman splitting is small compared 
with the frequency of the atomic transition. Then the 
upper and lower resonant levels can be regarded as con­
sisting respectively of 2J2 + 1 and 2J1 + 1 close sub­
levels, where J1 and J 2 are the total angular momentum. 

The vector potential A of the linearly-polarized light 
pulse propagating along the Z axis is represented in the 
form 

A= a exp [i(kz- wt}], 
a = Ia, 12 = 1, k = w I c = 1 I X, (1) 

where c is the velocity of light in vacuum and a is a real 
slowly-varying amplitude: 

The polarization current induced by the field (1) is 
equal to the integral, with respect to v, of the trace of 
the matrix 

(2) 

where Rt.tm is the density matrix of the group of atoms 
(molecules) moving with velocity v, and d~l.l is the 

dipole moment of the transition between the upper and 
lower levels. If we separate from the current (2) the 
slowly-varying amplitude 

I'"= j'" exp [i(kz- wt}], 

then the fundamental equations are written in the form: 

-+c-~- a'"=t·2nX S dvSpj'", ( 0 {) ) 
at oz 

( (3) 

(4) 
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where we use the following notation: 

Qu.p = (21, + 1)d:11 (nJ2).11• d!•m/liJd;: J2, 

Tap= d~Jld!m•/JdJ,' J2, 

P:~ = ~u P1111' d!•m•/ J dJ,' J2, 

PI = Pmm•, n = HI H, 
e, = ~t0g,H /li, e2 = ~tog2H /li, 

'Y = 41 dJ/'1 2 /3(2!2 + 1)1iX3• 

Here P llll' and Prom' are the density matrices at the 

upper and lower levels, d~: is the reduced dipole mo­

ment of the transition, y is the probability ot spontane­
ous emission, IJ.o is the Bohr magneton, and J1 and g1 
are respectively the operator of the total angular mo­
mentum and the g-factor of the lower level, while J2 and 
g2 are analogous quantities for the upper level. The fre­
quency w of the pulse (1} coincides with the frequency 
of the resonant atomic transition. For convenience, 
Eqs. (3)-(6) are written in terms of the matrix indices 
of the operator of the total angular momentum of the 
lower level. 

Prior to the passage of the light pulse, the distribu­
tion of the atoms over the velocities and the energy 
levels was described by the Maxwell and the Boltzmann 
distributions : 

f.,.(r, -oo) =0, 
pt(r, -co) = ntf I (21 1 + 1), 

P2a~(r, -oo) =n./Tap/ (212+ 1), 

where n1 and n2 are the densities of the atoms at the 
lower and upper levels respectively, at the initial instant 
t =-co at the point r. The unit matrix is written out in 
explicit form. The atom-velocity distribution function f 
is 

f= (1/ n'''u)exp(-v•/ u•) •. , 

where u is the thermal velocity of the atom. 
We consider first an electromagnetic pulse (1) in 

resonance with the atomic transition with change of total 
momentum J 2 = 1- J 1 = 0. Then 

(7} 

We make in Eqs. (3}- (6} the substitution 

assuming that unit vector 1 satisfies the equation* 

oil ot = e.[nl] 

and is a function of the argument t- z/t. Then Eqs. 
(3}- (6} with allowance for (7) reduce to the already in­
vestigatedlzl system of equations: 

*[nl]=nXl. 

(ii/ot+cofoz)a= i·2nXS dvj, 

(o 1 ot + ikv)i + i·3vcXaN /4 = 0, 

oN I ot + i·2a(j- r) /lie= o. 

(8} 

(9) 
(10) 

A stationary solution of Eqs. (8)-(10) is the 21T-pulse 

a= ao I ch [ (t - z / vo) IT]. (11} 

The duration T and the velocity vo for the 21T-pulse is 
determined by the relations 

T = 1/ ao(3yX /4/i)~'. 

c - r e-o' 
-;. -1 = -3 in NoX.2ycTo2 J

0 62 + (To/T)• d6, 

where To = 1/ku is the time of the Doppler relaxation; 
No = nz /3 - n1 is the initial excess population of the 
levels prior to the passage of the 21T-pulse, and the 
quantity ao is a free parameter, which assumes different 
values depending on the form of the light pulse trans­
mitted into the medium. However, the area of the 
21T-pulse (11} has a fully defined value 

~ 

~ a dt = naoT = y3 nXIi/ JdJ/'J. (12} 

If the area of the light pulse transmitted into the 
medium satisfies the condition (12), then the pulse as­
sumes the form (11) after the establishment of the 
stationary regime. If the area of the transmitted pulse 
is a multiple of the quantity 1raoT, then other stationary 
regimes are possiblel2 •51 • 

Thus, in the case of an atomic transition with a 
change of the total angular momentum J 2 = 1- J 1 = 0, 
the amplitude a for a 21T-pulse a = la in an external 
magnetic field His given by formula (11}, and the com­
ponents of the polarization vector are 

l 1 =cos e2(t- z I c), l2 =sin B2(t- z I c), 13 = 0. (13) 

Since the velocity v0 of the 21T-pulse differs from the 
velocity c of the light in vacuum, its polarization, ac­
cording to (13}, rotates around H. Indeed, at the point 
z = v0t of the maximum intensity of the 21r-pulse, the 
angular velocity of the rotation of the polarization vector 
1 is E 2{1- v0 /c). Therefore the angle of rotation of the 
polarization of the 21T-pulse on the unit path d9/dz is 

.. <' 
d9/dz=e2 (1-vo/c)/vo=-3inNoX2e2VTtf~ s2 +~-To/T)• d6. (14) 

The direction of the rotation (14) coincides with the 
direction of rotation of the polarization of the photon 
echo in a gas in the presence of a magnetic field lal. In 
its nature, the rotation of the polarization of the 21T-pulse 
(14) is a Faraday rotation, although it differs in magni­
tude and direction from the ordinary Faraday rotation in 
a monochromatic wave passing through the same reson­
ant beam. For comparison, we write out the formula 
for the Faraday rotation of a nonstationary short pulse 
in the linear approximation in the field: 

~ 

d9/dz = 3nN0X12yT0e-••' S e1'dt, (15) 

where TJ = E 2T0 , and where we also use the fact that the 
collision width of the level is small compared with the 
Doppler width. We see that the rotation (14) of the 
polarization of a 21T-pulse is opposite to the Faraday 
rotation (15). The Faraday rotation in an inert gas was 
investigated experimentally inl71 • 

If the frequency of a light pulse (1) is in resonance 
with the frequency of the atomic transition with change 
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of total angular momentum J 2 = 0 - J 1 = 1, then it is 
necessary to make in (14) the substitution 

An analogous result is obtained in the analysis of the 
atomic transition with change of the total angular mo­
mentum J2 = 1/2- J 1 = 1/2. By virtue of the specific 
properties of the Pauli matrices a 0, the operators 
T a{3 and Qa{3 assume the simple form 

T ~B = Ua/IB / 6, OaB = CJa (no) a~ /6. 

If we make in (3)- (6) the substitution 

ia = Oa (Ia) j, 

P2a~ = paaa~ I 6, P -PI= N, 

then we again arrive at Eqs. (8)-(10), with the substitu­
tions .:1.- 2il. andy- y/6. Now, however, the polariza­
tion vector l is defined by expressions (13), in which E2 

is replaced by ( E1 + E2)/2, and in formula (14) it is 
necessary to make the substitutions 

x ...... zx, v-+v/6, 
No-+ (n2- ni) I 2, B2 _,. (ei + e2) I 2. 

The rotation angle obtained in this manner for the polar­
ization of the 21T-pulse differs from the corresponding 
result of.[aJ in the substitution g - (ql + q2)/2 and by a 
numerical factor, this being due to the fact that the de­
generacy of the levels was neglected in[aJ in the con­
sideration of the atomic transition J2 = 1/2- J 1 = 1/2 
in ruby. 

In the case of other a~omic transitions, the rotation 
of the polarization and the change of the profile of the 
light pulse depends in a very complicated manner on the 
g-factors and the total angular momenta of the levels, 
and the problem cannot be solved in simple analytic 
form. An exception is the atomic transition with change 
of the total angular momentum J 2 = 1- J 1 = 1 and iden­
tical g-factors of the upper and lower degenerate levels, 
g1 = g2. In this case substitution in Eqs. (3 )- (6) 

j,. = J,.(IJ)j, PI= qi(Jj) 2, 

p2''~ = q2},.(IJ) 2i~. 6q2- qi = N, 

also leads to Eqs. (8)- (10) with the substitution in them 
A- 2~ andy- y/4. However, formation of a 21r-pulse 
calls for excessively specialized initial conditions for 
the density matrices: 

Pu~·(r,- oo) = C!(IJ)~u•, Pmm•(r,- oo) = C2(Ioi);,m•, 

where J is the operator of the total angular momentum, 
equal to unity; C1 and C2 are certain constants, and 10 

is an arbitrary vector perpendicular to the wave vector 
k. 

An investigation of Eqs. (3)- (6) in the absence of a 
magnetic field (H = 0) shows that in the case of an in­
homogeneously broadened line the 21T-pulse is produced 
only on atomic transitions with change of the total angu­
lar momentum 1 += 0, 1 - 1, 1/2 - 1/2, and 1/2 += 3/2. 
For other atomic transitions, stationary pulses may be 
produced with several maxima, as indicated in[4J. The 
external magnetic field noticeably reduces the number 
of atomic transitions on which formation of 27T-pulses 
in the absence of a magnetic field is possible. 

The authors are grateful toN. G. Basov, v. M. 
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