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The behavior of semiconductors in crossed electric and magnetic fields is investigated. Formulas for 
electric breakdown are obtained in this case for an arbitrary dispersion law in the quasiclassical ap
proximation. 

IN this paper, the behavior of semiconductors in 
crossed electric and magnetic fields with arbitrary dis
persion law is investigated in the two-band model. To 
this end, we first determine the nature of the classical 
motion in this case. In the sequel, we shall use the fol
lowing choice of fields and potentials: 

E = (£, 0, 0), H = (0, 0, H), A= (0, Hx, 0). 

Then for band zone there are conservation laws: 

( el/x ) 
En Px, Pw- -c-, Pz - eEx = Eo = const, 

Py = const, Pz = const. 

We determine the dependence of the energy ~0 of the 
turning points, where Vx = 8E(p)/8px = 0. If momenta are 
reckoned relative to the bottom or top of the correspond
ing band, we have both Vx = 0 and Px = 0. If, in addition, 
xis measured from x 0 = cpy/eH, and energy from 
- eExo, then we obtain for the energy dependence of the 
turning point: 

( eHx ) 
En 0, -c-, Pz - eEx =eo (1) 

(an irrelevant minus sigri in front of H has been omit
ted). We investigate the nature of this dependence. 

Differentiation of Eq. (1) gives (primes denote differ
entiation with respect to x) 

, ell 
eo= -eE+-vy. 

c 

We notice that the velocity vy inside each band has at 
least one maximum Vmax• and the values of the ratios 
v/vmax are not less than two. 

If ~~ = 0, then vy = cE/H = vH' where vH is the Hall 
velocity. Now let vH > vmax· In this case, Eo(x) is a 
monotonic function with negative derivative (Fig. 1; the 
parallel curves are for the different bands). For some 
vH = Vmax• the value X1 is reached, where E~ = E~ = 0 
(e; = 0 is obligatory at the point with v = Vmax), but the 
curve Eo(x) still has a monotonic character. For 
vH < Vmax• there are two points where E~ = 0, and the 
curves have the form depicted in Fig. 2. With further 
reduction of VH, the curves attain forms like those 
shown in Fig. 3. We note here the very special case of 
a square-root dispersion 

En(Jl) = ±(ll2/4 + llp2 / 2m)'''· 

Then 0 !:0 Vy !:0 Vo, Vo = .../.6.j2m. In this case, for vH > Vo 

Eo(X) 

FIG. I 

the curves Eo(x) are monotonic, and for VH < Vo both 
curves have extrema, the minimum of one being situa
ted higher than the maximum of the other. 

What are the consequences of this analysis? First, 
electric breakdown is formally possible at all values of 
the magnetic field, since there is degeneracy (i.e., 
there are states of the same energy in both bands). The 
situation represented in Figs. 2 and 3 is specially inter
esting. Thus, in the case corresponding to Fig. 2, two 
types of motion are possible within each band: discrete 
magnetic states in region I, and infinite states else
where (restricted, of course, by the boundaries of the 
band). There are evidently singularities in the density 
of states on the boundaries of region I. In the case de
picted in Fig. 3, magnetic breakdown (tunneling I-II) is 
possible, distorted, however, by the electric field. 

It is natural to enquire concerning the magnitude of 
the momentum at which the maximum velocity is at
tained. To this end, we observe that in the case of a 
dispersion law close to the square-root law, the maxi
mal velocity is reached very quickly indeed. Clearly, 
deviations from the square-root dispersion law com
mence when 82e/8p2 ~ 1/m0 (m0 is the mass of a free 
electron). This gives for the magnitude of the momenta 

p ~ (mo/m)''•(m-1/2)'"· 

The quantity (mo/m) 113 is usually near to unity (~3). 
We can be somewhat more detailed about electric 

breakdown. We mention that there is a body of works in 
which electric breakdown is discussed in the case of the 
square-root dispersion law[1- 3 J. In this context, we re
mark that, as follows from the analysis above, the proof 
of the vanishing of the tunnel current, given for an arbi
trary dispersion law in the work of Aronov and Pikus [ll , 
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is false, since it was assumed that tunneling goes on 
between magnetic states, whereas we see that it is be
tween electric and magnetic states. 

We next obtain a formula, at an arbitrary dispersion 
law, for the probability of transitions between bands. 
We represent the wave function in the form 

1j>(r)= L; .\ dpcn(!l)ljlnp(r). 
n 

Here, IPnp(r) are Bloch functions. In the quasiclassical 
approximation, the functions cn(p) reduce to the form 

Px 

Cn(!l) ~~ b(p~- Pyo)ll(p,- p,o)exp { li:~ [ -Pw•P• + ~ P(p/)dp/ ]} . 

Then, clearly, P(Px) satisfies the equation 

sn(p,, P(p.), Pzo) +vHl'(p,) = eo+eEJ·o. (2) 

It is now easy to write an expression for the probability 
Rv (see l4J) of tunneling from one zone to the other (the 
ind~ces v and c refer to the valence and conduction 
bands respectively): 

l'xo 

R •• = exp{ -· ~~ Im ~ [P.(px')-P.(p.')]dp/}. (3) 

"·· Here, Pxo is the point where Pv(px0) = Pc(Px0), and Px1 

is an arbitrary point on the real axis. 
We remark that the factor before the exponential in 

Eq. (3) is unity. Therefore, all the formulas in the 
worksl1- 31 , obtained from perturbation theory and in
applicable in quasiclassics, are valid only to exponential 
accuracy. 

To obtain an expression for the tunnel current, we 
must integrate over to, Pyo and Pzo• which in the quasi
classical situation can be done by the saddle-point 
method, i.e., the expression in the exponent must be 
taken for those Pzo and t = to + eExo for which 

o(P.- P,.) _ o(Pc- Pv) _ O(Pc- P.) _ O 
- iJPv• ·----a-;;;;- - oe - · 

For the case of symmetric bands, when 

e0 = -llv = e(p) = e(-p), 

it is easy to show that Pc- Pv is an even function oft 
and Pzo• i.e., we may set t = Pzo = 0 in the exponent. 
Moreover, P c =- P v• and Pxo is found from the condi
tion 

e(p.o, 0, 0) = 0 

which does not involve the external fields. If Pc(Px) is 
estimated in some interval 

P.(O) ""'Pc(Px = 0), 

and Px = ilpx0 lx, (Pc = Pc(O)y(x), 0 :s y(x) :s 1), then we 
obtain for the tunnel current (we do not write out the 
factor multiplying the exponential, which comes from 
the integration over to, Pyo• Pz0 ) 

• { 4vH 1 
) j(E,H)- PXp ---Pe(O) !P.tol ~ y(:r)d.r r· 

he£ 0 • 

In the case of the square- root dispersion law, the 
expression in the exponent in Eq. (4) is the same as 
that inl11 • 

(4) 

We remark that Pc(O), up to a factor eH/c agrees 
with the value of x at the turning point of the classical 
motion with to = 0, and, as can be seen from Figs. 1-3, 
is never infinite. In this connection, we estimate the 
possibility of observing deviation from the square-root 
dispersion law, using the tunnel current. For PbTe with 
fields E ~ 105 V/cm, the reduction of the tunnel current 
by one order of magnitude starts, according to Eq. (4), 
at Pc(O) ~ 1.4(m.6./2) 112• Deviations from the square
root law, according to our estimate, start with P c (0) 
< (mo/m) 113(m.6./2) 112• The coefficient in the last esti
mate is indeterminate, and if we set is equal to ~ 1/2, 
then observation of deviations is completely realistic at 
the present day. We note that indirect transitions will 
also undoubtedly overestimate the tunnel current. 
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