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A microscopic theory of the stationary Josephson current in plane junctions of the superconductor -
normal metal - superconductor type is developed. It is shown that, owing to spatial quantization of 
single-particle excitation energies in the normal layer, the super conducting current contains a 
component that does not decrease exponentially at distances on the order of ~o ~ va/Tc. The com
ponent oscillates with variation of the thickness of the normal metal layer. This is due to discon
tinuous variation of the number of levels within the gap at certain values of the thickness. The 
temperature dependence of the amplitude of the oscillating current component can be described by 
the expression e-7TdT/vo (d is the normal layer thickness and v0 the Fermi velocity). The possi
bility of experimental observation of the effect is discussed. 

1. INTRODUCTION 

As shown by Andreev[ll, the spectrum of the elemen
tary excitations of a layer of normal metal in contact 
with super-conductors on both sides (S-N-S contact) 
is quantized at excitation energies not exceeding the 
energy gap of the superconductor t:... Actually, this 
quantization implies the presence of a coherent connec
tion between the phases of the ordering parameters of 
the superconductors adjacent to the normal metal, i.e., 
the existence of superconducting ordering for the en
tire S-N-S system as a whole. In the absence of phase 
coherence of t:.. on both sides of the junction, the quan
tization no longer takes place. As will be shown below, 
the positions of the Andreev levels are determined by 
the relative phase of the gaps of two superconductors, 
x = Xt - X2, and a change of x by 27T denotes a shift of 
the entire level system as a whole by an amount equal 
to their relative distance. 

Thus, the existence of a discrete spectrum of 
single-particle excitations in the S-N-S junction is 
closely connected with the phase coherence for such a 
junction. On the other hand, phase coherence denotes 
the possible flow of superconducting currents (the 
Josephson effect) through the junction[21 • As is well 
known [ s], the Josephson current is proportional to the 
derivative, with respect to x of the junction-energy 
term that depends on the relative phase x ;_ 

2eoE 
1=--. 

tz ox (1.1) 

It is clear that by virtue of the aforementioned sen
sitivity of the position of the quantized level to the 
phase, the energy of the junction will also depend es
sentially on x, and this dependence remains in force 
also when the width of the normal layer greatly exceeds 
the dimension of the Cooper pair ~a~ v0 / t:... Thus, 
currents that do not have the usual exponential depend
encl on the thickness of the normal layer, of the type 
e-d ~a, can flow through the junction.1 > Instead, the 
effect attenuates exponentially at distances on the 
order of ~T ~ va/T (T-temperature, T « Tc) or l, 

where l is the mean free path in the normal metal, 
i.e., under conditions when "smearing" of the discrete 
levels takes place in the N layer as the result of colli
sions or finite temperatures. When d:::; ~T. l, the 
phases of the gaps in the two superconductors are ef
fectively coupled, owing to the dependence of the energy 
of the system on Xt - X2, i.e., "phase coherence" due 
to the spatial quantization in the S-N-S junction, takes 
place. 

In this paper we construct a microscopic theory of 
the proximity effect due to the spatial quantization in 
an impurity-free system ( l = co). In Sec. 2 we find the 
energy levels and the wave functions of the single
particle excitations and analyze their dependence on 
the phase. In Sec. 3 we investigate the current states 
in a spatially inhomogeneous system. An expression is 
obtained for the superconducting current in the form of 
a quadratic functional of the ordering parameter t:.. ( r ). 
Finally, in Sec. 4 we calculate the Josephson current 
with the aid of the eigenfunction expansion of the single
particle problem. It is shown that the maximum value 
of this current decreases exponentially with tempera
ture like exp ( -7TdT/v0 ), and oscillates as a function 
of the thickness of the normal layer with a period oct 
= 7TVo/ t:.. ( v0 - Fermi velocity). The latter effect is 
connected with the motion of the size-quantization En 
levels past the edge of the energy gap of the supercon
ductor t:... 

1) A similar possibility was noted earlier by Aslamazov, Larkin, and 
Ovchinnikov [4 ] independently of the connection with the spatial quan
tization. According to [4], the Josephson current through an S-N-S 
junction can contain under certain conditions a component that does 
not vanish exponentially like exp(-d/~ 0 ), this being connected with the 
conservation of the correlation of the Copper pairs in the normal metal 
at distances that are large compared with ~0 . The case considered in 
this paper differs from that investigated in [4 ]. The model of [4 ] cor
responds to a strong reflection of the electrons from the boundary of 
theN-layer (1-R ~ 1), i.e., what was actually considered in [4 ] was not 
an S-N-S junction, but an S-I-N-1-S junction. The systematics of the 
quantum state in the N layer is different in this case, and particularly, 
the position of the discrete levels is practically independent of x. There
fore the Josephson current changes in [4 ] monotonically with thick
ness, whereas in our case it oscillates with variation of d. 
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2. WAVE FUNCTIONS AND ENERGY LEVELS OF 
SINGLE-PARTICLE EXCITATIONS 

The quantum states of the elementary excitations of 
a superconductor are determined with the aid of the 
solution of the Bogolyubov-de Gennes equations[ 5 ' 6 l for 
two-component wave functions \If: 

II'l' = E'l', 'I'= ( :) , H = ( ~. ~ T ), (2 .1) 

T = - V 2/2m - t is the kinetic energy operator and t 
is the chemical potential. For the one-dimensional 
problem 11 = 11 ( z), the dependence of \If on the coordi
nates can be chosen in the form 

'I'= exp(iqxx)exp(iqhy) (~~:~), 
and then ljJ ( z) and cp ( z) satisfy the equations 

(T,- \;q)tJl -t-li(z)<p = EtJl, 

- (T,- !;1 )<p + t;• (z)¢ =Err, 

and the quantities Tz and ~q are defined by 

(2 .2) 

The quantity ~q can be assumed to be positive. In
deed, if the momentum component parallel to the sur
face exceeds the Fermi momentum, q >Po, then the 
wave functions of the excitations (at energies E ~ t. 
<< t) will attenuate exponentially in the z direction 
and are of no significance in our problem. 

Assume that the region I z I < d/2 is filled with 
normal metal, and in the regions I z I > d/2 we have 
superconductors, which for simplicity are assumed to 
be identical (11 1 = flz = 11, Tc1 = Tea= Tc). We as
sume that the transition temperature of the normal 
metal is equal to zero: TeN = 0. If the thickness of 
the normal layer d is large compared with the coher
ence length ~ 0 , then t.(z) is exponentially small every
where inside the normal region, with the exception of 
a layer of width ~~ 0 near the interface with the super
conductor, whereas in the superconductor 11 ( z) varies 
over distances on the order of ~ ( T) ~ vo/J Tc( Tc - T). 
If the temperature is low compared with the supercon
ducting transition temperature Tc, then the change of 
11 ( z) in the superconductor also occurs over distances 
~~ 0 near the interface. We considering this case 
( d » ~o, T « Tc) using the simplest model, in which 
11 ( z) is assumed to change jumpwise on the interface 
between the normal metal and superconductor (a sim
ilar model was considered in [7 J ): I 11 ( z) I = 11 o when 
lzl > d/2 and lt.(z)l =0 when lzl < d/2. Here, 
however, it is important to take into account the fact 
that the phases of the ordering parameter in the left 
and right superconductors may differ: arg 11 ( z) = X1 
when z < -d/2 and argt.(z) = Xz when z > d/2. Thus, 
we assume for 11 ( z) the dependence 

{
L'10eiX•, z <- d/2 

L'!(z)= 0, -d!2<z<d!2 
li 0eiX,, z > d/2. 

(2 .3) 

Substituting (2 .3) in (2 .2 ), we can easily find the 
wave functions of the excitations and the energy levels 
E. The energy spectrum is continuous when E > t. 
and discrete when E < 11 0 • The latter can be seen from 

the fact that states with energy inside the gap cannot 
exist in the superconductor. The excitations traveling 
from the normal metal towards the NS interface are 
therefore reflected if their energy (reckoned from the 
chemical potential t) is smaller than flo. As analyzed 
by Andreev[ll, the reflection is connected with the 
small change of the quasimomentum 6p ~ poflo/t, and 
therefore proceeds via a transition for a state of the 
"particle" type ( p > po) into a state of the "hole" 
type ( p < p0 ) and vice-versa. This can be readily 
traced in a model with a jumplike termination of the 
gap. 

Let 11 = 11 0 when Z > 0 and 11 = 0 when z < 0. 
Writing the incident wave for z < 0 in the form 

the reflected wave in the form of a superposition of 
excitations of the particle and hole type: 

(2.4) 

'J!1 =Aeik,z( 0 )+Be-ikoz( 1 ) .!!.{='E -E (2.5) 
1 0 ' 2m _q ' 

and making the wave functions and their derivatives 
continuous at z = 0 with the solutions of the system 
(2 .2 ) at z > 0, 

(2 .6) 

where 

t.±'=2m(\;q±iVL'lo2 -£2 ), Im'A±""'O, (2.7) 
y = L'lo(E + iJ'L'lo2 - £2)-1, E < L'lo, (2 .8) 

we obtain the values of the amplitudes A and B. A 
simple calculation then shows that I A I "'" 1 and I B I is 
a small quantity of the order of milo/kg~ flo/t. Con
sequently, ignoring small corrections of the order of 
(11 0 /?; )2, we can assume B = 0 (and also D = 0 ). It is 
further necessary to take into account the fact that ko 
and k 1 are close in magnitude, so that E ~flo« ~q 
~ ?; ( ko and k1 are quantities of the order of the 
Fermi momentum). Therefore, with the indicated ac
curacy, the continuity of the wave functions implies 
continuity of their derivatives at the point of contact. 

Returning to the case of the S-N-S junction (2 .3 ), 
and taking into account the statements made above 
concerning the character of the reflection of the exci
tations from the interface with the superconductor, we 
represent the expressions for the two-component wave 
functions \lf in the form ( E < 11 o ) 

A+eik z (~) + B,e'k,z (~), 1 z 1 < d/2, 

(2 .9) 

z< -d/2; 

'¥_ = z>d!2, (2.10) 

z<- d/2, 

where the plus sign corresponds to excitations moving 
from left to right, and the minus sign to excitations 
from right to left (kz > 0 and kz < 0, respectively). 

The wave functions (2 .9) and (2 .10) attenuate ex
ponentially inside the superconducting regions at dis-
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tances ~~ 0 that are large compared with atomic dis
tances. Indeed, on the basis of (2. 7) we can write for 
A.±: 

(2.11) 

where v = v'2~q/m is the velocity of the excitation 
inside the normal layer in the direction normal to the 
surface of the junction: v = m -l v' 2m/; - q 2 • The char
acteristic values of the imaginary part of the wave 
vector (2.11) are t::. 0 /v0 ~ ~(/. In analogy with (2.11), 
we present the expansions for k0 and k1, which we 
shall need in the future 

ko ~ l'2m£q+E/c-, k1 ~ 12m'§q-E(v. (2.12) 

Making the expressions for the wave functions (2 .9) 
and (2 .10) continuous at z = d/2 and z = -d/2, we ob
tain the relations between the coefficients ~. B±, C±, 
and D±: 

(2.13) 

From this we readily obtain the dispersion equations 
that determine the allowed values of the energy E. 
For the states IJ!"+ and IJf_ they take respectively the 
form 

(2 .14) 

Equating the phase of the expressions in the left 
side of (2.15) to 2JTn where n = 0, 1, 2, ... and taking 
(2 .8) into account, we obtain for the energy levels E~ 
the formula 

En±= (v /2d) [2(rcn + <p) + x], <p(E) =arc cos (E f 11o). (2 .15) 

cp(E) is a slow function of the energy. In particular, 
for states with energies E << 1:::. 0 , we have cp ~'<~ JT/2, 
and therefore (2 .15) yields directly 

En±= (v/2d)[2n(n+'!2) +x], n~l1od/v. (2 .16) 

Thus, we obtain two systems of equidistant levels 
(see the figure), which are degenerate in the case 
x = 0. It is important that the positions of the levels 
depend on the relative phase x of the gaps. A change 
of X by 21T corresponds to a return to the initial state. 
As seen from formulas (2.15) and (2.16), the distance 
between the levels does not depend on the phase and 
can be obtained from the condition of quasiclassical 

' A(z) 

IJ 0e 
ix, 

IJD 
Aa e ilz 

I 
H !I+) I{-) 1 6e' 
t t 

tt z 

Energy levels of excitations inN-layer at a fixed value of the electron 
velocity on the Fermi surface v = lvzl- The distance between levels is 

bE= E~,1 - En+= E~,1 - En-~ nvfrl; 

.SE' is the splitting and is proportional to the phase difference X= x1 - x2 : 

bE'= E.--E,.+ = OE(Y.i :r.) 

quantization (seef 8 l), t::.E = 2JT/T0 (fi = 1), where To is 
the period of the classical motion, equal in this case 
to double the time of flight of the quasiparticle between 
the boundaries of the N layer: T 0 = 2d/ v. 2> 

We can obtain analogously expressions for the wave 
functions of the continuous spectrum ( E > t::.o ). We 
present here the corresponding formulas, since they 
will be useful later in the calculation of the Josephson 
current. The states of the continuous spectrum are 
classified as IJ!"~ and >¥~, where IJ/" 0 corresponds to a 
particle (I kz I = ko) and 1Jt 1 corresponds to a hole 
(I kz I = k1 ), with the sign + (-) corresponding to the 
case kz > 0 (or kz < 0 ). The functions IJ!"~ and IJt ~ 
are analogous in form, and we therefore present an 
expression for only one of them 

'¥-1- 0 = (0Jl:St 

eik,, { 1) 
\0 , 

· (eiX, 1 1 6 \ 
Ce':.<:o(z+d/2) /1 + Deix 1(Z+rlj')l ( 

l) . e iY,; ' 

~>df2, (2.17) 

z< -d/2, 

where the constant is determined from the normaliza
tion condition (see below), and the quantities Ko, K1 and 
1i are defined as follows: 

xoz= 2m(sq + 1E2-I'>.o2), XI2 = 2m(s7 -lE'- .'.o'), (2.18) 

6=.'.o(E+YE2 -I'io2 )-•, E>,l1o. (2.19) 

With quasiclassical accuracy, we can write for Ko 

and K1 expansions similar to (2.11) and (2.12): 

xo ~ l'2m£q + v-'1'1.:2 - t-02, x 1 ~ l'2msq- v-1-y£2- t,.02. (2 .20) 

The coefficients A, B, C, and D are determined by the 
formulas 

(2 .21) 

C = e-ikod 2 e-ixr D = - _&- e-ih~(l.2. 
1-ll' , 1- 1)2 

As will be shown below, the continuous-spectrum 
states make their own contribution to the Josephson 
current, and in definite cases this contribution may 
even be the principal one (see Sec. 4). Nonetheless, 
this does not contradict the initial treatment of the 
effect, reported in the introduction and connected with 
the role of the spatial quantization. The character of 
the quantum states when E > 1:::. 0 is determined es
sentially by the presence of discrete levels when 
E < 1:::. 0 • In the one-dimensional problem, the presence 
of a "potential well" t::. ( z) automatically implies both 
the occurrence of localized states with energy 
E < 1:::. 0 , and a change of the scattering phase shifts for 
the states of the continuous spectrum ( E > 1:::. 0 ), both 
effects being sensitive to the value of x. 

3. SUPERCONDUCTING CURRENTS IN A SPATIALLY 
INHOMOGENEOUS SYSTEM 

We start from the well known expression for the 
currentftoJ 

j =_i:_T~ [(\',.- v,)Goo(r,r')J,.~,, (3.1) 
m "' 

2)This circumstance was noted in [9 ] as applied to the S-N-S junction. 
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where Gw(r, r') are the thermodynamic Green's func
tions of the superconductor and satisfy, together with 
the functions F~(r, r'), the system of Gor'kov equa
tionsr10l. Taking into account the one- dimensional 
character of the problem, we write these equations in 
the form 

(i<•>- T, + ~ .. 1)G,,,(z, z') + A(z)F(z)Fw+(z, z') = r'l(z- z'), 

(-iw- T, + Sq)F,+(z, z') -- t-(z)F*(z)Gw(z, z') = 0. (3.2) 

Here w = ( 2n + 1) 1rT are the odd frequencies, i\ ( z) 
is the electron interaction constant, which will hence
forth be assumed to be equal to -I i\ I when I z I > d/2 
and to zero when I z I< d/2. F(z) is the value of the 
Gor'kov function F(z, z'; T- T 1

) in the coinciding 
points ( z = z 1 , T = T 1 

). The ordering parameter of the 
superconductor t. * ( z) is defined by 

~·(z) = IAIF*(z). 

Introducing in (3.2) explicitly the function U( z), 
which is equal to unity when I z I > d/2 and to zero 
when I z I < d/2, we rewrite these equations in the 
form 

(iw- T, + Sq)Gw(z, z') - ~(z) U(z)F"+(z, z') = ll(z- z'), 

(-iw- T, + Sq)F,+(z, z') + ~·(z)U(z)G,(z, z') = 0, 

and by virtue of (3 .3) t. * ( z) satisfies the equation 
t 

m S c\'(z)=-1'-IT~ d£qF,+(z,z) 
2n "' o 

(3.3) 

(3.4) 

(3.5) 

(we shall henceforth not write out explicitly the depend
ence of the functions Gw and F~ on ~q). 

We denote by G~(z - Z 1 ) the Green's function of the 
normal metal, satisfying the first equation of the sys
tem (3.4) with t. = 0. Eliminating F;;, from (3.4), we 
can obtain the following closed integral equation for the 
function Gw : 

Similarly, the equation for the ordering parameter 
(3.5) is rewritten in the form 

' c\'(z)= _'!!:._It-IT~~ d£q S dz'G_.,0 (z-z')i'l"(z')U(z')Gw(z',z).(3.7) 
2n w o -= 

We substitute (3.6) in (3.1) and calculate the super
conducting current j. Naturally, for the problem of 
interest to us we should consider only the z-th com
ponent of the current: j = jz (jx = j y = 0 ), and by 
virtue of the continuity equation jz does not depend on 
z. Therefore the current can be calculated at any 
point of the superconductor. From symmetry consider
ations it is clear that it is most convenient to carry 
out the calculation of the current at z = 0. Recognizing 
that in the normal state the current is equal to zero, 
we obtain 

t 
· - a a ) 

j=-_!!__T ~ Sas" Saz1 \azzl(----- G,0 (z-z,)!\(zi)U(zl) 
2n o . oz' i)z (3 8) 

W -= -oc • 

XG_w0 (z1 - z2 ) 1'1• (z2 ) U(zz)G,(zz, z') J ,~,·~o. 
We now assume for the time being that the function 

Gw has been expanded in a series in powers of t.. Such 

a series can be readily obtained by iterating Eq. (3.6): 

XG-m"(zl- zz) ~ • (zJ U(z2 ) Gm0(z2 - z') +... (3 .9) 

Substituting this expansion in (3 .8) and again summing 
the terms flanked by the expressions 
G~(z- zi)t.(z1 )U(zd and t.* (zn )U(zn )G~(zn- Z 1

), 

we can verify that (3 .8) can be represented identically 
in the form 

j = - ~: T _2; s dl;q f dz, r dzzU (z1) 1'1 (z1) U(z2) 1'1' (z,) 
w 0 

The expression in the square brackets, containing 
the Green's function of the normal metal G~ ( z - z 1 

), 

can be readily calculated on the basis of the explicit 
form of these functions: 

00 

1 r eiJ!(l z'J m, 

G.o0(z- z') =-2 J . + s 2/'2 dp =- -.-. exp(-ii.,,,lz- z'l ), 
n_="'' ,1 -p m u.w (3.11 ) 

where i\w = [2m ( ~q + iw )] 11 2, and the square root sign 
is chosen from the condition Im i\w < 0. Since 
w ~ Tc << l:, we obtain 

Aw ~ - ( 2m£q) 'h sign Ol - i I OJ I / u. (3.12) 

Using formula (3.11 ), we arrive finally at the follow
ing expression for the current: 

Formula (3.13) was obtained earlier in connection with 
a microscopic calculation of the Josephson current for 
S-I-S junctions[uJ (see also the review[121). 

The expression (3.13) is general. Thus, for exam
ple, it can be verified that for a homogeneous current 
state, t. ( z) = t. 0eikz (in the absence of the normal
metal layer), it leads to the known dependence of the 
superconducting current j on the parameter of 
"superfluid velocity" vs = tik/2m. The general 
scheme of calculating the superconducting current in 
an inhomogeneous system consists of specifying a 
current state t. = t..(z) compatible with Eq. (3.7). The 
Green's function Gw(z, Z 1

) is then determined from 
(3.6) and must then be substituted in (3.13). 

In the case of an S-N-S junction, the current state 
is determined by specifying the phases X1 and X2 in 
accordance with (2.3)3>. Substituting (2.3) in (3.13), we 
obtain 

. ~ -d/2 00 '()0 -d/2 

j = t;: /',. 02T ~ S d£q [ e'' S dz 1 S dz2 - e-ix S dz 1 S dz2) (3.14) 
m 0 -oo d/2 d/2 -00 

xG,0 (z1 - z2 )G_,(z2,zt). 

Even from this expression we see the general 

3) Such an approximation is valid if the critical current of the junction 
is small compared with the "volume" critical currentjcm ~Neve, vc~ 
6. 0 /p0 . In this case we can neglect the change of the phase x(z) inside 
the superconductor, and consider only the jump of X in the contact 
region. 
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character of the dependence of the current on the 
junction thickness d. The distance between the points 
z1 and z 2 is at least equal to d. Therefore the poten
tial term in the current is due to the product 

G"0 (d)G-"(-d I 2, d I 2) ~ G_"0 (d)G-"0 (d) 

and has, in accordance with (3.11) and (3.12), an 
asymptotic form 

exp(-21 w I dl uo) ~ exp ( -2ndT I uo) 

( v0 - Fermi velocity). Indeed, inside the normal metal 
Gw has the same variation as G~. Thus, at low tem
peratures the current does not contain the small 
parameter 

·exp ( -d /So) ~ exp ( -dT, I vo) 

which is customarily encountered for proximity effects. 
As already noted, this is connected with the fact that 
in a pure metal at low temperatures the pairs con
serve their correlation at distances that are large com
pared with ~ 0 .r 4 l When T- Tc, the current is pro
portional to 

exp ( -2ndTc I vo) ~ exp ( -d I so). 

Since in this case A ( z) changes over distances 
~~(T) » ~ 0 , and the remaining terms in the integrand 
of (3.14) change over distances of the order of ~o, we 
can put A(z);::; A(±d/2) and take A outside the inte
gral sign4>, On the other hand, the value of the order
ing parameter on the boundary with the normal metal 
is much smaller than its value far from the boundary, 
ina ratio A(d/2)/A(oo)~ ~ 0 /~(T) (see[ 6 l), As the 
result, it turns out, as first noted by de Gennes[6 J 
(see alsoP31 ), that near Tc the Josephson current of 
an S-N-S junction is proportional to [A(oo)~ 0 /~(T)J2 
~ ( T c - T )2 , i.e., to the second power of the difference 
( Tc - T ), and not to the first as in the case of the 
Josephson effect through a dielectric gap (S-I-S junc
tion). 

4. CALCULATION OF THE JOSEPHSON CURRENT 

The connection between the Gor 'kov equations (3 .4) 
and the Bogolyubov-de Gennes equations (2 .2) is given 
with the aid of the following relations: 

G ( ')= ~[ ljJa(z)ljJa'(z') + q:a'(z)<ptt(z') J (4.1) 
"z,z LJ iw-E'a iw+E" ' 

a 

Fw+(z,z')= ~[ <pa~z)ljla'(z') ljJ"~(z)<pa(z') J. (4,2 ) 
a UiJ-Ea tw+E" 

The summation here is over the eigenstates of the 
single-particle problem ~a, corresponding to positive 
eigenvalues Ea. The functions 1/J a and cpa are as
sumed to be normalized in accordance with the condi
tions 

~ 

S (I.Pa(z)l'+ I<Pa(z)i')dz=1. (4.3) 

The formulas (4.1) and (4.2) are obtained on the 
basis of the completeness and orthogonality conditions 

4)We do not take into account the cnanges of b.(z) near the surface 
of the NS junction at a distance - ~ 0 , since these changes lead only a 
change of the numerical coefficients in the expression for j. This is 
analogous to specifying the gap in the form of a step function (2.3) in 
the case of low temperatures. 

in the linear space of the functions >It a. It must be 
recognized here that if 

corresponds to an energy Ea > 0, then a negative 
energy -Ea corresponds to the wave function 

Wa = ( <p"',). 
-.p" 

This is seen directly from the equations satisfied by 
1/Ja and cpa: 

- (T,- '§q)<pa + t:;: (z) U(z)ljJ" = Ea<pa. 
(4.4) 

Substituting the eigenfunction expansion (4.1) in the 
formula (3.13) for the Josephson current and using the 
explicit expression for the Green's function of the 
normal metal G~ (3 .11 ), we reduce j to the form 

. 2em' 's ~ 1 ~ ( ljla"+.pa.,- + q;a.,+<pa.,- )eiz (4.5) 
l =---;-t:;o'Re d£qT LJ "'"LJ iw+Ea iw-Ea ' 

where 
0 " " 

ljJ""+= S ljJ"(z)e-i"•'dz, 
d/2 

"" 
cp""+ = S q:u.' (z) e-i"•' dz, 

d/2 

-d/2 

If".,-= S ljla'(z)ei"•'dz, 

(4.6) 
-d/2 

'fa"-= S q;"(z)ei"•'dz. 

Thus, the calculation of the Josephson current is re
duced to a sum over the states of the single-particle 
Hamiltonian (4.4). 

The remainder of the calculation, using the explicit 
form of the wave functions 1/Ja and cpa obtained in 
Sec. 2, is trivial. Leaving out this calculation, we 
present directly the final result. The total current is 
divided into two terms, j = j1 + h, where j 1 corre
sponds to summation over the states of the discrete 
spectrum ( E < A0 ), and b corresponds to summation 
over the continuous spectrum ( E > Ao ). When calcu
lating the last term ( j 2 ), we must replace the sum 
over a ( E > A 0 ) , with allowance for the known for
mula for the state density in the BCS model, by the 
integral 

r Ldk, mL ""s E 
~ ( ... )~ .l ( ... ) -~ ( ... ) dE 
a 2n 2nf2m'§q "• yE2 - !:;02 

(the wave functions of the continuous spectrum are 
assumed to be normalized in the segment (- L/2, L/2 ), 
where L » d; naturally, the normalization length L 
drops out in the answer as L - oo ). 

The expression for j 1 takes the form 
Vo 

2em2 S j 1 = -- /';,02T ~ v2 dv e-roatv 
nd 

(4.7) 
w>O 0 

XRe ~ { exp{i(dEn+lv+x)} 

n (w+Yf'...o2 -En+2) 2 (En+-iw) 

exp{i(dEn-fv-x)} } 

(w +"Yf'...o2-En 2) 2 (En - iw) 

and for j 2 we get accordingly 

4em2 s"" r "YE'- t:;,0z (w + iE) eidE/v h = - --f'...o2T L; v dv e-wdfo Re .1 dE sm X· 
n' w>Oo ~. E (w'+E'-f'...o')' 

(4.8) 
These formulas are valid if d >> ~o and T « Tc, 

when the "square well" approximation (2 .3) can be 
used. It is interesting to note that the phase depend-
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ence of the part of the current corresponding to sum
mation over the continuous spectrum has the usual 
form b = js sin x, which is typical of the Josephson 
effect in S-I-S junctions[2 3•121, whereas the current 
component corresponding to summation over the dis
crete spectrum depends on x in a much more com
plicated form (it must be recognized that E~ in (4.7) 
are functions of x). It is clear therefore that the fact 
that in the Josephson effect we always have a phase 
dependence of the type sin x is connected with the 
absence of localized states in the problem of the 
passage of the particle through a potential barrier 
(such states can arise, of course, if the barrier has 
a complicated form, but it is necessary that the dis
tance between the corresponding discrete levels be of 
the order of A, and that the levels themselves depend 
on the phase x ). 

We proceed to investigate the obtained expressions 
for the current (4.7) and (4.8). The sums over the dis
crete levels, which enter in (4.7), can be transformed 
by using the known Poisson summation formula 

n =n 1 p=-= n 1-a:.1 

As a result, j 1 is represented in the form of the 
series 

where 

t., 

j1 = ~ I P sin PX, 
p=l 

v, 

8em2 S I = --1'1o2T ~ v dv e-wl/v 
p n:2 LJ 

m>O U 

(4.10) 

(4.11) 

S e-iEd/ve2i~(E) [ { Ed)] 
XRe dE sin 2p <p(E)-- , 

0 (cu + l'!lo2- E2) 2(E- iw) \ v 

and the function cp(E) is obtained from (2.15). 
We shall assume that the thickness of the normal 

layer d is large not only compared with ~ 0, but also 
compared with the parameter ~T. which is determined 
by the relation 

~r=Vo/:tT. (4.12) 

If d >> ~T, then we can retain in the sum over the 
frequencies w = ( 211 + 1) 1rT only the lowest term 
w = w0 = 1rT, corresponding to 11 = 0. Further, under 
the same condition, the integration with respect to v 
in (4.8) and (4.11) is carried out effectively over the 
region Vo - v ~ v0d/ ~ T << vo, leading to expressions 
of the form (w 0 - imEf1exp[-d(wo- imE)/vo]. As 
the result, only the single integral with respect to the 
energy remains in the formulas for j1 and h, and it 
can be calculated asymptotically with allowance for the 
condition wo « Ao (T « Tc). 

Turning to formula (4.11 ), we see that the integrand 
has sharp maxima at energy values E = 0 ( E ~ wo) 
and E = A0 (A 0 - E ~ wg/ Ao ). Accordingly, the coef
ficients Ip and part of the current j 1 break up irto two 
terms: Ip = lp0 > + rif) and j 1 = jl 0 > + j ~A), correspond-

ing to integration near the points E = 0 and E = Ao, 
respectively. In calculating j~ 0 > it is more convenient 
to use (4.7). After simple manipulations we obtain 

(O) 6 Nevo ,. X 
j 1 =--.-Te-"''TF(x) cosy, 

" s 

(4 .13) 

where the function F(x) has the following meaning: 

(-J)n 
F(x)= ~ v'+(n+'l--~/2 2 

n=-= 2 X Jt) 

d 
\'=~~ (4.14) 

The last expression can be rewritten identically in 
the form 

(4.15) 

from which we see that when 11 >> 1 we have asymp
totically 

(4.16) 

We finally obtain for the part of the current H0 > the 
expression 

j,(o) ~ 6(Nevolpod)e 2" 1'r sinx, Vo/d<f;, T<f;, !1.0• (4.17) 

The exponential factor in this formula exp ( -2d/~T) 
= exp ( -21T~/oE) ( oE = 1TVo/ d is the distance between 
levels) is exactly the same as in the theory of quantum 
oscillation effects[14' 8 l, i.e., it represents the usual 
temperature quenching of quantum oscillations. This 
confirms once more our treatment assumption that the 
investigated effect is connected with quantization of the 
excitation spectrum in the N layer. 

The term jfA) is a sum of the type (4.10), where 
I~A) is estimated by 

I <"> ~ 12 Nevo -d's [ Q2p-i {. (Z 1) !1.0d} P ~- --e , r --oxp z p- -
pod 2p-1 Vo (4.18) 

Q -2p-l { !lod }] + 2p + 1 exp - i(2p + 1) ~ , 

where 
00 

S e-i-ved/Vo 

Qv = T de. 
0 (wo + y21\oe) 2 (4.19) 

For the coefficients Q11 we obtain the following 
asymptotic expressions (T1 « T « Tc) 

Qv ~ Vo I nivwod, T ~ r., 
wo [ w02d/v/ ni ] (4.20) 

Qv~--- C+2+ln---+-signv , T<f;,T2, 
2:t!1o 2voi'1o 2 

where we have introduced the characteristic tempera
tures T1 ~ vo/d and T2 ~ (voAo/d)112, with T1 << Tz 
« Tt and C = 0.577 the Euler constant. The term ja 
in the current is calculated in similar fashion. Since 
the integration begins here with E = A 0 and is carried 
out effectively over the region E - Ao ~ wg/Ao « wo, 
this term will also contain an oscillating factor 
exp ( idAo/v0 ). In the limiting cases we obtain the 
following formulas 

. , ( 2vo!1.o )'/, ( !1.od 3n ) 
72 ~ An-1' -- cos -+- , 

dT2 Vo 4 
where 

A = (3N euo I pod) e-dl6r sin X· 

(4.21) 

Gathering the results together, we obtain the total 
junction current j. In the limit d >> ~T, we can omit 
the term j~0> (formula (4.17)), since it is proportional 
to exp ( -2d/~T) and not to exp ( -d/~T) (compare with 
(4 .21) ). The remaining terms oscillate with the thick
ness of the normal metal d. Considering for simplicity 
the first limiting case in (4.21) (T1 « T « Tz), we 
obtain for the critical current of the contact the esti
mate 
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ic - (3Nevo /pod) e-ndT/vo I cos (1'1od f vo) 1. (4.22) 

The period of the oscillations with respect to thick
ness is l5d = rrv 0 / t.. 0 • The physical reason for the oscil
lating jc( d) dependence is the change of the distance 
between levels with increasing thickness of the normal 
layer d. The number of levels "accommodated" in a 
well of height t.. 0 then increases. At definite values of 
d, a jumplike change takes place in the number of 
levels, and this leads to oscillations of the energy, and 
consequently also of the Josephson current, with chang
ing thickness. Thus, the described effect is due to the 
motion of the size-quantization levels past the edge of 
the energy gap of the superconductor t..o. We note that 
in principle the current should oscillate also with tem
perature (owing to the temperature dependence of t..o ), 
but in the region of temperatures T « Tc the t.. ( T) 
dependence is very weak. 

As seen from (4 .22 ), the ratio of the critical current 
of the junction jc to the "volume" critical current 
jcm ~ Nev0 t.. 0 /~ (see footnote 3>) is a quantity of the 
order of (~ 0 /d)exp ( -d/i;T) :S iio/d « 1, thereby en
suring self-consistency of the calculation (the possibil
ity of neglecting the gradient of the phase inside the 
superconductors compared with its jump on the sur
face)5>. Just as in the case of the ordinary Josephson 
effect( 12l, the magnetic field produced by the flowing 
currents can be neglected if L << i\J, where L is the 
width of the junction and i\.J is the Josephson depth of 
penetration, i\.J = (tic2/8rret..jc)112 ; the length A =2i\.L 
+ d is determined in this case mainly by the thickness 
of the layer of the normal metal d. When this condition 
is satisfied, the problem becomes one-dimensional. 

Let us make a few concluding remarks. Although in 
this paper we have used the model of a rectangular gap 
t.. ( z) (2 .3 ), it is clear in principle that allowance for a 
real (continuous) variation of t.. near the boundary with 
the normal metal does not change the nature of the 
considered effect, if the width of the "well" d is large 
compared with the region 1; 0 where its edge is diffuse. 
Moreover, all the formulas of Sec. 3 actually contain 
not the gap t..(z) itself, but the quantity t..(z)U(z), 
which vanishes identically when I z I < d/2, so that in 
reality the presence of the jump is not connected with 
the chosen model (allowance for the real situation 
changes only the magnitude of this jump). The physics 
of the effect under consideration does not depend on 
the exact form of the boundary conditions on the sur
face. In particular, the fact of quantization of the en
ergy of the excitations in the normal layer and of the 
jumplike change of the number of levels with thickness 
is not connected with the concrete form of t.. ( z ). 

Experimental observation of the discussed effect 
calls for the construction of S-N-S junctions containing 
a flat defect-free normal layer, smoothly going over 
into the superconducting metal (without voids or ex
traneous inclusions). No strong reflection of the elec
trons must take place on the boundary of such a layer, 

Slit should be noted that both the expression for icm and the for
mula ( 4.22) for ic are valid in the case when the total current is suffi
ciently small, so that the destruction of the superconductivity is the 
result of unpairing processes, and not as a result of the Meissner effect. 
This means that we are considering sufficiently thin films or narrow 
contacts having a small cross section. 

for otherwise the position of the Andreev levels be
comes practically insensitive to the phase. In the fore
going calculations we assumed specular boundary con
ditions in the surface, but actually by virtue of the 
specific nature of the reflection of the excitations from 
the NS interface the "specularity" (at low energies) is 
retained also if the surface is not even [91 . It is known 
that quantization appears experimentally in the so
called Tomasch effect[15 ' 161 , namely oscillations of the 
tunnel current as a function of the voltage (liV =liE/e). 
Apparently, the greatest difficulty is the determination 
of the transition into the superconducting phase under 
conditions when the normal resistance is itself ex
tremely small (since the normal layer should be pure). 
In addition, sufficiently low temperatures are neces
sary (at large thicknesses). Thus to observe super
conducting currents through a normal layer of thickness 
d ~ 102 i;o it is necessary to have a temperature that is 
lower than T c by at least two orders of magnitude. 

In conclusion, I am grateful to A. A. Abrikosov and 
L. P. Gor'kov for a useful discussion of the results. 
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