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The conditions for the conservation of the adiabatic invariant de/ w are determined for a wave 
packet moving in a smoothly inhomogeneous and slowly nonstationary dispersive medium. Correc­
tions to the "quasistationary" value of the dielectric tensor of a nonabsorbing medium are derived 
on the basis of the requirement of conservation of the adiabatic invariant. 

1. In this paper, making use of the geometrical-optics 
approximation, we determine the conditions under 
which the adiabatic invariant is conserved for a wave 
packet propagating in an inhomogeneous and nonsta­
tionary dispersive medium (at the same time, were­
fine the concept of adiabatic invariant for wave pack­
ets). In addition, we obtain the correction to the 
"quasistationary" value of the dielectric tensor in a 
non-absorbing medium under more general conditions 
than obtained by Pitaevskil[ll. 

2. The geometrical-optics asymptotic form of the 
solutions of Maxwell's equations was constructed in the 
general case in[ 2J under the assumption that the kernel 
Eaf3 (t- t', t; r - r', r) of the material equation 

t 

Da(r,t)= S dt'~ d3r'ea~(t-t',t; r-r',r)E~(r',t') (1) 

is specified. This is equivalent to specifying the die­
lectric tensor 

t 

ea~(w, t; k, r) = S dt' ~ d3r'ea~(t-t', t; r- r', r)exp{iw(t-t')- ik(r-r') }. 

(2) 
In[2J it was shown that the density of the electromag­

netic energy W in an inhomogeneous and nonstationary 
dispersive medium 

(3) 

satisfies the following transport equation 

aw r a ae~~ ( aze~p a2e~~ )] • (4 \ - + diV S = X W 2iweap- -,-+ Ul -;:--a - -;:---k a fa/p ' 1 
at Of OW t d j X j 

where S = uW is the Poynting vector, u is the group 
velocity, E~/3 and E~/3 are the Hermitian and anti­
Hermitian parts of the tensor (2 ), and 

-[ 8(w2e~p) I I ·]-t 
'X- waw a p 0 

The polarization vector f normalized to unity is deter­
mined from the system of homogeneous equations 

where w and k stand for the corresponding partial 
derivatives of the phase cp: kj == acpj axj and 
w == -acpjat. 

3. We show first that under the condition 
a ( i)2e!fl Q2c:~ ) 

2ieap+ ----- =0 
awot ak; iJx; 

it follows from the transport equation (4) that the 

(5) 

(6) 
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adiabatic invariant is conserved. To this end, we take 
into consideration the fact that the three-parameter 
family of ray trajectories r = r(t, a 1, a 2 , a 3 ), to which 
the vector u = dr/ dt is tangent, satisfies the following 
relation[ 31 : 

d 
div u = dtlnj(t), (7) 

We further take into account the fact that, in accord­
ance with Hamilton's canonical equations correspond­
ing to the eikonal equation g == det 11 ga/3 11 = 0, the de­
rivative dw/dt on the trajectory r = r(t) is equal to 

dw ag / &g 
dt= -at &w 0 

Using (5) and (8 ), we can verify that 

dw &e~p , 
dt= -wxa;-faf~ o 

(8) 

As the result, the transport equation (4) takes the form 

dW d d (9) dt+ Wdt'lnj(t)= Wdtln wo 

Its integration along the ray r = r(t) gives the relation 
Wj w-1 =canst, which when multiplied by da1da2d0'3 
yields 

df!f w av w•av• 
-=--=canst=--, 

w w w0 

(10) 

where dV = j(t)da1da2da3 =dx1dx2dx3 is a wave-packet 
volume element moving together with the wave (the 
time variation of dV is in accord with the behavior of 
the ray trajectories r(t)), and dV0 is the initial ele­
ment of the volume at the initial instant of time t 0 • 

Thus, when condition (6) is satisfied (and the condi­
tion for the applicability of the geometrical approxima­
tion holds, i.e., neglecting diffraction effects and the 
momentum spread due to dispersion) the ratio d6/ w 
(of the energy d fff = WdV concentrated in the wave­
packet volume element dV to the frequency w) is a 
conserved quantity, which can naturally be called the 
adiabatic invariant (it is usually assumed that w = const 
within the limits of the packet, and in analogy with the 
harmonic oscillator, the adiabatic invariant is defined 
as 8/w, where 8 = fWdV is the total energy of the 
packet[ 4 • 51 ; in the case of wave packets with variable 
frequency, however, the quantity <<;/ w is not conserved 
whereas d 8/ w = const ). 

4. It is obvious that the entire procedure can be 
carried out in reverse order, and then the condition 
that do/ w be conserved leads to (6 ). 
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For nonabsorbing media (zero Joule losses) the 
requirement of conservation of the adiabatic invariant 
d ()/ w denotes in essence the condition for conserva­
tion of the number of quanta dN in the wave packet: 

diS !iwdN 
- = --= fzdN = const. 

w w 

in the case of slow variation of the properties of the 
medium, this requirement is perfectly natural [lJ, 

(11) 

since the quantum-mechanical state of the system re­
mains practically unchanged in this case, and conse­
quently the probability of the transition to other levels 
is exponentially small. In order of magnitude, this 
probability is proportional to e-wT, where T is the 
characteristic time of the nonstationary processes, and 
is large compared with the period of the oscillation 
T ~ 1/ w. In the geometrical-optics approximation, 
exponentially small terms of order e-wT are not taken 
into account (the field amplitudes are expanded only in 
powers of the small parameter JJ. ~ 1/ wT, whereas at 
JJ. - 0 the exponential e-wT ~ e-l/JJ. tends to zero more 
rapidly than any power of JJ.), so that the quantum= 
mechanical condition (11) agrees well with the geo­
metrical approximation of the solutions of Maxwell's 
equations. 

5. Pitaevskii:P1 obtained from the condition of the 
conservation of the adiabatic invarianel a correction 
to the ''quasistationary" value of the dielectric con­
stant of a non-absorbing nonstationary medium with 
frequency dispersion. Using (6 ), we can generalize 
Pitaevski1's results to the case of inhomogeneous and 
nonstationary media with both frequency and spatial 
dispersion. 

We note beforehand that the calculation of the tensor 
Ea[3 (w, t, k, r) requires, generally speaking, an 
analysis of the microscopic processes occurring in the 
medium (this can be done within the framework of the 
geometrical-optics method by considering self-con­
sistent solutions of the field equations and the charge 
motion equations). However, in the absence of absorp­
tion, it is possible to determine the tensor Ea[3 by a 
purely phenomenological method. 

Obviously, in the zeroth approximation of the geo­
metrical-optics method 

8a~(w, t; k, r) =8a~0 (w, k, '\';(r, t)) +O(f!), (12) 

where JJ. ~ 1/ wT « 1 is the small parameter of the 
method, and E~{3 is the "quasistationary" value of the 
dielectric tensor, calculated for a homogeneous and 
stationary medium having the same values of the 
macroscopic parameter Yj (pressure, temperature 2l, 
etc.) as in the considered inhomogeneous and nonsta­
tionary medium at the given instant of time t and at 
the given point of space r. 

For non-absorbing media, E~{3 is Hermitian, so 
that 

e,.~a = e,.~o + O(!l). (13) 

Substituting (13) in (6), we obtain for the anti-Hermitian 
part of the tensor Eaf3• which is of the order of 0( JJ.) 

1lThe fields considered in [ 1] were monochromatic. 
2lGenerally speaking, the set of parameters 'Yj can be continual, for 

example the set of values of the unperturbed distribution function f0 (p) 
in the case of plasmalike media. 

in accordance with the initial premises of the geometri­
cal approximation (z], 

a =_!_(iJ'ea~o- iJ2ea~o) +O( 2). (14) 
e .. e 2 aw at ok; iJx; f.li 

Not being interested in first-order corrections to E~f3' 
which are significant perhaps only in the determination 
of the total phase shift, we obtain from (12 )- (14) 

(15) 

Although the analysis has been carried out for 
electromagnetic waves in an anisotropic medium, the 
results can be readily transferred to the case of longi­
tudinal and transverse waves in an isotropic medium 
(to this end it is necessary to replace €.a[3 by €.1 Oa[3 
or E. 11 oa8 throughout). In particular, in the absence of 
spatial dispersion in a homogeneous isotropic medium 
we get from (15) Pitaevskii's result[ 11 : 

i ( iJ 2e0 (w t) ) 
e= e0(w,t)+'2 iJwiJ~ +O(f1J2). 

6. Physically, the appearance of anti-Hermitian 
corrections to the tensor €.a[3 is equivalent to a certain 
additional phase shift between the components of the 
vectors D(r, t) and E(r, t), and corresponds to the 
fact that no "stationary" phase relation, determined by 
the equality Da = €.~{3 Ef3, can be established in a 
medium with varying parameters. For example, for 
high-frequency waves in an isotropic plasma, in the 
absence of collisions between the electrons and the 
ions we have 

(16) 

where wi, = 47Te~/m, e and m are the charge and 
mass of the electrons, and n is their concentration. In 
the stationary case ( n = const ), the oscillations of 
D( r, t) and E ( r, t) are in phase. However, when the 
concentration changes with time as the result of the 
finite time of establishment of the polarization of the 
medium, the oscillations of D either lag or lead (de­
pending on the sign of anjat) the oscillations of the 
field intensity E at the same point. In a medium with 
spatial dispersion, owing to the processes of matter 
transport, such a phase disparity can be due also to the 
inhomogeneity of the medium. 

7. The foregoing analysis agrees with the results of 
a number of previously published papers. In particular, 
for electromagnetic waves in a magnetoactive plasma 
drifting with velocity U in the direction of the external 
magnetic field Ho, as is well known, the following rela­
tions hold (when k 11 Ho )(s] 

where 
eHo 

ffiH=--, 
me 

WH(W- kU)wL2 

g, = <•l2 ((w- kU) 2 - WH2] • 

(17) 

Substituting (17) in (15), we can easily find the anti­
Hermitian part of the tensor E.af3• which depends here 
on the change of the parameters n(r, t), U(r, t), and 
H0 ( r, t ). At the same time, it is easy to prove that a 
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calculation of the amplitudes and of the wave energy in 
accordance with formulas (4) and (15 )- (17) gives re­
sults that coincide with those obtained in[4,sr by directly 
using the equations of motion of the electrons instead 
of the phenomenological relation (1 ). 

It seems that the corrections to the tensor E~{3· 
Which are determined from (15), are valid for a rather 
wide class of media. 

8. In conclusion we note that the transport equation 
(4) in the absence of absorption can be rewritten, as 
follows from (6 ), (8 ), and (9) in the form 

d ( w) w -- +-divu=O. 
dt w ro 

(18) 

For hydrodynamics, this form of the transport equation 
was proposed by Bretherton and Garnetr71 • To be sure, 
in[7l, unlike in our case, they considered waves in a 
medium moving with velocity U, so that w was re­
placed in[ 7 l by the frequency w' = w - k · U, which 
differs from w by the Doppler shift k · U. 

The authors are grateful to S. M. Rytov for interest 
in the work. 
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