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The thermal conductivity and low frequency kinetic effects in solids are analyzed by the temperature 
diagram technique in combination with the application of the inhomogeneous kinetic equation. The 
corresponding dispersion of the dielectric permittivity in ferroelectric substances and the elastic 
moduli in solid dielectrics are investigated. A microscopic expression for the Green's function is 
given for the hydrodynamic region of small k and w for all temperatures. In particular, the ex­
pression describes the effects associated with second sound. Some features of the inelastic scat­
tering cross sections for a crystal in the case of small energy and quasi-momentum transfer are 
discussed. 

INTRODUCTION 

IN the imposition of a variable external field-electro­
magnetic, elastic and so on-on a medium, two basic 
relations are possible between the frequency of the 
field and the thermal relaxation time. If the field 
changes more rapidly than the establishment of thermal 
equilibrium is carried out, the oscillations are adia­
batic; in the opposite case, the temperature remains 
constant and the oscillations are isothermal. The order 
of the values of the frequency w and the wave vector k 
at which the character of the oscillations change can be 
found with the help of the heat conduction equation 

ar 1 at = x/'lT. (1) 

It is clear from (1) that the oscillations are adiabatic 
for w » xk2 and isothermal for w << xk2 • Here, 
whereas the characteristics of the adiabatic and iso­
thermal oscillations-the dielectric permittivity, the 
speed of sound-are determined from thermodynamics, 
the description of the oscillations in the transitional 
region w ~ xk2 requires a kinetic consideration. The 
present work is devoted to the microscopic considera­
tion of the corresponding dispersion for the case of the 
study of the dielectric permittivity Eaf3(k, w) in ferro­
electrics, the elastic moduli Caflyo(k, w) in solid 
dielectrics, and also the features of low temperature 
kinetics associated with second sound. 

The dispersion indicated leads to characteristic 
features in the correlation (Green's) functions of pho­
nons G( k, w) for small k and w. Therefore, although 
in experiments on the high frequency measurements of 
Eafl and Cafl~o are usually made in the adiabatic re­
gime w >> xk only, in experiments on inelastic scat­
tering, for example, of neutrons by a crystal, the 
study of G( k, w) in principle for arbitrary k and w 
and, in particular, of the features of the transitional 
region w ~ xk2 • 

For the "hydrodynamic" region considered of 
small w and k, for not too low T, the expression for 
the susceptibilities can be found simply by the methods 
of macroscopic kinetics. This is done in Sec. 2. How­
ever, a microscopic analysis based on lattice dynam-
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ics is also of interest. Such an analysis enables us to 
connect E (k, w) and c( k, w) with the Green's function. 
It makes it possible to trace the microscopic picture 
and the region of applicability of the results, and also 
the transition to high frequency, "non-hydrodynamic" 
kinetics. In ferroelectrics, the micro-consideration 
allows a better understanding of the difference in the 
effect of relaxation processes on E ( k, w) above and 
below the transition point (which was discussed previ­
ously on the basis of a rough model[ 1 l), and in elastic 
moduli c(k, w )-to follow quantitatively the appearance 
of second sound and the related dispersion of the 
kinetic coefficients as the temperature is loweredY .Sl 
Finally, the expressions derived below for the kinetic 
coefficients may be useful for the study of temperature 
dependences, for example, in the vicinity of phase 
transitions. 

The consideration is carried out by the methods of 
the temperature diagram technique on the basis of the 
inhomogeneous kinetic equation used earlier by 
Sham [21 for the consideration of second sound in solids. 
A general expression is found in Sec. 3 with the help of 
this equation for the singular part of the Green's func­
tion due to the heat conduction. Use of the results of 
the theory of ferroelectricity[ 4 J permits us to connect 
these singularities with the singularities of E (k, w) and 
trace the agreement with the phenomenological expres­
sion for E. An analytic study of the elastic moduli 
c(k, w) is given in Sec. 4. A general microscopic 
expression is given for c( k, w) in the hydrodynamic 
region of small w and k for arbitrary T. The results 
obtained give, in particular, the quantitative expression 
obtained earlier by Shklovskii[sJ for the relation be­
tween "thermoelastic" and viscous sound damping. 
The given expression also describes the transition of 
the relaxation of the "thermo conduction mode" in 
second sound with decrease in T and the dispersion 
effects of heat conduction, viscosity and sound absorp­
tion, associated with it. These latter have been dis­
cussed before phenomenologically _[31 The features in 
the elastic scattering of neutrons at small k and w, 
associated with the dispersion considered, are dis­
cussed briefly in Sec. 5. 
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2. PHENOMENOLOGICAL DESCRIPTION 

Let us consider the effect of heat conduction on the 
dielectric permittivity Eaf3(k, w ). The expression for 
the inverse susceptibility tensor l; = 41T( E - 1 r1 in a 
variable field and with account of temperature oscilla­
tions can be written in the form 

dEa 1 ( aS ) dT' 
\;a~= dP~ = \;a~T- 4n . 8Pa T dP~' · 

Here Pis the polarization, l;rt:l = (41Tt 1 a 2FjapaaPf3 
the static, isothermal value of ~a/3; F(P, T) and 
S = - (a F ja T )p are the free energy and entropy per 
unit volume; T' and P' are the variable components 

(2) 

of the temperature and the polarization. For simplicity, 
we consider only the case of a "clamped" crystal, [4' 61 
i.e., the oscillations are of sufficiently high frequency 
that the acoustic deformations u~/3 do not succeed in 
following the electric field and the piezoelectric coup­
ling of the elastic and electric oscillations vanishes: 
U~f3 = 0. 

The quantities T' and P' can be connected by means 
of the heat conduction equation f71 . Furthermore, setting 
T' and P' proportional to exp( ik · r - iwt), we have, 
from (2), 

_ T _ T (8Ea) (8EB ) ro 
Sa~ (k, ro)- SaB -- 4rtCp 7fT p 7fT pro+ iY.,5k,k5- • (3) 

Here Cp is the heat capacity per unit volume for 
constant polarization, Xyli is the temperature conduc­
tivity tensor. Here and below, repeated Greek indices 
indicate summation from 1 to 3. In correspondence 
with what was said in the Introduction, for w « xk2 

the inverse susceptibility l; takes on the isothermal 
value l; T, and for w » xk 2 the adiabatic value l;S. In 
ferroelectrics, the quantity (aEa/aT)p is propor­
tional to the polarization P a, so that the difference 
between l;S and l;T is important only in the ferroelec­
tric phase and then only for those components of l:af3 
for which Pa ;.o 0 and Pf3 ;.o 0. 

In the consideration of the dispersion of the elastic 
moduli, we limit ourselves for simplicity to the con­
sideration of centrosymmetric crystals in which there 
is no piezoeffect. [a1 Then, solving the equation of 
elastic oscillations under the action of an external 
force density f(r, t) with account of viscosity and 
temperature changes by the same method as above, 
we obtain 

[-pro26a~ + Cay~~(k, ro)k1 ko] u~' = /a(k, ro), (4a) 

r ro T ( aS ) ( aS ) Ca~vo(k, ro) = Ca~vo+ + . k k C ;;-- -~- - irol']a~vo. (4b) 
W ~XI-lv ll v u uUaB T ' uU-y6 T 

Here p is the density, u' the displacement, Cu the 
heat capacity at constant deformation, and c T and TJ 
the tensors of isothermal elastic moduli and viscosity. 
As above, it is easy to see that for w >> xk2 the tensor 
Caf3yli undergoes a transition to the adiabatic value 

c~{3yo· In an isotropic body, the difference between 
the adiabatic sound velocity and the isothermal one 
exists only for longitudinal oscillations, since the 
transverse shear oscillations do not give rise to 
changes in volume and temperature. 

3. MICROSCOPIC CONSIDERATION OF THE DIS­
PERSION OF E(k, w) 

The microscopic method of calculation of the die­
lectric permittivity E (k, w) for small k was discussed 
inr 9• 10• 41. According tof 9 1, to find E by diagram 
methods, it is necessary to find the polarization opera­
tor for the interaction of the long-wave electromagnetic 
field with the medium, i.e., the set of diagrams that 
are not resolved into uncoupled parts over the single 
photon line. In our case of a dielectric crystal, the 
operator Hem of interaction with the long-wave elec­
tromagnetic field can be written in the form [10• 41 

"' "' E,aE,~ v, "' Hem=- L.J e;u,iEr + Vc L.J (e~- 1 )a~----s;- + s;-L.J (Er2 +II.'). 
r; r r ( 5) 

Here u} and ei are the displacement and the effective 
charge of the i-th ion in the cell r; vc is the cell 
volume, Er and Hr the mean macroscopic fields, and 
the component with ( E oo - 1) describes the effect of 
the polarizability of the ion. 

By the methods ofr 9 ' 111 we can obtain the following 
expression for Eaf3(k, w) from (5): 

a~ 4n~ ia,l~ 
Ea~ (k, w) = "= + -- e;elGRs (k, UJ). 

L' 
c i, l 

Here GRs is the Fourier componl:)nt of the retarded 
correlator of the displacements u1 and ul: 

~ 

G~~· 1"(k,w)= i ~ ~ dteiwt-ikrSp(po[u,1a(t),uo1"(0)]),, 
r 0 

po = e-BH I Sp e-~H, 

(6) 

(7) 

{3 =1/T, ur(t) = eiHture-iHt and the index sonG 
indicates that in the Hamiltonian H of the crystal only 
the short-range part of the interactions is taken into 
account, but the interaction with the macroscopic field 
E ( k, w) is not considered. In diagram language, the 
latter means the absence noted above in graphs for G 
of single photon lines with frequency w and momentum 
k. The complete correlation function GR ( k, w) (which 
can be studied experimentally, for example, in the 
scattering of neutrons) connected with GRs by equation 
similar to the Maxwell equations in the medium,f41 and 
are simply expressed in terms of GRs. If we neglect 
the anharmonic terms in H in (7) and transform from 
the displacements u~ to the normal phonon coordinates 
~kj, by diagonalizing the harmonic part Ho of the 
Hamiltonian: r 121 

(8) 

(where N is the number of cells, v~j the polarization 
vectors), then (6) goes over into the well-known dis­
persion formula for E [lo1. 

In the following, in the discussion of E ( k, w ); we 
limit ourselves for simplicity to ferroelectrics con­
sidered inr41 of the displacement type, having a cubic 
symmetry above the transition (for example, perov­
skites). In these materials, at low k and w, we have 
E(k, w) >> E 00 ~ 1, and, as was discussed inr41, of all 
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the phonon branches j in GRs, only the critical, 
anomalously soft optical branches, which are described 
by the coordinates ~kj = ~k,ca (where a = 1, 2, 3 de­
notes the polarization of the branch at k = 0 ), are 
important. For these branches, the anharmonic cor­
rections are important, so that (8) is not directly ap­
plicable. Formula (6) takes the form 

e~~(k, w) = 1-.G~~(k, w), 

4Jt ( . ) 2 4nz, 2 
1-.=-3 ~e;v,~' ==--. (9) 

Vc . Vc 

Here GR~ is determine·~~ by Eq. (7) with the substitu­

tions uia- ~~ and ul f3- ~~· A relation of the form 
(9) was obtained previously[4J by comparison of the 
equations for G with the Maxwell equations in the 
medium; however, the relaxation effects and the damp­
ing were not taken into account. 

The usual method of calculating the retarded func­
tions GR (k, w) is by finding the temperature Green's 
function G(k, iwn) and its analytic continuation from 
the discrete points iwn = 2in7TT of the imaginary axis 
into the complex plane w. [9 ' 13' 2' 41 If we write the Dyson 
equation for G in the usual form: 

G-1 (k, iwn) = Go-1 (k, iwn) +TI(k, iwn), (10) 

where II is the irreducible sell-energy part, [9 1 then 
the investigation of the singularities of GR ( k, w) at 
small k and w of interest to us reduces to the study 
of the singularities of the analytic continuation of 
ll(k, w ). As was discussed, these singularities reflect 
the effect of thermal relaxation, i.e., processes which, 
in the system of phonons considered, are described by 
the kinetic equation. Therefore, the problem reduces 
to the establishment of the connection of the "single­
particle" oscillations, described by G(k, w), with the 
oscillations of the phonon distribution functions, which 
are described by the kinetic equation. 

petailed investigations were carried out previously 
by Eliashberg for the case of a Fermi liquid[ 13l and by 
Sham [21 for the case considered, that of a system of 
phonons. For the study of the singularities of II, it is 
sufficient to investigate the difference oil(k, w) 
= ll(k, w)- ll(k, 0) and limit ourselves in it to singu­
larities at small w and k.t 13 ' 2 l The "isothermal" 
limit ll(k, 0) = ll(k, iwn)ln=O is calculated according 
to ordinary perturbation theory and gives the renor­
malized phonon spectrum; summed with G(/(k, 0), the 
quantity l1 ( k, 0) determines the isothermal value 
?;T(k, O) of the inverse susceptibility, according to (9). 

Graphically, the equations for the singular part of 
II are shown in Fig. 1.[ 13 ' 21 Here the internal lines of 
the graphs correspond to the complete Green's func­
tions with account, in particular, of the electromag­
netic interaction (5) and the damping. In the lowest 
approximation of perturbation theory, it suffices, to 
limit ourselves to graph 1b in the kernel of the inte­
gral (kinetic) equation for the vertex, i.e., to an ac­
count of three- phonon interactions only, H! 3 >t: 

ln 
(3) 1 .. 

H;nt = 31 ~ V""'' (p,, Pz, Ps) sp,;,sp,;,\;p,;,~ (Pt + Pz + Ps, (11) 
i11A3 

PIP!PJ 

Here ~ ( p) is equal to unity when p is equal to the 

n = -<:>-; 

FIG. 1 

reciprocal lattice vector, and equal to zero other­
wise.P2l 

After analytic continuation with respect to the fre­
quency ys,z] the equation for orr takes the form 

1 1 ··( k k ) 6llap=-T ~ 2--. V•" -k,-2 -p,-;-+P Npi(Np1 +1)fp1B(k,w), 
Pi Wpl 2 

where fti satisfies the equation (12) 

i(w- kvp;)Npi(Np; -l-- 1)/p;B 

iw ··( k k ) ~ ) = 2wp; VB" k,p-2,-p- 2 Np;(Npi+1)+l(fpl), (13 

and the collision integral I (f) has the usual form :[ 121 

A B rr {[Vijl(p,q,-f)/2 
l(fp;B) = ~!pi, q;fq; = 4 ~ (NPi + 1) (Nq; + 1) 

qj qj, fl W PiWqjmfl 

X Nf!(/p;P + fq;B- fuB)J:, (P -t- q- f) li(wp; + Wq;- wfl) 
1 I Viil(p -q -f) 12 + 2 ' ' (Np 1 +1)Nq;N 11 (fp;P-fq;B-f 11B) 

WpiWqj(Dfl 

X~ (p- q- f) o(ulp;- Wq;- Wtz) }. (14) 

In (12)-(14), Npi = [exp (f3wpi)- 1t1 is the Bose 
function, Vpi = Bwpi/8 p is the group velocity. In[ 2 J, 
Eq. (3.10), which is similar to (13), has the form of a 
set of equations for the two functions X(p, wp ), which 
is analogous to our f ~i' and X( p, -wp). However, 

since the potential vf3ii(k, p- k/2, -p- k/2) is even 
in p, we can establish the fact that X( p, -wp) 
=X( -p, wp), so that the system reduces to Eq. (13) 
for f~i. 1> The ratio of the collision term I (f) to the 

left side of (13) is equal to r 1 w or r /k · v in order of 
magnitude, where r is some mean damping of the 
thermal phonons (for the more precise evaluation, see 
below). Therefore, in the region of large w and k 
( w, k · v >> r ), we can use perturbation theory and in 
first approximation, simply discard t (f) in (13). 

In the case of interest to us, namely the "hydrody­
namic" region w, k. v << r' the solution of the inhomo­
geneous kinetic equation will be sought with the help of 
an expansion in the eigenfunctions <Pgi of the collision 
operator 

Here Yn 2:: 0 is the eigenvalue of the operator f. In­
asmuch as the kernel of the integral equation lpi,qj is 

symmetric and even relative to change in sign of p and 
q, the function <Pgi can be regarded as orthnormalized 
and possessing a definite parity in p. The function 
<Ppi = canst· Wpi corresponds to the smallest eigen­
value yo = 0, and describes the change in the equili­
brium Bose distribution function for small temperature 

1lin passing, we note an error in the text of the Sham paper: [2 ) in Eq. 
(2.1 ), there should be a plus sign instead of minus in front of the first 
component in the brackets. In correspondence with this, the definitions 
of the functions y+ andy- in (3.13) must be interchanged. 
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changes r 121 ; in the expansion (15 ), cp 0 will play a funda­
mental role. For low temperatures T << ® o, when the 
quasi-momentum p is an integral of the motion, with 
exponential accuracy, the first three odd solutions 
Cflpi,., c~Pa are also important; a =1, 2, 3, the eigen­
values of which Yv are exponentially small.P2 l For 
w > Yv these functions describe phenomena connected 
with second sound, but in this section, we limit our­
selves to the region of small w and not too small T, 
for which w « Yv· 

Substituting the expansion (15) in (13 ), multiplying 
(13) by cp~i' and summing over p and i, we get 

Here 

Snm = ~ <jlp;nNp;(Np; + 1)q;pr, 
Pi 

Vnm = ~ (jlp;nNp;(1\'p; + i)Vpi'fPim, 

Pi 

Vnk~ = ~ <Jlv;n 2:Pi V~ii ( k, p- :, -p- ~ ) Np 1(Np; + 1). (17) 
PI 

The condition w, k · v « r is equivalent to the condition 
a~ « a~ ( n > 0). In this case, with accuracy to first 

order in w and k, we get from (16) 

~ . (won-kVon)ao~-wVnk~ 
an = l ' 

Yn 

~ _ (v ~ +. ~ Won Vnk~)(' +. ~ wan2+(kv) 0n2 )-t 
llo -W Ok ILJ Woo ILJ • 

n>O Yn n>O Yn (18) 

Here and below, wmn = wSmn· The denominator a~ in 
(18) must generally be expanded in powers of w, but 
it more convenient to do this later. Formulas (18) 
allow us to make more precise the conditions of ap­
plicability of the hydrodynamic approximation: 

Wmn~Yn1 (kv)mn~l'n 1 WooVnk~~YnVokP (n>O). (19) 

Limiting ourselves to the lowest terms in w and k 
in the expansion (15), we get from (18) 

v"' v p ~n (k ) _ __(!)_ o,-k ok 
ua~,W-T 

wSoo +iS (kv) on2/yn 
n>O 

w Vo~-kVokP 
- T3 VcC(w + iXv6kyk6) 

(20) 

In Eq. (20 ), the normalization constant of the function 
cp pi = const · Wpi is contracted and for simplification 
of notation, we shall set cp pi = wpi everywhere below. 
Here the quantity 

1 {) 
=--~UJpiNpi 

v, ar 
Pi 

is the limiting heat capacity C of the Bose gas of 
phonons. The quantities Xyli• as is seen from the 
comparison given below with the results of Sec. 2, 
represent temperature conductivity tensor; 

Xv6 = f S VonYVon6. 

00 71 > 0 'Yn 
(21) 

The terms in lill following in w, omitted in (20 ), de­
scribe the effect of the viscosity of the phonon gas and 
are discussed in Sec. 4. 

In the derivation of Eqs. (12 )-- (21 ), the specific 
features of the ferroelectrics were not employed, so 
that by a and {:3 in them we meant arbitrary phonon 
ranches. It is seen from (20) and (17) that the effect 
of the thermal relaxation on the dispersion of the op­
tical branches depends on the symmetry of the crystal 
In "central" crystals, in which each atom is the center 
of symmetry, the three-phonon potential 
yaii(k, -p- k/2, -p- k/2) is proportional to k when 
k- 0, [14• 151 so that lill in (20) is proportional to k2 

and is small. For a noncentral crystal, lill ( 0, w) ;>< 0 
and thermal dispersion exists. 

The ferroelectrics considered are central above the 
transition point T 0 ; here the polarization P = 0 and, 
in accord with (3), ~S = ~T. We shall show that the 
relations (20), (10), and (9) also transform into (3) 
below T 0 • In the given case, the total heat capacity, 
except for the phonon part C, which is taken into ac­
count in (20), contains contributions connected with the 
dependence of the polarization P on T, so that C in 
(20) represents the heat capacity Cp. Moreover, a 
certain contribution to C gives the dependence of the 
critical frequencies wpc on T, which was not taken 
into account in (20 ); however, in the heat capacity, this 
gives a small correction of higher order in the an­
harmonicity. Therefore, to prove the identity of (20 ), 
(10) and (9) with (3) as k- 0, it suffices to prove the 
relation 

1 ~ oNpi v .. (0 ) 
=- LJ---;)T "'" ,p,-p 

Zc pi 

oEa azp 
= oT = iJPaol'' 

(22) 

where Zc is the same as in (9 ). The free energy 
F( P, T) in the materials considered was studied in[ 4 J 
Figure 2 shows several graphs for F contributing to 
aEjaT, taken from Eqs. (15) of[ 4 J. 

The circles on this drawing correspond to the mean 
equilibrium value ( Xc) = Pvcz(:1 • The anal<;>~ous 
graphical expansion of the vertex V'f = yall(O, p, -p) 
is also given. We consider, for example, the first 
components a and a' in these expansions. Comparing 
the graphs and the analytic expressions, we get 

v, .. Np1 PaPp 
F<•l =- S V"~"(O,O,p,-p)---

4 . Wpi z/ 
P• 

Va(a')a = ~ Va.JJii (0, 0, P'. - p). 
2ZcWpi 

(23) 

Here ya{:3ii is the 4-phonon vertex of interaction of 
the critical-polarization phonons a and {:3 with the 
phonons of the i-th branch. It is seen that the quanti­
ties (23) are connected by the relation (22). Termwise 
equality of the remaining components of Fig. 2 is 
proved similarly. 

Thus, the considered dispersion of E exists only 
below the transition point and is described by Eqs. (3) 
and (20). A similar problem was considered earlierPl 
qualitatively using a model example, by the method of 
Mandel'shtam- Leontovich, with introduction of the 
phenomenological relaxation time T- 1 • Comparison of 
(3) and (20) with the results of[ 1J shows that one can 



EFFECT OF THERMAL CONDUCTIVITY ON THE DIELECTRIC PERMITTIVITY 893 

+···; 

FIG. 2 

"" 
Y. _ _y + 
~~--'--

a' 

describe the thermal relaxation by formulas of the 
Mandel'shtam-Leontovich type if one takes the quantity 
Xaj3 kak{:l to mean the relaxation frequency T - 1 • 

As was already noted, in high-frequency measure­
ments of the permittivity E ( k, w ), usually only the 
adiabatic regime w >> xk2 is realized, so that one can 
observe the considered "optical" thermal dispersion 
only in experiments on inelastic scattering, which are 
discussed in Sec. 5. The corresponding contributions 
to the cross section can be described by using (34 ), 
(10), (20), and (9). The answers are similar to those 
given in (35) below; the fundamental difference is that 
the given dispersion appears only below the transition 
point and is significant only in transverse branches 
(and not in the longitudinal, as in (35)), inasmuch as 
only these branches are low-lying in the given ferro­
electrics. [4 l 

4. DISPERSION AND DAMPING OF FIRST AND 
SECOND SOUND 

The expression for the complex elastic modulus 
tensor Caj3yo(k, w) in terms of the Green's function 
can be found by the usual methodsY' 11 l We define the 
acoustical coordinate ur, for example, as the coordi­
nate of the center of gravity of the cell:r14l 

Ur = ( ~ m; )-I~ m;u,;. 

Then the Hamiltonian of the interaction with the ex­
ternal force density f is written in the form 

V(t)=-~ u,f(r,t)vc. 

Integrating in the usual wayr 11 l the equation for the 
matrix density p = p 0 + p' in the field of the small 
external force f(r, t) = f'eik · r- iwt, we have 

t 

ur'" = Sp (u,"p') = ivc ~ S dt'fB' (r', t') 
r' -oo 

X Sp(po[ur"(t), u,,B(t')]) = DR"B(k, w)fB'vceikr-imt. (24) 

Here Po is the same as in (7) and D~J3 is the retarded 

Green's function of the components ua and uf3. Com­
paring (24) with the macroscopic equations (4a), we 
find 

(25) 

The Dyson equation for D has the form (10), with the 
substitution G - D. By defining the isothermal tensor 
caf3yokyko as 

V0 - 1DctB-I (k, 0) = Vc-1DctB-I (k, iwn) J n=O, 

we have, from (10) and (25), 

[c"v~B (k, w)- c:v6B]kvk6 = vc-1 (llctB(k, w) 
-llctB(k,O))""' Vc-11lllctB(k,ro). {26) 

Here naf3(k, w) is the analytic continuation of their-

reducible self-energy part of the Green's temperature 
function DaJ3(k, iwn ). 

Using (26) and the results of Sec. 3, we consider the 
effect of thermal relaxation on the elastic moduli and 
the sound propagation. We shall show first that Eqs. 
{26) and (20) are identical with (4b) when k, w- 0. To 
this end, we note that the quantity V~ in (20) has the 
form 

ctB i f) ··( k k)l /..p; =----V«n k,p--,-p--
2wp;2 iJkB 2 2 k=O 

(27) 

for small k. Here it is taken into account that the po­
tential of interaction with the acoustic branch a 
vanishes linearly with k as k - 0[ 10• 121 and A a~ is the 

PJ 
Griineisen coefficient, which determines the change in 
the spectrum for deformation of the crystal:r 5 • 16 l 

Wp;(u,.p) = Wp;(O) (1- U,.pAp;"B). 

The term oF in the free energy that is linear in the 
deformation and determines the thermal expansion, [4 1 
and the corresponding derivative asjauaf3 in (4b) are 
equal to 

(28) 

The heat capacity of the phonon gas C in (20) does not 
take into account the temperature dependence of uaf3• 
i.e., it is the heat capacity at constant deformation Cu. 
Thus, with account of (27) and (28), Eqs. (20) and (26) 
are identical with (4b ). 

In the propagation of ordinary "first" sound in a 
solid, the quantity k is equal to w/us, where us is the 
sound velocity. In this case, at small w and not too 
low T, when the inequalities (19) are satisfied, the 
sound wave is adiabatic, w >> xk2, as can be estab­
lished by estimating x by means of (21 ). We find the 
expression {26) for otl in this case, with accuracy to 
within linear terms in w. Using (12), (15), (18), and 
(20), we get 

(29) 

Here it has been taken into account that V~ = iky;\~ Y, 
where 

Pi 

Since Wpi is even in p, the first and second compon­
ents in the square brackets contain only odd and even 
functions cpBi• respectively. 

The expression in the square brackets in (29) de­
scribes the sound damping. The first term in these 
brackets gives the damping which results from the 
thermal conductivity, the so-called thermoelastic 
damping, which can be expressed in terms of thermo-
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dynamic quantities and Xot/3· The second component, 
as is evident from comparison with (4b), is the viscos­
ity tensor 11otf3yl5· The damping expression, which is 
analogous to (29 ), was obtained by Shklovski'i[sJ in the 
T-approximation. It was noted by him that the ratio of 
the thermo-elastic damping to the viscous damping is 
proportional to the square of the ratio of group velocity, 
averaged in some way, to the sound velocity us, which 
can explain the smallness of this ratio at high tem­
peratures in crystals with small anisotropy[ 5• 16 l. 
Formula (29) gives the quantitative expression for this 
assertion. 

Up to now, we have considered the case for not too 
low temperatures and small w. For low T << e D, as 
was recalled above, three first values of y 11 , 11 = 1, 2, 
3, corresponding to the functions cp~i = c~pot, tend 

exponentially to zero, inasmuch as only Umklapp 
processes make a contribution to the quantity y 11 , in 
accord with (15).[ 121 Therefore, even at low frequen­
cies, the conditions (19) for n = 1, 2, 3 will be violated, 
while the hydrodynamic condition of (19) will be satis­
fied for the remaining "normal" Yn with n > 3, which 
fall off with T in a power-law fashion. By assuming 
that (19) is valid only for n > 3, and the relation among 
w, k and y 11 is arbitrary, we can obtain, by the same 
method as above, the general expression for DR(k, w ), 
which describes the dispersion of the sound velocity, 
of the viscosity and the thermal conductivity over the 
whole range of temperatures T and "hydrodynamic" 
k and w: 

Here M is the mass of the cell, 

A'"Y6~(k, w} = :3 [won- (kv} o~~~v(kv}vn](/,oar l,n~6 + /,n"Y 1,,~6 ), (31) 
n>3 

2Soof(k, w) = ~ 'Yn-'{ Won2 +(kv)on2 

n>3 

-2 (kv)w~"v(Wvn(kv)no + (kv}vnWno] 

+ (kv)o~~~~{w~nWnv + (kv) ~n (kv)nv] ~vp(kv)oo}. (32) 

The matrix i: = (;:, + iyf\ where~+ iy is a 3 x 3 
matrix of the quantities wll 11 + iyll 11 = wSJJ. 11 + iy 11151l 11 • 

In place of the basis functions cp v, in which the y 
matrix is diagonal, one can use in (30)-(32) any other 
orthonormalized linear combination of components of 
the quasi-momentum Pot, for example, such in which 
not YJJ.II but wll 11 = wS/l 11 is diagonal; this can be con­
venient in the description of second sound. The quanti­
ties A and r are successive terms in w and k of the 
expansion of the numerator and denominator and in 
sound propagation they describe the damping processes. 
For compactness in the formula (30), as above, it is 
more convenient not to expand the denominator in 
powers of k and w, i.e., to keep the component with 
r in the denominator. 

For ~ «),, we obtain from (30)-(32), as before, 
the results (21) for the thermal conductivity and (29) 
for the sound propagation. For ~ » y (which, with 
account of (19 ), is possible only for T « e D) formu­
las (30 )- (32) describe phenomena connected with 
second sound. Here we use the results obtained previ-

ously by other methods,C 2 • 3 • 17 l and also the microscopic 
expression for the phenomenological parameters in­
troduced earlierYl In the given region, the values of 
A.n are small, like T 5ei), so that, in accord with (30 ), 
DR has a pole close to the pole point of 15II, i.e., 
close to the point w 2 = Paf3kakf3, where Potf3 

= v oJJ.S/J.111 v~0 • S06. This equation determines the veloc­
ity of second sound and is identical with the result of[l?J 
(if in the expressions for Baf3 in (17) and (34) of that 
reference we introduce under the summation sign the 
factor Wks, which was omitted in the transition from 
(8) to (17) ). In particular, for a cubic crystal, in which 
p ot/3 = l5af3 c!1, a formula is obtained which is similar 
to the case of an isotropic body:C 17 l 

-- 3 u,-• -- 1 S dn 
Cn2 =--==:=-, Us-m=- -Usi-m{n), 

3us -s 3 i~l 4n 
(33) 

where n = p/ p and summation is carried out over the 
three acoustic branches. 

The damping ru of second sound is composed of 
r¥r. which is connected with scattering processes, and 
the "normal" scattering r¥1, which is proportional to 
w 2 • The damping r¥.r is obtained from expansion of the 
quantity 

in the second component of the denominator of (30 ). 
Inasmuch as the thermal conductivity (21) is deter­
mined from the components with y 11 at these tempera­
tures, 

then the damping r¥1 can be expressed in terms of the 
coefficient of thermal conductivity and the matrix Paf3 
introduced above, which determines the velocity of 
second sound:[ 3 l 

The value of r¥r is giyen by the expre~sion Ar ( k.l. w) 
in (32 ), if we neglect y in series with w in w + ij in it, 
and set w2 = kakaPotf3· Components connected with the 

numerator of (30) are proportional to the quantities 
A.n and A.o, and in the velocity and in the damping give 
small corrections of relative order T 4® j), which can 
be established by estimating the corresponding inte­
grals. 

On going (with change of w or T) through the region 
~ ~ y the collective oscillation, second sound, trans­
forms into a purely relaxational "heat conduction 
mode": the pole denominator in (30) transforms into 
the expression w + iXaf3kakf3 of Eq. (20). Here, a 
significant dispersion of the kinetic coefficients-­
thermal conductivity, viscosity, sound absorption--also 
takes place. The phenomena appearing here :vere dis­
cussed phenomenologically by Gurevich and EfrosY1 

Equations (30 )- (32) make possible a unified study of 
the corresponding dispersions and description of the 
transition region w ~ y. 
5. SINGULARITIES IN THE INELASTIC SCATTERING 

CROSS SECTIONS AT SMALL ENERGY AND 
QUASI-MOMENTUM TRANSFER 

We shall consider how the hydrodynamic dispersion 
described above arises in inelastic scattering of neu-



EFFECT OF THERMAL CONDUCTIVITY ON THE DIELECTRIC PERMITTIVITY 895 

trons or light from a crystal. The Van Hove formula 
(see, for example,P8l) for the cross section of coherent 
scattering of a neutron of energy E, with the energy w 
and momentum q = G + k transferred to the crystal 
(here G is the reciprocal lattice vector and k lies in 
the first Brillouin zone), can be transformed by the 
methods ofr 9 ' 191 to the form 

d2crcoh v-;=-;" 005 dt 
dQdE = - 8- LJ a;a;* z;-exp(iwt) 

ijH -so 

X Sp[po exp {- iqR;(O)} exp {iqR;(t)}] =¥ 8 - w 2} a;a;* 
e .. ,, 

fa.Jv 
" {' ( )} qaq1 ImGR (k, oo) ACXp tq p;- Pi 

2n(1- cxp(- ~w)) 
(34) 

Here ai is the amplitude (length) of the coherent scat­
tering by the i-th atom of the cell, Pi is the equili­
brium coordinate of the i-th atom in the cell, the quan­
tities q · u are considered small, so that the exponents 
exp (iq ·u) are expanded in a series, and GR is the 
Fourier component qf the retard.ed Green's function of 
the displacements u~a(o) and u~Y(t), which is deter-

mined by Eq. (7) (without the index s). In light scatter­
ing, it is necessary to omit the factor (E- w) 112 E- 112 

in (34), and to replace the scattering length ai by the 
electromagnetic amplitude ( e 2/mc 2 ) Fi, where Fi is 
the form factor of the i-th ionY2l 

For small k, w, the largest contribution to (34) is 
made by the acoustic branches. In the case of a neutral 
symmetric crystal, the atoms of the cell in these 
branches at small k move as a unit, and one can use 
as acoustic coordinates, as above, the coordinates of 
the center of mass of the cell (and for the optical, any 
set of relative coordinates r 141 ). In this case, aka ,j Y in 

(34) is replaced by the quantity D~F (2 5 ), (30 ). 

We shall illustrate the character of the resultant 
singularities in the dependence of the cross section on 
k and w by an example of an isotropic solid. We con­
sider initially not very low T, when for Caf3yo(k, w) 
in (25) we can use Eq. (4b). Setting 

Xa~ = xi\a~, 'l)ay6~kyk6 = kakBT]I + (k26aB- kakB)'I)t, 

we have in this case 

d2 crcoh v e - (U I r· T ( . ( 'I) I UUzsxk' ) 
---;-= -- '1;1 a;exp(iqp;) --~ (qk) 2 -+--=:...._ 
dQd}., B 4 I 2nM t fl w2 + x'k' 

[( k'w2 ·)' ( Ill auufxk2 )'1-' X k2u21T+ au2zs ----,-..,.,....,- cu2 + ro'k' - + --::-.::::....:"::-:-: 
w' + x'k' p w' + x2k4 • 

[k2G'-(kG) 2l'llt/P } + . 
(k2u12 - w2 ) 2 + w2k4'1)t 2/p2 (35) 

Here uzT and uzs are the isothermal and adiabatic 
velocities of longitudinal sound; ut is the velocity of 
transverse sound; the quantities a = 1 - uf Tuzs is 

proportional to the difference CpC~1 - 1 and for a 
solid it is smallP• 2l In the transition from (34) to (35), 
it is taken into account that for the hydrodynamic 
w « r considered, the quantity t3w = w/T « 1. 

Substitution in (34) of the general formula (30) al­
lows us also to investigate the effect on the scattering 
of the dispersion associated with the appearance of 
second sound. Thus, in the region of low T and not too 

large w, in which the viscous and the normal damping 
rri are small, of comparatively the same order as the 
thermoelastic damping and rfv so that one can neglect 
the terms r(k, w), A(k, w) and the last component in 
(30), Eq. (34) in the elastic, isotropic case takes the 
form 

- d'acoh = ~ / e- w I~ a.,e'q•, I' _!'__{( qk)•xau,s'cn•k•. 
dQdE V e , 2nM • 
X [w2cn4 (k'u 1s2 - w2 ) 2 + X2 [(k'u 1s2-w2 ) (k2cn2 - cu2 ) 

-auts2cn'k4l'r' + R,} (36) 

Here Rt denotes the second, transverse component in 
the curly brackets in (35), and the speed of second 
sound err is given by Eq. (33) with Usi independent of 
n. It is seen that for xw > cji there is a maximum in 

the cross section (36) corresponding to second sound, 
although its intensity is approximately 1/ a that of 
first sound. For xw « cfi, (36) goes over into (35) 
with 71l = 0. 

The relations (35) and (36) describe the shape of the 
lines of the quasielastic peaks in the hydrodynamic 
region w' k. v << r' and are similar to the correspond­
ing expressions for the liquid, which are discussed, for 
example, inf 201 • The quantitative difference consists 
fundamentally in the fact that in a solid the given region 
is always narrow (compared, for example, with the 
Debye temperature ®D) which makes its experimental 
study difficult. However, in principle, all the disper­
sion discussed here can be studied in scattering ex­
periments. The dispersion connected with the thermal 
conductivity is important in the region of comparatively 
large k and small w ~ xk2, in which the viscosity, 
account of which is necessary in sound damping, is un­
important. 

In conclusion, we note that our results illustrate the 
considerations of Kadanoff and Martinr2oJ on the singu­
larities of the correlation functions G(k, w) in the 
region of hydrodynamic w and k. From considerations 
of correspondence with hydrodynamics, these authors 
proved the presence of singularities of G for small k 
and w and noted that the nontrivial form of these singu­
larities can indicate the difficulty of the microscopic 
calculation of G in the given region. Our results show 
how one can complete these calculations in the case of 
a solid. This example can be useful in the considera­
tion of more complicated phenomena, for example, in 
the study of relaxation in spin systems. 

The authors are deeply grateful to A. I. Larkin, 
whose valuable observations were very useful in the 
given research, and also to B. I. Shklovskii for an in­
teresting discussion. 
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