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Using the hydrodynamical equations we obtain the non-linear tensor of the dielectric constant of a 
weakly turbulent plasma for the case of frequent Coulomb collisions. We show that in that frequency 
range new unstable branches of oscillations (of the second sound type) may occur. The condition for 
instability of these oscillations turns out to be appreciably less strict compared to the excitation of 
ionic sound in a collisionless plasma. 

1. INTRODUCTION 

I T is well known that the electromagnetic properties of 
a plasma depend essentially on to which range of char­
acteristic plasma frequencies the oscillation frequency 
considered belongs. 1 > In an unperturbed plasma the 
characteristic frequencies are the electron and ion 
plasma frequencies, the cyclotron-hybrid, drift, and 
other frequencies. r1- 3 J In a sufficiently dense plasma, 
moreover, there are still the frequencies of binary 
collisions ve (electron- electron and electron- ion) and 
vi (ion-ion). It is then natural that when we change to 
the range of frequencies which are lower than the fre­
quencies of the binary particle collisions the dispersion 
properties of the plasma are appreciably changed (it is 
possible that new forms of instability and so on ap­
pear). r4 ' 5 J 

Apart from the above mentioned characteristic fre­
quencies there appear in a turbulent plasma new ones 
connected with the effective turbulent collisions of parti­
cles with plasmons and of plasmons with one another. 
It then turns out that even when the turbulence is weak 
when the relative energy density included in the pulsa­
tions is small, W/noTe « 1 (noTe is the thermal energy 
density of the plasma) the frequencies of the turbulent 
collisions v ff can be sufficiently large, especially if 
high-freque~cy (for instance, Langmuir) turbulence is 
developed. ra-aJ They may become comparable to or even 
appreciably exceed the frequency of the binary particle 
collisions. It is natural to assume that the dispersive 
properties of a weakly turbulent plasma in the frequency 
range below veff may differ appreciably from those of a 
"quiescent" plasma in which no collective degrees of 
freedom are excited. If, moreover, Veff ::?> Ve we can 
consider the plasma to be collisionless in the range 
Ve « w « Veff· 

Such a study was carried out for an isotropic and 
uniform plasma inl9 ' 10 J (see alsol6 J ). In those papers 
it was observed that ion- acoustic-like oscillations (in a 
non- isothermal plasma T e >> Ti) become unstable when 
there is a background of Langmuir waves present, and 

1 l Here and henceforth we understand by the term electromagnetic 
properties of a plasma the linear response of the plasma to an arbitrary 
weak electromagnetic field. 
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the criterion for the occurrence of this instability was 
found: 

W 1 I noTe> 12vre2 I (up~)', 

where vTe and vJh are the appropriate velocities. 

Finally, a general method was proposed in w' 12 J to 
study the dispersive properties of a plasma in the range 
of frequencies less than the maximum frequency of tur­
bulent collisions. 2 > Apart from the fact that in a dense 
plasma (produced, for instance, by a laserr14J) the fre­
quency of pair collisions ve may be rather large 
(10 15 sec-1), under astrophysical conditions there is 
also interest in the excitation of long-wavelength oscilla­
tions. 

Here we shall consider the case when 

W~'\'eff''Vc. (1.1) 

In Sec. 2 we use a method similar to the one devel­
oped in[U' 12J to obtain an expression for the longitudinal 
part of the non-linear dielectrical constant of a weakly 
turbulent plasma El(w, k, wl) in the frequency range 
(1.1). When obtaining El(w, k, wZ) we used the results 
ofl 15 J in which we found a relatively simple set of hydro­
dynamic equations which give an adequate description of 
the non-linear phenomena in a plasma in the range of 
frequencies of interest to us. 

We study in Sec. 3 the dispersion relation 
El (w, k, W l) = 0 and find a criterion for the instability 
and the build-up increments of acoustic-type oscilla­
tions; we also find new non-linear branches of oscilla­
tions which can be considered as "second" sound in a 
plasmon gas. 

Finally, in Sec. 4 we find the limits of applicability 
of the results. 

2. NON-LINEAR DIELECTRIC CONSTANT OF A 
PLASMA 

Since we are interested in the electromagnetic prop­
erties of a weakly-turbulent (quasi-stationary) plasma3 >, 
we shall look for the linear response of such a plasma to 

2 ' For more details see [ 13]. 

3) See ( 16 ] for the quasi-stationary spectra of a weakly-turbulent 
plasma. 
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a weak regular electric field ER. In[lsl we obtained a 
set of hydrodynamic equations which are very conven­
ient for further calculations. We also showed there that 
with sufficient accuracy h.f. turbulence (which we shall 
here assume to be Langmuir turbulence) can be des­
cribed by the equations of collisionless hydrodynamics 

an. . ' Tt + d1v ne" e = 0, 

av. e 
-+(V.VV.)=-E, 
ilt me 

(2.1) 

(2.2) 

while the low frequency field is described by the follow­
ing equations 

iln. iln.v. iln, iln, V, 
Tt+a;-=0, 7+~=0, 

[ il ( il )] iln.T. iln.a~ m.n. -+ V.- V.a=----,---en,Ea+Ra, 
ilt ilr ' ilxa ilx~ 

(2.3) 

(2.4). 

m;n;[~+(v~~)]v;a= _an;T;- an;"p+en;Ea-Ra, (2.5) 
at ar ' ilxa. axp 

3 ( a a ) a a av." (2 B) 
2 n. Bt+V•a;- T.+n.T.a;-V·=-arq.-:n.,a~ ax~ +Q., . 

3 ( a a ) a a oV;" (2 7) 2n; -a;+V;ih T;+n;T;ilrV;=-arq;-n;,a~ox~ +Q;,. 

where R = Ru + ~. Ru is the friction force, RT the 
thermoforce and, similarly, qe = q\) + q!j., u = v e- vi, 
me, mi are the masses, ne, ni the concentrations, and 
Te, Tithe temperatures of the electrons and ions, 
respectively. The value Ru = -0.51 x menelleU, if the 
value of U corresponds to low-frequency oscillations and 
Ru = -menelleU, if U corresponds to high-frequency 
oscillations; 

aT8 
Rr= -0.71n.-, ar 

n.T. fJ 
qr• = -3.16----T., 

me'Ve Or 

Q.= -(RU)-Q1, 

n.T. <•> llap•= -0.73--Wap, 
'lie 

qu• = 0.71n.r.u, 

q , __ 3 9 n;T1 iiT; 
l- • ' 

mtvi Or 

m. 
Q;= 3-ne'v.(T.-T;), 

m; 

iiVa iiVp 2 iiV 
Wa~=~+--llap--. 

ilx~ ilxa 3 ilr 

Appropriately to our problem we expand all required 
functions, both the random (turbulent) and the regular 
ones in a power series in the amplitude ER of the weak 
regular field and retain terms which are not of higher 
order than linear. Introducing the following notation: 

E=ER+E, n=nR+ii, V=VR+V, (2.8) 

(here ER, nR, and yR are the values of the functions 
E, n, and V, averaged over an ensemble) we shall have 

E = E<0> + E<1>, ii = n<0> + ii(ll, f/' = f/'(O) + f/'(l) (2. 9) 

and so on, where the quantities E;<o>, fi<0 >, and y<o> are 
independent of ER, while E;<'>, fi<'>, and y<'> are propor­
tional to ER. 

We substitute the expansions (2.8) and (2.9) into Eqs. 
(2.1)- (2. 7) and retain only the terms linear in ER. The 
zeroth order equations in ER are then satisfied since, 
by assumption, the plasma turbulence is quasi-station­
ary. Equation (2.6) leads to a weak collisional heating 
of the plasma ll?l which can be taken into account in the 

adiabatic approximation if the inequality 
'Ye W 
--;-T <1 
ro no e 

or if not (2.10) the inequality 

1/ wt~ 1, 

(2.10) 

(2.11) 

is satisfied. The temperature T~0 > occurs as a constant 
parameter in the equations, which are linear in ER, if 
inequality (2.10) is satisfied. When (2.11) is satisfied 
the temperature itself is a slowly varying function of 
time and in general is proportional to W, so that the 
quantity T~0 > depends on the moment that quasi-station­
arity is established. 

We turn to the set of equations which are linear in 
ER. As we already mentioned in the Introduction we 
shall consider only turbulent collisions of lowest order 
in the turbulent energy W so that in the equations (2.1) 
and (2.2) we can retain terms linear in E while the set 
of equations for low-frequency oscillations (2.3)- (2. 7) 
contain terms of second order in E or V. We get then 
for the Fourier components of the required functions 

The expressions 

(2.13) 

f/' I 1 s k,' (kk21) {0) I I I I (2 14) 
k =k ---v.,nr,,ll(k-k, -k2)dk, dk2 • 

e~ ( w, k) w,' k21 

are obtained as the result of solving Eqs. (2.1), (2.2) 
linearized in ER together with div E = 4?Te(ne- ni)· 
Substituting (2.13) and (2.14) into (2.12) and solving the 
set obtained together with 

iiER jilt= -4njR, 

we obtain the longitudinal part of the non-linear dielec­
tric constant tensor of the plasma: 

woe' ( me A;we ) me Wo.2 (2 15) e0 (w,k)=1+t 1----~ +t---, • 
w.xw(1 + ~) m; Aew; m; W;lOJ 

where 

3 k2ur·2 
Q1 =- -iw + liv + 3,9 --'-, 

2 'II; 

3 k2vTe2 (llv)2 m 
Q.= --iw+llv +3.16-----, llv = 3-"-v., 

2 lie Q; m; 

[ ( ll 11 ) k2vr.' J ( 1 m. 1 ) x=1+ 0.5111.+1.71 0.71-- -- -+--, 
Qi Oe Ctle 1ni Clli 
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A,= 1.71 + m, ~ ( 1 + ~~) r0.51ve + 1.71 (o.71- ~~) k'vr,' J 
1ni (_tJ1 Qi Qi Qe 

A;= 0.71-~-~ (1 + llv)[o.51v,+ 1.71 (o.71- llv) k'vre' J, 
Ql We Ql Ql Qc 

ik2v,A,e2 s (k1 (k- ki) ) 2 (k8!Vki/8ki) 
~ = - ., 2 ' • 2 2 • dk, Sn-xQ,.,o,m, ffiX k1 I k- k1 I ffi - kv g 

Vg = awklok is the group velocity of the high-frequency 
oscillations, N~ the number of plasmons which can be 

1 

defined by the relation 

W 1 = ~ <•l,,N,,1dk,. 

3. LOW-FREQUENCY SPECTRA OF A WEAKLY TUR­
BULENT PLASMA 

We consider here the dispersion equation 

en(w, k, W1) = 0. (3 .1) 

We have noted earlier that its solution is valid in the 
range lw- kvTa I << ve, 0! = e, i. Moreover, in order to 
obtain overseeable results it is expedient to split this 
range in a few smaller regions defined by the inequali­
ties 

1) 6v ~ffi ~ kvr,, (3.2) 

2) Ul~ kure, bv, k 2vr,2 / v,, (3.3) 

3) k2Vre2 / 'Ve, 6v< ffi< kvTe, (3.4) 

4) 6v<ffi< kvre, k 2vr/ / Ve, (3.5) 

5) k'vre' / v, < <•l < kVTe, 6v. (3.6) 

We emphasize here that in the limit of weak non­
linearity only two branches of oscillations would occur 
separated by the region of strong absorption,llsl a high­
frequency one w s < k2vTe I v e and a low- frequency one 
w s > k2vTe I v e· Both in this and in other cases the 
quantity ws can be estimated to be approximately 
ws ~ kvTi (1 + Te1Ti) 112• As we shall see below in a 
weakly turbulent plasma there may appear completely 
new branches of oscillations (amongst them some of the 
"second" sound type) which under well-defined condi­
tions become unstable. 

In the first range (3.2) the solution of the dispersion 
equation (3 .1) under the conditions 

(3. 7) 

is 

(3.8) 

In the limit which is the opposite of (3. 7) there is no 
solution in this range. 

In the second range (3.3) solutions of (3.1) exist only 
for a very low level of Langmuir turbulence (and 
vph > vTe(milme)lh) 

(3.9) 

(3.10) 

We now turn to the most interesting solution of the 

dispersion equation (3.1) (from the point of view of the 
magnitude of the increment). To do this we consider the 
range (3.5). We note in passing that just in this range 
there exists a linear "high-frequency" acoustical 
branch Ws = kvTi (TeiTi + 513) 112 • The equation has the 
form · 

(3.11) 

One sees easily that one can obtain from (3.12) for 
sufficiently small values of W l linear solutions. 

If 

\I ., I z z - T ., II' ' ( ) 
~ Vre 171t.'( .). ; )w CJ 1 y -->--- ---+1 =---

noTe Ve2 ml 3 Te llqTe ' 
(3 .13) 

the oscillations considered, (3.12), become unstable and 
the increment of this instability is 

(3 .14) 

Let us compare the results obtained with the non­
linear oscillations of a collisionless weakly turbulent 
plasma. 

It is well known that in the case w ::?> lle the equation 
which is similar to (3.11) has the form, when kvTi < w 
< kv l6l4> 

Te' 
wq - w2 ( (tJ,.. 2 + Ws~) - ( (!) ..... )~ - (t),.. 2) m} = 0. 

W., = k2vi, w,....... 2 = 8/4 Wlk2 / nonle. (3.15) 

and unstable solutions occur when 

(3 .16) 

Comparing (3.16) and (3.13) we see that the excitation 
of non-linear acoustic oscillations is possible for con­
siderably smaller turbulent energies 

Wcr'(,•) /Wcr' ~ k'vr,'/v,2< 1. (3.17) 

Moreover, since W Jr(v) is proportional to k2 , the long­
wave oscillations become unstable at relatively lower 
W z. The solution of (3 .14) is limited to the following 
ranges of the quantities k and W l: 

(3.18) 

(3.19) 

Finally the solutions of Eq. (3.1) in the ranges (3.6), 
(3 .4) immediately go over into one another when we 
change the frequency from w < o v to w > o v and are the 
same as (3.8): 

(3.20) 

The following inequality must then be satisfied: 

(3.21) 

4 l In [6] it is shown that Eq. (.15) is valid only in a very narrow 
range of phase velocities of Langmuir waves, vph < 3vTe(mi/me)Y>. 
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4. BRIEF CONCLUSIONS 

This study allows us to reach the following conclu­
sions. 

1. The dispersion properties of a weakly turbulent 
plasma in the region w « ve (as also in the collisionless 
case) may differ radically from those for the case when 
there is no turbulence. 

2. Non-linear instabilities occur in the range con­
sidered at a relatively low (compared to the case when 
w > ve) level of turbulence (see Eq. (3.17)). . 

3. For a given level of turbulence W! there 1s a 
critical value of the wave vector ko which is determined 
by the left-hand side of inequality (3.18). The build-up 
of oscillations with k « ko is described by Eq. (3.20) 
and fork > k 0 by Eq. (3.14) which describes the maxi­
mum increment. If W/noTe < (me/mi)2 the solutions of 
the dispersion relation (3.1) have the form (3.10). l 

4. When we obtained the expression for En(w, k, W ) 
we considered only terms of first order in the turbulent 
energy wl, dropping higher-order terms. We shall ob­
tain the conditions under which such considerations are 
valid. According to[l2J we can neglect turbulent colli­
sions proportional to second and higher powers of W l, if 
the following inequality is satisfied 

(4.1) 

here w is the real part of the non-linear correction 
cor · h th 1' to the frequency which is connected w1t e non- mear 

interactions between Langmuir waves. The maximum of 
the quantity wcor occurs when vph > vTe(me /mi) 112 , 

Wcor ~ w0eW1 /noTe. (4.2) 

Substituting (4.2) into (4.1) we see that when k < ko 
(solution of the form (3.20)) there are no further restric­
tions, but in the region ko < k < kmax (for the solution 
(3.14)) we have 

5. The condition that terms ~W2 and higher-order 
terms can be neglected in the case considered when 
w « ve does not lead to an appreciable reduction of the 
range of applicability of the results obtained, in contrast 
to the collisionless limit where it is necessary to take 
into account turbulent collisions of higher order in wl 

f t [6]5) except for a narrow range o parame ers. 
In conclusion the author expresses his gratitude to 

v. N. Tsytovich for discussions of the statement of the 
problem and of the results obtained. 

5> This statement refers only to the build-up of the ionic sound of 
Langmuir waves and is not valid in the general case of the interaction of 
other modes of oscillations. 
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