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The matrix element for an arbitrary process with account of the Coulomb interaction between the 
charged particles with small relative velocities in the final (or initial) state is found by direct sum
mation of the contributions from the main graphs of perturbation theory. 

1. If in a reaction, slow charged particles (with small 
relative velocities) occur in the final (or initial) state, 
the Coulomb interaction between these is of great im
portance. The problem of the Coulomb interaction be
tween the members of an electron-positron pair was 
first considered within the framework of non-covariant 
perturbation theory in the known work of SakharovYl 
Here account was taken of the fact that the interaction 
leading to the production (annihilation) of the pair acts 
over distances1> ~ 1/m, while the Coulomb interaction 
acts over distances ~ 1/ma » 1/m. This circumstance 
allows one to factorize the matrix element, and the prob
lem of the final state interaction can be solved with the 
help of the nonrelativistic Schrodinger equation. In 
solving the problem of the Coulomb interaction with the 
help of the graph technique one must keep in mind that 
the characteristic expansion parameter in the perturba
tion series is a/v (v is the relative velocity of the 
particles), and for small v (where a/v :;:::, 1) it is im
possible to carry out the summation over the main 
graphs (with respect to a/v) of perturbation theory. 
Solov'ev and Yushinl2 J have attempted to carry out such 
a summation for the process of two-quantum annihila
tion; however, there are some inaccuracies in the 
corresponding part of their paper. Below we shall give 
the solution of the problem of the Coulomb interaction 
in the final state for any reaction involving slow charged 
particles. 

2. Let us consider the general graph giving a contri
bution to the Coulomb interaction in the final state. We 
begin our discussion with the vertex graph (Fig. 1), 
since the result is trivially generalized to graphs with 
an arbitrary number of external photon lines (q1, ... , qs)· 
The matrix element of n-th order is 

... v"ms(- Ji, + fmz' +!em,'+ m)v""''(- Ji, + km!' + m)v"mw(pz) 
X ... [- 2(pz(km/ + kmz')) + (km/ + k,,')i+ ie](- 2(p.km!') + kmt12 + ie) 

(1) 

In our further considerations we shall use the system 
of the center of inertia of the final particles, p1 + p2 = 0, 

l)We use units such that h = c = I; a= e2/47r = I /137; the metric is 
(ab) = a0b 0 - a· b. 

FIG. I. 

lp1l = IP2I = p, E = ...)p2 + m2 • For lkin,l ~ m and the case 
of small p of interest to us, the terms k~ ·pin the de
nominator of the integral (1) can be omitted, so that the 
integral ceases to depend on p at all. Therefore, we 
consider below only the important region lkin. I < m. It 
follows from these considerations that we can restrict 
ourselves to the region lk~ I < p. 

We make a "scale" transformation of the integration 
variables, k~ = pkm, k~ = p2k~/E and introduce the 
regularization mass of the photon X. = X. 0/p; we then ob
tain 

If ( ie2 )n . r ( rrn dkm 0 dkm ) u (pi) Y"' (Pi+. m) V''' 
'n= (2n)'Ep (-!e)J m~1 km2+J.2 (k12-2k1"+21m-ie) 

(Pt + m)y"' ... y"ms(- Pz + m) V''"'' (- Pz + m)y"mw(pz) 

[(kt + l<z) 2 - 2(k1° + k2°) + 2n(k1 + k2)- ie] ... 
X 

... [(km! + kmz) 2 + 2(km1° + k,,,0) + 2n(kmt + kmz)- ie] 
1 (2) 

where n = p1/p. In the denominators of (2) we neglect 
terms of the form p2(k~)2 /E2 , p2 k~.k~. /E2 as com-

1 J 
pared to terms of the form k~, k~ and terms containing 
kin in the numerator. This approximation is justified, 
since the integral (2) converges for p - 0. Thus the 
scale transformation allows us to separate the main 
terms with respect to a/v in the matrix element. 

We begin the calculation of the integral (2) with the 
integration over the zero components k~. Here it is 
convenient to make the following transformation of var
iables: 

7<1° = k 1", k,o = Ji,o, 
li2° = k1° + k2°, k2° = li2°- 7<, 0, 

na0 = k1° + k2° + k}, ka0 = na0 - nz0, 

lin° = k1° .+. k2fJ·+· k,~ +' · .. · .. kn. 0,· •••••• 
kn° = lin°- };;~_ 1 , (3) 

The integrals over the variables k~ can be evaluated by 
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closing the contour in the upper (or lower) half-plane 
and computing the residues in the poles. If m1 does not 
coincide with 1, then all poles in the variable k~1-1 
will lie in the lower half-plane [indeed, in the terms 
corresponding to the line p1, this variable is encoun
tered once in the combination (k~ 1-1 + i E); in the 
terms corresponding to the line p2 , one has the combina
tion (km0 _ 1 + i E), or k~ _ 1 does not enter at all]. But 

1 1 ~ 

then the integral over the variable k~ -1 vanishes 
1 

everywhere except when m1 = 1. Continuing this argu-
ment, one easily sees that only those graphs give a non
vanishing contribution in which k~j = kj ; these are the 

graphs which have the form of a straight ladder (Fig. 2). 
We make a few remarks on the choice of graphs. 
1) Only those graphs give contributions of interest to 

us (with the expansion parameter e2/vj) in which the vir
tual photon lines begin and end on external lines. Indeed, 
only in this case do terms with external momenta and 
masses occur in the propagators in the integrals (1) and 
(2), so that the factor 1/p separates out as a result of the 
scale transformation. Therefore the concrete form of 
the graph for which we consider the Coulomb interaction 
in the final (initial) state is not essential at all-it can 
be one electron line with an arbitrary number of external 
photon lines (q1, ... , qs) [production (annihilation) of a 
pair through 1, 2, ... , s real (or virtual) photons] or sev-
eral electron lines. The only important thing is that the 
momentum transferred in the graph of the basic process 
be much larger than the important region of momentum 
transfers along the photon lines of the Coulomb interac
tion. [In the integral (2), the main contribution comes 
from lkl, k0 ~ 1, which means that the important region 
for the integral (1) is 

lk'l ~ p, k'0 ~ p2 IE~ lk'l'1• 

2) The contributions from graphs where virtual pho
ton lines begin and end on the same external line have 
poles which lie in the same half-plane, since the sign of 
the term k0 in (2) is determined by the external momen
tum, and this is the same for all these lines. If there 
is more than one external photon line (ql, ... , qs), 
there are virtual photon lines whose ends fall on an in
ternal electron line between the external photon lines 
(q1, ... , qs)· Graphs with such lines do not give a contri
bution, as is seen, for example, from the fact that no 
factor 1/p can be pulled out from them after the scale 
transformation. Vacuum polarization graphs and graphs 
describing the scattering of light by light can be neglec
ted in our approximation; their contributions are pro
portional to powers of p in the numerator for small 

FIG. 2. 

2) It follows from this that one must neglect k' in all internal lines of 
the basic process. 

momenta k', which are important in our problem. The 
inclusion of vacuum polarization graphs leads only to a 
renormalization of the charge. 

It follows from our consideration that the graph of the 
type of Fig. 2 is the most general form of graph which 
must be investigated in the problem of the Coulomb 
interaction in the final state. 

3) Although it is the region of small momenta of the 
virtual photons which is important in our problem, the 
approximation of classical currents is nevertheless not 
applicable, since it is impossible to neglect terms of 
the form kj_2 , kj_kj compared to terms of the form (pk') 
in view of the smallness of the momentum of the ex
ternal lines p. For this reason the procedure ofl2 J is 
incorrect, where the Coulomb interaction in the final 
state of the two-quantum annihilation process was calcu
lated using the approximation of classical currents with 
a correction of the propagator of the internal electron 
line which is linear in k'. 

4) When we consider the "Coulomb interaction" of 
charged particles one of which is an initial, the other a 
final particle, then the poles in kj in the integral (2) lie 
in one half-plane, and hence such graphs do not give 
contributions of order a/v. 

3. Let us continue the calculation of the integral (2) 
for the ladder of Fig. 2. After commutation, we obtain 
for the numerator 

( -4 (PIP2)] nu; (pi) 'V"v (p2) · 

We note that we consider the Coulomb interaction be
tween an electron an<!__ a positron (attraction). Calculat
ing the integral over kj by the method of residues, we 
find 

(4) 

where v = 2p/E is the relative velocity, 31 and Mo is the 
matrix element for the basic process (without account 
of the final state interaction). In the integral (5) we have 
made a change of variables: 

i=i 

We note that (4) and (5) do not depend on the spin of the 
charged particles, since the same result will be obtained 
for particles with arbitrary spin (and minimal coupling) 
after k' is neglected in the numerator and the graph is 
reduced to the ladder graph. 

As shown in Appendix A, the matrix element for the 
process can be written in the form 

n=O n=O 

where 1/J~(r) is the solution of the Schrodinger equation 
for scattering in a Coulomb field (with regularization) 
in the form of a divergent wave. The distribution of the 
poles in the integrals (2) and (5) is determined by the 

3>In the case of particles with different masses, the factor 
E1E2/p(E 1 + E2) = 1/v is taken out. 
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"causal" term i e in the denominators of the propaga
tors; thus (5) and (6) show (cf. also Appendix A) that in 
solving scattering problems, causality arguments re
quire that the initial states must be chosen in the form 
of divergent waves, and final states in the form of con
vergent waves. 

4. It is desirable to calculate the integral (5) directly, 
taking into account that the solution (6) was obtained 
with a regularized Coulomb potential and that the solu
tion in a Coulomb field has a number of features which 
are connected with the slow fall-off of the potential at 
infinity. This calculation is carried out in Appendix B. 
It yields for the attractive case 

M = M0 exp {- i : ( C + In z~) } earr/2vr ( 1 - i:) (7) 

and for the repulsive case 

(8) 

where C is the Euler constant. These formulas contain 
the photon mass Ao only in the phase of the matrix ele
ment, so that no infrared regularization of the cross 
section is necessary; this is natural since the emission 
of real photons by slow particles is strongly suppressed. 

The advantage of our approach to the Coulomb inter
action problem is that it is universal, since, as shown 
above, the problem reduces to the summation of straight 
ladder graphs (of the type of Fig. 2) for an arbitrary 
process; the only requirement is that the characteristic 
momentum transfers in the basic process be much lar
ger than the relative momenta of the final (or initial) 
particles, which corresponds to the requirement that the 
basic process occurs over distances which are small 
compared to atomic dimensions. 

As a result the cross section is multiplied by the fac
tor 11/1~(0) 12 , which leads to an essential change in the 
cross section in a narrow region of small relative veloc
ities (this corresponds to a narrow region of energies 
near the reaction threshold, or a narrow region of angles 
of emission). In special cases this result has been ob
tained earlier by Sommerfeldr31 (for bremsstrahlung of 
nonrelativistic particles), and Sakharovu1 (for the pro
duction of electron-positron pairs). 

APPENDIX A 

The Schrodinger equation in momentum space for 
scattering from a regularized Coulomb potential 

(e-A.or /r, A. 0 - 0) has the form 

am 1 r 3 1 + 
1flv±(k)=~(p-k)- n• p•-k•+ie') dk1 (k-k•)'+A.o' 1flv-(ki), 

- (A.l) 
where v = p/E. Using IPt(r = 0) = J d3kl/lt{k) and integrat
ing (A.l) we obtain 

~( am\ns 1 
1flv±(r = 0) = 1 + L; - ~) d'k• [(kl- P)' + t.o•](p•- k•• ± ie) 

n=i 

~ 1 1 
X d3kz .. ---::--:---,--

[(k2- ki) 2 + A.o2] (p2 - k,2 ± ie) 

S 1 
o o o d3kn [ k k ; 2]( k 2 0 ) o (A.2) 

( n - n-d 2 + Ao P2 - n ± te 

Making the scale transformation~- pki in (A.2), we 
find that the n-th term of the series agrees with In in (5). 

APPENDIX B 

Calculating the integral (5) over the angles, we obtain 

For the following it is convenient to parametrize the 
logarithms entering in this expression: 

In (km + km-1)2 +t._:'_ = f d~m2 
(km-km-1) 2 +1•2 o~, 

x[ (km-km~•)'+~m' -(k,.+km-~)'+~m"]o (B.2) 

Substituting this representation in (B.l) and taking ac
count of the symmetry of the integrand, we have 

1 

It is convenient to begin the integration with the in
tegral over kn: 

.. +oo k dk 1 

~'d~n'l .. [(kn-k:_.):+~n2l (kn2 -1-ie) 

.. 
= s d~n (2ni) ikn-1 4) ~ (1+-i~n) 2 -k~-lo (B. 

Calculating the next integral, we have 

The integral over kn _ 2 has the same form as the integ
ral over kn _ 11 so that the successive integrations can 
be carried out in elementary fashion. Making the re
placement 13m- A.f3m, we obtain 

( 
ir;. )n oo l+~n 1+~, n 1 

In= v v~n ~ d~7t-lo 0 0 ~ d~11I ~m(1 + il..~m/2) 0 (B.6) 

This integral is equal to the following integral up to 
terms of order O(A.): 

which can be seen by making the replacement 
~m' 

~m-+ 1 - i],~m' /2 0 (B.8) 

The integral (B. 7) can be calculated with the help of 
the exponential parametrization 
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(B.9) 

Let us consider 
oo oo t+Pa t+Pz 

~ dt, ~ rlt2 S dB 2 ~ dB~e-~·'·e-~''' (B.10) 
0 0 1 1 

00 00 i+lh 00 -t tl 1+~3 

~dt,~' ~dt2 ~ d~,(e-~,t,-e-~,(t,+t,l)=·~ dt1~ ~dt2 ~ dB2e-~'''· 
tl 0 1 0 0 1 

It is seen that the integral over the next variables f3m 
can be evaluated in the same way. As a result we have 

t tn-2 -t ln-1 2/D. 

( 
iY. \ nco e-t, .~ e-tz \_ dtn .1 e n-1 \ dtn (' d~ne-tn.Bn. 

In = -v ) \
0 

dt 1 T.o ~ dt, T, .. . ) _ .\ \ 
~ • 0 tn-1 0 l (B.ll) 

Changing the order of integration and taking account of 
the symmetry of the integrand, we find 

2/i').. 00 

( ia)n r r 1 [ r e-t )n-1 
In= - .\ dtn .\ e-1nBnd~n--- J dt-

V ~ ~ (n- 1)! tn t 

( ia )" r 1 [ S e-t )n = -;; J d~e-·B ~ dt -t- . 
o iAB/2 

(B.12) 

Summing over n, we obtain [up to terms of order 0(.\)] 

00 00 

"" [ ia e-t J M = M0 ~I,= M0 \ d~e-B exp --;;- .\ dt-t-
n=O G ii\B/2 

{ ia ( Ao )} ( ia) = Mo exp ---;;- . C + In 2p eaof2vf 1 ---;;- . (B.13) 
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