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The equation of state of truly neutral matter consisting of neutral particles and equal amounts of 
charged particles and antiparticles is considered. The pressure may exceed one-third the energy 
density in the presence of particle and antiparticle repulsion; however, at high temperatures, it 
approaches this value asymptotically, owing to the dominating contribution of weakly interacting 
particles. The density fluctuations are characterized by a universal dependence on the specific 
entropy for any equation of state. The fluctuations of the electric charge correspond to the equi­
partition principle. 

NEUTRAL matter (NM) is defined by the condition 
that all strictly conserved charges-baryons and lep­
tons in addition to electrons-are equal to zero; thus 
NM is the excited state of the vacuum. An example of 
NM is the equilibrium electromagnetic radiation. In 
the early stages of evolution of the universe, matter 
was evidently neutral with high accuracy. 

The thermodynamic properties of NM, consisting of 
weakly interacting particles, are easily calculated. 
The energy density e is expressed in terms of the 
temperature T by formulas of the form e = aT4 for 
radiation and for neutrinos and by corresponding ex­
pressions for electron-positron e± pairs (we shall al­
ways give the temperature in energy units). However, 
at sufficiently high temperatures, hadrons pions, kaons, 
baryons and antibaryons, etc. should take part in the 
equilibrium. Their interaction cannot be regarded as 
small; we are a long way from the establishment of a 
theory of interaction in a dense medium of hadrons. 

The general thermodynamic relations, as is well 
known, furnish one relation° that is specific for NM: 

de 
p=-e+Ts= -e+s­

ds' 
(1) 

where p is the pressure and s the entropy density 
(referred to unit volume). We assume that as there­
sult of the interaction of the particles and of the fact 
that the particles possess a rest mass, the interpola­
tion formula e = bTk holds over any range of tempera­
tures (even if this is bounded and small), so that 
k = d ln e/d ln T; it follows from Eq. (1) that 

S=-k-bTk-t 1 
k- 1 ' p = k- 1 e. (2) 

in this range of temperatures (seefl, 2l). Here, weakly 
interacting particles with a rest mass of the order of 
m ~ T/ c 2 make a contribution with an effective ex­
ponent k' > 4. 

The conclusion can be drawn directly that in thermo­
dynamic equilibrium, in which weakly interacting par­
ticles (for which k' :::: 4) take part, there cannot be a 
total k < 4 asymptotically; if strongly interacting par-

!)This relation follows from E = ~N-pV + TsV with account of the 
fact that for NM, ~ = 0, N = 0), inasmuch as one must understand by N 
the difference in the number of particles and antiparticles. 

ticles give k' < 4, then the asymptote at high tempera­
tures will be determined not by these particles, but by 
the weakly-interacting ones, the contribution of which 
becomes dominant at high temperatures, thanks to a 
higher exponent of the temperature. 2> 

We recall that the asymptote p = e was obtained 
previously for cold matter in the limit of high baryon 
charge density, under the assumption that there exists 
a vector interaction that leads to mutual repulsion of 
the baryons, but differs by a finite radius of action 
from the electrostatic interaction.r4J The energy 
density of the interaction in this case depends on the 
density of the baryons as Ei = an2/2; the other energy 
components, name~ the rest mass nmc2 and the 
Fermi energy ~ n4 3, are smaller than the energy of 
interaction in the limit as n -co. From e = an 2/2 it 
follows that 

dE d(e/n) 
p=- av=---d(1/n) =e. (3) 

In the theory of quantized fields, which is necessary 
for the consideration of antiparticles, the vector inter­
action leads to the result that the particle and the anti­
particle are attracted to each other. Transferring 
verbatim the assumptions of reference[4 l to NM, we 
find that there is no interaction. However, we assume 
that there is some other interaction which adds the 
term aq 2/2 to the energy density. Here q is the sum 
of the densities of the baryons and the antibaryons. We 
now make the calculation of the equation of state under 
two assumptions: 1) considering only the baryons and 
the antibaryons, 2) considering them in equilibrium 
with the weakly interacting particles. For simplicity, 
we neglect the rest mass of the baryons, assuming that 
the effects of interaction are essentially established at 
temperatures above mc 2• We also neglect the differ­
ences between Bose, Fermi, and classical statistics. 
In fact, in the expression for the energy density for 
rest mass and chemical potential equal to zero, we 
get in the three cases 

S (ex -1)-1x3dx = n4/15 = 6,4, S (ex+ 1)-1x"dx = 7l14/120 = 5.6, 

2>This consideration is not applicable to a situation for collisions of 
particles of high energy in cosmic rays, where equilibrium with weakly 
interacting particles has not been established in the general case. PI 
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~ e-xx'dx == 6, 

which differ from one another by less than 1o%. 
We now construct an expression for the NM energy 

density, for NM consisting of relativistic baryons and 
antibaryons, characterizing the material by two 
parameters: q-the total density, ®-one-third of the 
mean energy of a single particle. Correspondingly, the 
volume in the momentum space occupied by particles, 
and the density of particles in phase space, and con­
sequently also, the entropy, are expressed in terms of 
® . As a result of calculations, it will be shown that ® 
is the temperature but at the beginning, we shall con­
sider ® as a parameter and for this purpose we intro­
duce a symbol other than T. 

The desired expressions for E and s have the form 
aq2 

e=z-+38q; s=qln(re'83/q), (4) 

where r is a constant proportional to the statistical 
weight g of the baryons, r = 81Tgl (21Tfic )3 (as one can 
show by successive comparison of the results with 
known formulas for a= 0); the factor e 4 is separated 
from r for convenience of description of the formulas 
that follow below. We now consider ® and q as two 
parameters connected by the condition of minimum E 
for a given s or maximum s for a given E. This con­
dition has the form of a Jacobian a ( E, s )Ia ( q, ®) = 0 
and allows us to connect q and ® with each other, re­
ducing the number of independent parameters to one. 
After this we can in principle express the remaining 
parameter in terms of s and then get E ( s ), which 
gives the complete description of the thermodynamic 
properties of the material. In practice, the Jacobian 
yields the transcendental equation 

with an explicit physical meaning (aq is the potential 
energy of a single baryon or antibaryon in space with 
given baryon (antibaryon density q). 

(5) 

All the calculations can be done exactly if we intro­
duce the parameter y = aql® and express all the quan­
tities in terms of this parameter. In elementary 
fashion, we get 

8 = evi21'V I ra, q = evl2y y" I ra3 , s = evl2yy3 I ra3 ('y + 4) , 

( y ) T __ ds __ de / ds -= 0 e = ev -2 + 3 y2/ra2, o 
ds dy dy ' 

( v ) p v+2 
p = - e + Ts = ev z + 1 y2/ra2, --;- = y + 6 . (6) 

Thus, as expected, the effective exponent of 
d ln Eld ln T changes from four to two, and the ratio 
of the pressure to the energy density changes from % 
to unity for change in temperature from 0 to oo. 

We now proceed to the consideration of the second 
assumption. We assume that we have in equilibrium 
with the baryons and the antibaryons, weakly interact­
ing particles with zero rest mass and with a statistical 
weight f (carrying out the summation over all types of 
particles). For them, in the expression of classical 
statistics (the index w means weak) 

Bw 3/ ( ) 
Pw = 3, Ew = rr.21Pc' f4. 7 

For the ratio of the total pressure Pt to the total en-

ergy density q, we get 

,z=pt!et=P+Pw=_!_+2 y (8) 
e+ew 3 3 y+6+6eV(//g) 

This ratio z is equal to 7'3 both for T =0 and for 
T = oo. A maximum is achieved in the middle; thus, for 
example, at g = f the maximum z is achieved for 
y = 1.28, T =2 .141 ...fri and amounts to Zmax = 0.39. 

The example given above illustrates the general 
situation; in neutral matter, the excess of z = Pt I Et 
over 7'3 is not large and exists in a region of tempera­
tures bounded both above and below even in the pres­
ence of repulsion of one type of particle or antiparti­
cle. 3> 

On the other hand, account of the rest mass of the 
particles lowers the ratio Pt I Et in NM. As an exam­
ple, we can cite the calculations of[6 J which pertain to 
photons and e± pairs in equilibrium (minimum z is 
equal to ~%). This minimum is achieved for Tlmc 2 

~ 7'3• Naturally, z ~ % for further increase in the 
temperature T-oo. 

Recently, in connection with the discovery of families 
of "resonances" of strongly interacting particles 
(baryons and mesons), the question of the limiting 
equation of state for a mass spectrum that is unbounded 
from above has been posed. [7 J It is easy to obtain 
asymptotic formulas by replacing the discrete rest 
masses with a continuous distribution with spectral 
density u(m) and mean statistical weight g(m). The 
spectral density y is defined so that the number of 
different types of particles with different angular 
momentum, charge, strangeness in a small range of 
masses from m1 to m 2 is equal in the mean to (mz 
- m1)y (..} m 1m 2 ). Below, following the suggestion made 
by Kompaneets in a discussion of the work, we obtain 

cr ( T ) oor z2l/z2+ 1dz 
e=-T4 )'l!J- y(m)g(m)dm, 'l'(x)= J~··· , 

2 mc2 exp {x-1 r'z~ + 1} ± 1 
0 (9) 

the constant a being the same as in the formula for 
radiation. 

Thus, for example, if the number of Regge trajec­
tories is bounded and equal to R, and these trajector­
ies are straight lines in the J -m 2 plane (angular mo­
mentum-mass squared), then g(m) =2J + 1 ~ m 2, 

y(m) =R(dmldJt1 ~ m, so that 

e=const·T4 ~'l!J(Tjmc')m'dm=const·T8 p=e/7. (10) 

A qualitatively new situation arises only in the case 
of an exponential growth g(m)y (m) ~ emcz;T, where 
T is a constant with the dimensions of energy; in this 
case, we get 

-r:-T T 
e~T'/(-r:-T)-+oo, p/e~---ln---+0 as f-+-r:(ll) 

T -r:-T 

and an upper temperature limit exists, equal to T. 

However, these calculations are rather naive, since, at 
high density of the different particles, the interaction 
among them has not been taken into account. If in 
reality the strongly interacting particles are "com­
pound," for example as in quark models, 
then this also means that it is impossible to use ex-

3 >For this reason, it is uncertain whether real cosmological solutions 
with a limiting fixed equation of state is applicable to a hot universe. [5 I 
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pressions of the type given above (see the similar con­
siderations applicable to cold matter[ 81 ). The only 
more or less reliable conclusion is that in NM one 
must expect that p s E/3 asymptotically, although it is 
not excluded that this inequality is not violated in some 
temperature region. 

In conclusion, we note that the problem of the con­
tribution of weak interaction to the equation of state 
remains unresolved to date. The standard Hamiltonian 
of universal weak interaction gives a contribution to 
the scattering of neutrinos by electrons: the corre­
sponding term can, according to Fierz, be represented 
as 

G(,PeOiJiv) (,PvOiJie) --+G(,PeO'iJie) (,PvO'iJiv). (12) 

The contribution to the energy density can be written 

E;w = G(ne-- ne+) (nv- n;). (13) 

We note that in this form it is more convenient to 
consider the coherent scattering of neutrinos by the 
electrons of a macroscopic body: the potential energy 
of a single neutriLno located inside a body is equal to 

!1E = Gne- = 6 ·10"3GpZ I A ~ 10-25pZ I A erg~ 10-13pZ I A eV, (14) 

where p is the density of the body, Z the nuclear 
charge, and A the atomic weight. It is then easy to 
find the refractive index ~ for the transition of a neu­
trino from a vacuum to the volume of the body, ~ = 1 
= ~E/E (private communication from V. B. Belyaev 
and B. N. Zakhar'ev). 

In NM, Eiw = 0, obviously. For a leptonic charge 
different from zero, n 11 - nv ;>< 0. At high temperature, 
and at a leptonic charge different from zero, ne - n~ 
;>< 0 also, while the electric charge can be compensated 
by muons or pions. If we take into account only the 
energy of free particles ( ~ n413) and an interaction of 
first order in G( ~n2), then it is seen that one can al­
ways construct a state with negative energy for any 
sign of G and arbitrary given mean density of the lep­
tonic charge; in particular, this holds for zero charge 
(as a consequence of local inhomogeneity. However, 
Eiw becomes of the order of the energy of free parti­
cles precisely for such a density for which, as is seen 
from the dimensionality, terms of the type G2 n 813, 

G 3n 101 \ G ~ 4 , ••• r each the same order of magnitude. 
As when the "weak" interaction becomes "strong," 
we cannot compute anything with certainty, just as we 
cannot compute the "strong" interaction of hadrons at 
high hadron density. 

Gravitational icnteraction is long-range action and 
should be considered separately; it is not clear how 
one can distinguish the gravitational interaction of a 
separate pair of particles against this background. 
Therefore, we shall not consider the contribution of 
this interaction to the equation of state, limiting our­
selves to those densities s 10 95 g/cm 3 • Attempts to 
advance farther are discussed in [91, 

We return to the problem of equilibrium fluctuations 
of the NM density. For noninteracting particles, ON~ IN 
= .J n V, where N is the mean number of particles in 

the-given volume and ON is the mean fluctuation of 
this number; more precisely, ON= .J((N- N)2 ). Inas­
much as s =4n with excellent accuracy, it follows that 
on going to macroscopic quantities we can write, using 

the dimensionless entropy s, 
2 2 

(llp/P)v ~ -=-= --=• l'Vs -ys 
(15) 

where S is the total entropy of the considered volume 
v. 

It is curious that a similar expression holds for any 
power law for the dependence of E on T or on s, and 
not only for E = const · T 4 = const · s 413, which is char­
acteristic of noninteracting partie les. In fact, the am­
plitude of long longitudinal sound waves in NM is de­
scribed by the Rayleigh-Jeans approximation: 

Ex= .i_PUx2 = ~e Ux2 = T, ~ = 1/ E:.., :X--+ 0, (16) 
2 2 c2 c Y e 

where EK, uK are the spectral energy density and the 
mass velocity, K the sound-wave vector, and c the 
speed of light. The amplitude of oscillations of the 
particle number density (or entropy), the amplitude of 
the mass density and the amplitude of the velocity are 
connected (the index K denotes the amplitude of the 
Fourier expansion with wave vector K): 

('bn) =(~) =~-1{6p) =u.~, (17 ) 
n K S X k \p x C 

where c' is the sound velocity, c' = .J dp/ dp 
= c.J1/(k- 1), with k the exponent in the law E = aTk. 
We then obtain 

( bp) v 2kT 
Px= (k..__i)e' 

(18) 

Taking it into account that s = kE/ (k - 1) T, we get, 
transforming from the Fourier amplitude to the aver­
age over the volume 

CP)v =l'V/_J2-rs~-vsv~-ys. (19) 

For k = 4, the coefficient /2k/ (k - 1) = 1.89 does not 
differ much from the coefficient 2 obtained in elemen­
tary fashion for non-independent particles. 

In NM, one can also consider the fluctuations of the 
charge density, since the material is neutral only in 
the mean. For leptonic charge, in the approximation of 
noninteracting particles (we recall that n has the 
dimensions em-3), __ 

b(n,-n-,)y = V n, t n~. (20) 

For the electric charge, the long-range action es­
sentially decreases the fluctuations in the volume 
which is large in comparison with a cube of the Debye 
radius D. The Vlasov dispersion law[Io] 
w = .Jwg + K 2 c' 2 , where w0 is the plasma frequency, 

leads, at long wavelengths, to the result 

(21) 

If the spectral density of the amplitude for long wave­
lengths, i.e., for small wave vectors K, is not con­
stant, and depends on some power of K, OK~ Kx, then 
the dependence of the quadratic deviation from the con­
sidered volume V also turns out to be different, not 
proportional to 1/ IV. 4 > To find '62, it is necessary to 
compute the integral 

4>When x;;.. I, it is necessary to defme properly the method of aver­
aging over the volume (see [ 11 • 12 ] ). 
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v-'/a v-lf• 

<'>2 1 v ~ ~ (<'>x) 2 x 2 dx = ~ x 2xx2 dx = VH-2x/3). (22) 
0 

In the case of fluctuations of the electric change, we 
have the exponent x = 1 and get (collecting the remain­
ing factors, eo is the electron charge) 

(23) 

The illustrative meaning of the result is made clear 
if we find the charge Z and the electrostatic energy U 
of the volume V; the latter turns out to be independent 
of the volume Vand of the electron charge e 0 : 

Z = Veo<'>(n+- n-) = V-'1.-.{f, (jl = ~ = zV-'1>, FJ = zq; = T. (24) 

It can be shown that the volume charge is one normal 
coordinate that satisfies the statistical law of energy 
distribution. 

Finally, the interaction is certainly short-range for 
the baryon charge. Such an interaction does not change 
the asymptotic law ( v-112 ) of fluctuations in large 
volumes. 

It must be recalled that for an arbitrary initial 
distr.ibution of the total NM density and of the charges, 
the hme of establishment of statistical equilibrium 
distributions of the fluctuations of the different types 
is significantly different. For density fluctuations, this 
time is equal to the damping time of long acoustic 
waves; for fluctuations of leptonic and baryonic charges, 
it is equal to the diffusion time of the corresponding 
particles, for the electric charge, the time is deter­
mined by the conductivity of the material. In principle, 
to consider all possible types of deviation from equili­
brium, one would have to consider the damping of trans­
verse waves, or, what amount to the same thing, vorti­
cal motions and the damping of the electric current and 
the magnetic field associated with it. However, these 
questions go far beyond the framework of the predom­
inantly thermodynamic consideration of the properties 
of NM in the given paper. 

We turn in conclusion to the problem of the neutral­
ity of the matter of the universe. It is known that the 
baryonic charge (in a charged, nonsymmetric, homo­
geneous model of the universe) does not exceed 
10-9-10-8 per particle and, consequently, can in reality 
be considered small. In fact, the mean density of pro­
tons in the universe lies between 2 x 10-5 and 10-6 

cm-3, the density of the relict quanta at 2.7° is equal 
to 400 cm- 3• 

A small baryon impurity ( ~ 10-9 ) in the presence of 
a vector field, which brings about repulsion, could lead 
to a dependence p = €, but only at very high density. 
We assume that for baryons € = an2 + mc2 n with the 
constant a such that the two terms are equal at 
p =10 16 glcm 3 and n =3 X 10 39 cm-3 • By assuming 
p = el3 for the remaining particles, we find that the 
transition to the law p = € takes place at nt = 1027 

X 3 X 1039 , n = 1018 X 1039, and p = 10 36 X 1016 

= 1052 glcm 3, where nt is l:he total density of all sorts 
of particles, in contrast with n, which is the density of 
the baryons (more accurately, n is the density of the 
baryon charge), with nt ~ 109 n. 

The density of electric charge is undoubtedly equal 
to zero (a nonzero density is incompatible with a homo-

geneous and isotropic universe; see, for example, [131 
for a closed world, and[ 11• 12 l for an open world). 

Finally, we turn to the leptonic charges and assume 
that there exist two different, strictly conserved quan­
tities qe and qll. To describe the universe, we refer 
these quantities to the density of the quanta qe = ( e-

• I ' + vj - e - ile) y. It is known that the presence of 
I qe of the order of several units would have changed 
the composition of the initial matter materially. (HJ 

For qe > 0, the equilibrium between neutrons and 
protons shifts in the direction of the neutrons which 
increases the constant of He4 in prestellar m'atter by 
more than 3o%. For qe < 0, the expected helium con­
tent is reduced. 

The situation with regard to the similar quantity 
qll, the muon charge, is more complicated. After the 
disappearance of the charged muons during the course 
of cooling, a nonzero muon charge leads only to the ap­
pearance of a surplus of degenerate muonic neutrinos 
or antineutrinos. If I qlll > 106 , the disappearance of 
Jl is delayed over the period of nuclear reactions and 
directly affects the ratio e • I e- and thereby the reac­
tion of mutual conversion of neutrons and protons. 
However, such large values are certainly excluded. 
Even for I qlll > 104 , the density of muon neutrinos 
would have been significantly larger than the density of 
ordinary matter at the present time: such I qlll > 104 

are excluded by considerations of the gravitational ef­
fect of neutrinos on expansion in our epoch and on the 
growth of the universe.[ 15 l 

Finally, according to a remark by Shvartsman, any 
particles influencing the rate of expansion in the 
period of nuclear reactions change the composition of 
prestellar matter such as to increase in He4 content. 
This imposes the limit I qlll :S 20. However, one pos­
sibility of compensating I qlll ;t! 0 remains, that of 
taking qe < 0. In this case, one can obtain any given 
He4 content, including 3o% of He\ even if lqlll > 20. 
Such a compensation is very artificial; nevertheless, 
it cannot be rejected merely on the basis of esthetic 
considerations. Direct measurements or even specific 
arguments refuting the hypothesis of compensation of 
qll or other particles at the expense of qe are highly 
desirable. 

I take this opportunity to thank B. L. Ioffe, A. S. 
Kompaneets, L. B. Okun', A. D. Sakharov, E. L. 
Feinberg and V. F. Shvartsman for discussion and 
advice. 
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