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Boundary conditions for the Green's function are obtained for diffuse reflection of electrons by the 
sample boundaries. The critical current and excitation spectrum of current-carrying thin films are 
found and the excitation spectrum in strong magnetic fields is determined. The dependence of the 
penetration depth on the field strength is considered. 

IN the limiting case of strongly contaminated super
conductors ( l « d), the problem of calculating the 
critical current of thin films was solved by Maki UJ. 

When l << d, it is convenient to use a quasiclassical 
method, which makes it possible to reduce Gor'kov' s 
equations l2 l to a simpler system of equations for the 
generalized distribution function, which equals the 
Green's function at the coinciding pointsl3 ' 4 J. Such a 
reduction is possible in an arbitrary magnetic field and 
without assuming a Born character of the scattering by 
impuritiesl 4 J. To solve these equations, it is necessary 
to know the boundary conditions. It is usually assumed 
that the electrons are diffusely scattered from the sur
face of the metal. To obtain the boundary conditions for 
an arbitrary gap and the arbitrary magnetic field, we 
replace below the diffusely reflecting boundary by a 
boundary coated with a thin layer of scattering centers 
with specially chosen scattering amplitude. This choice 
is carried out in such a way as to obtain, when applied 
to the normal metal, the usual diffuse boundary condi
tion for the distribution function. The obtained boundary 
condition is used to calculate the critical current and 
the excitation spectrum of thin films. We also consider 
the question of the dependence of the depth of penetra
tion on the field. 

1. DERIVATION OF BOUNDARY CONDITIONS 

In the quasiclassical approximation, the system of 
equations for the Green's function 

c:; = WTz- ie(vA)Tz- i;\ + in~pp(r), 
i{} 

~PP'(r) = l(PP'-4~ S l(pp,Gp, (r)~p,p•(r)dQp,; 

A ( 0 ll) 
ll= -ll· 0 ' SpGp(r)=O, 

(1) 

(2) 

where v is the electron velocity, n the impurity concen
tration, .9- = mpo/21T2 is the density of states on the 
Fermi surface, and Xpp' is connected with the scatter
ing amplitude by the re1ation 

(3) 

We replace the diffusely- reflecting boundary by a boun-
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dary coated with a thin layer of scattering centers (the 
free path in this layer is much smaller than the thick
ness of the layer), and we choose the scattering ampli
tude fpp' of these centers in such a way as to obtain the 
diffuse boundary condition in the limit as C.- 0. In the 
thin boundary layer, we can omit from the system (1) 
and (2) the terms proportional tow, A, and A. At dis
tances much larger than the free path inside the layer, 
the Green's function is of the form 

Gp (r) = (noT), (4) 

where no is a unit vector independent of the angles and 
coordinates, n~ = 1. We choose the first two unit vectors 
n1 and n2 in such a way that 

(n;n•) = llik, i = 0, 1, 2, 
(nt't) (Ilift) = -i (nz't). (5) 

To obtain the diffuse boundary condition in the limit 
as C. - 0, it is necessary to stipulate that the scattering 
amplitude in the boundary layer fpp' be different from 
zero only on the hemisphere 

PzPz' > 0. (6) 

The z axis is directed here along the inward normal to 
the surface. In all other respects, the function fpp' is 
arbitrary. Writing the Green's function Gp(r) in the 
form 

Gp (r) = iCt (nt't) + Co(no't) + C2(nz't) (7) 

and substituting this expression in the system (1) and 
(2), we obtain a system of equations for the coefficients 
Co, C1, and C2. As will be seen from the following, Co 
is constant accurate to terms of order exp(-6 /v'T) « 1: 

Co= 1 + O(exp (-<'J I v-:&) ); (8) 

here b is the thickness of the surface layer and v'T is 
the electron mean free path in this layer. With the 
same accuracy, the equations for Co, C1, and C2 are of 
the form 

( v a~) (C1 + C,) + -:t-1 (C1 + C,) -nv ~ Cipp, (C1 + C,)p, dQp, = 0, 

( v a~) (C1 -C2)- -:r-1 (C1 - C2) + nv ~app, (C1 - C2)p, dQp, = 0, 

( v :r) C0 = 0 (C1 2 - C22); -:t-1 = nv ~ opp, dQp,· (9) 

From the system (9), under the condition (6), we obtain 
the boundary condition on the Green's function Gp(r): 
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Po(Ct- C,)p <o = __!_ 5 (C,- C,)p,dQp = 0. (10) 
' n P:r;>O 

Thus, the Green's function Gp(r) on the surface is given 
by 

(11) 

where the vectors no, n1, and n2 satisfy the condition (5) 
and the coefficients C1 and C2 satisfy the condition (10). 

2. CALCULATION OF THE CRITICAL VALUE OF A 

The critical value of the vector potential A is deter
mined from the condition that t:. vanish. In a thin film 
with current, A is directed along the film and is inde
pendent of the coordinates. In the approximation linear 
in t:., we obtain from (1) and (2) 

G = iC,-r:x + -r:, sign w + C2-r:y sign w, 

( v :J (C, + C2) + 2[ I w I+ 2~- ie(vA)sign w J (C, + Cz) 

- vn S <Jpp, (C1 +C,) p,dQr, = 2!1 sign w, 

(v f,)(c,-C,)-2[1wl+ 2~ -ie(vA)signw] (C1 -C2) 

(12) 

+ vn ~ <Jpp, (C,- C2)p,dQ0 , = 2!1 sign w. (13) 

The boundary condition for the coefficients C1 and C2 is 
written in the form 

Po(C, + C2) (Pn)>O = __!_ S I (pn) I (C, + C,) pdQp, 
Jt 

(pn)<(l 

(14) 

where n is the inward normal. 
The boundary condition (14) goes over into (10) if the 

vector no is suitably chosen. To find the equation for t:., 
we need only the first equation of (13). The solution of 
this equation is 

iJ/2 

C,+C2 =2(signw) r X,(p,y,y,)tl(yt)dlf,. (15) 
-d/2 

The coordinate system is chosen here such that the axes 
x and z are directed along the film, and y = ± d/2 on the 
film boundaries. 

The kernel .%(v (p, y, y') satisfies the equation 

( v :Jxro(P, Y, y')+ 2[ I (I) I+ ~'t- ie(vA)sign (I)] Xro(P.Y, y') 

- Pn ~ <Jpp,X'ro(Pio y, y')dQp, = 6(y- y') (16) 

and the first boundary condition (14). We shall need 
henceforth only w > 0, so that we shall imply w > 0 
throughout. In the case of isotropic scattering, Eq. (16) 
can be reduced to the integral equation 

:Jt" (p, y, y') = X~+ti2t (p, y, y') 

i/2 

+ vn 5 <rrr, r X~+t/2t(P, y, !!t)X w(Pt, Y1o y') dy, dQp, (17) 
-·d/2 

where the kernel :J~(p, y, y') satisfies Eq. (16) at 

a = 1/7 = 0, as well as the first boundary condition of 
(14). From (12) and (15) we obtain 

l!.lmpo di_2 
!1 (l!) = ~T ] 5 dQp S Xro(P, y, y,)tl(y,)dy,. (18) 

w>O -d/2 

Solving Eq. (16) at a = 1/7 = 0, we obtain the follow
ing expression for the kernel ~(p, y, y'): 

X ro0 (p, lf, y') = e->.y { [e->.d!Za (y') e (sin cp) + eAd/2~ (y') e (-sin q:) l 

~ } +-.-·-1 -.-1 [8(sincp)8(y-y')+O(-sin<r)H(y'-y)] , (19) 
V Sill 8 Sill <p· 

where 2 ( w - ievA cos a) 
A= , 

v sin a sin cp 
D(d/2+ y)+f(d)D(d/2- y) 

a(y)=~(-y)= v[1-f2(d)] ' 

1 ---

5 ( 2lwld) ( 2eAdy1-t2) 
f(d) = 2 dt·t axp - -v-t- / 0 t , 

0 

r' ( 21 w I y) ( 2eAy r1- t' ) D(y)=2 J dtexp --v-1 - ] 0 • ___ t ___ . (20) 
0 

We note that from formulas (14)- (18) we can easily ob
tain an integral equation for the determination of the 
critical magnetic field at an arbitrary amplitude of the 
scattering by impurities. In this case we must put 
A = Hy in lieu of A = const. 

In the case when a magnetic field is applied to the 
film, the parameter eHd2 can be arbitrary. For a thin 
film with current, the corresponding parameter eAd is 
always small. Therefore all the kernels can be aver
aged over the coordinates. Assuming for simplicity an 
isotropic character of scattering by the impurities, we 
obtain from (18) and (20) 

(21) 

where 

x"' = [ <x~+%,) _,_ 4~-r:r. 
1 dL2 • 

Xro0 =-;r5 dQp5 5 Xro'(p,y,y,)dydy,. (22) 
-d/2 

Let us consider the case of a large mean free path 
compared with the thickness of the film, l » d. Then 
the values of importance in (21) are w « v/d. Using the 
relation 

51 dt ( a) (~l"1-t2 ) r _ex-'-p~(-:::0:y=x2=-+_,__~2:_) -exp -- / 0 =jdx 
0 t t · t a yxz + ~2 

5" exp(-yx2 + ~2) 
= Ko (M- dx-~=='==-'-'-'-

yx>+ ~2 
(23) 

0 

we obtain the following expression for x<>w: 

[ . evA ·(· 1 1 )]-1 wd 
X o-~ 1 +eAdzc;) 2 +1nyeAd , eAd:;»v' 

.,- w [1+eAde~~(1+In 2y:a)r. eAd¢;"~, (24) 

where ln y = C is the Euler constant. 
From (21), (22), and (24) we obtain an equation for 

the critical value of A: 

[ 1 evA ( 1 1 ) J ( 1 ) ( Tc) 1jl -+eAd- -+In-- -¢ - =In - , 
2 4nT 2 yeAd 2 . . T 
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(25) 

~[; +eAd ~:~( 1 + rn( ~~)) J -~( ~) = ln(i), 
eA~ (Tv)-1, d~TV~~o. (26) 

Here lf;(x) is the Psi function. From (25) and (26) it fol
lows that even when T - 0 we have (eAd)2 ~ d/~ o « 1. 

Here Tc, formulas (21)-(24) enable us to find the 
dependence of !:!.. and of the current density j on A, and 
consequently the critical current jcr· The appropriate 
calculation will be made at the end of Sec. 3. 

3. CRITICAL CURRENT OF PURE FILMS 

As indicated in Sec. 2, for thin films (d « ~o) we 
always have eAd « 1, so that we can assume that A is 
independent of the coordinates. We seek the Green's 
function Gp(r) in the form 

Gp (r) = iC,'tx + Co(IlG't) + Cz{nz-r), (27) 

where 

(no-r) = a-r, + fl-ry, (nz-r) = -fl-rz + a-ry, a.• + ll2 = 1. (28) 

Substituting the expression (27) for the Green's function 
Gp(r) in (1}, we obtain a system of equations for the 
coefficients C0 , Clt and C2 • Solving this system, we ob
tain 

where 

.A.= 21B,•+Bz2 

vsin8 sinq> ' 
B1 = flA+ a(w- ievA cos 6), 
B2 = aA ·- p ( w - ievA cos 8). 

Here the axes x and z are directed along the film, 

(29) 

(30) 

y = ±d/2 on the film boundaries, and the field is paral
lel to the z axis. Using the boundary conditions (10), we 
obtain the following expressions for the coefficients D1 
and D2: 

D, = [ B1ch( ~:)+1B~•+Bz2 sh( ~d)] [ (Bi•+Bz')chC2d) 

Dz = Bz[ (BI2 +Bz2)ch( ;d)+BI(BI•+Bz2)'1•sh( ;d) r•. 
where 

(31) 

~ = 2(Bt2 + B22 )''• I v sin 61 sinq>l. (32) 

The condition (10) yields one more equation for the 
determination of the coefficients a and {3: 

1 ... 1 --5 zdz s-. --[a.A -fl(w- ievA 11- z2 cos 'f)]dq> = 0, 
0 · 0 Z(z,q>) 

Z(z,q>) = [A2 + (w- ievA 11- z2 cos 'F)2J''•· 

Xcth [~(A2 +(w- ievA 11- z'cos 'f)')''•] 
~ c 

+(~A+a(w-ievAy1-z'cosq>)). (33) 

Calculating the integrals in (33) in the region wd/v 
« 1 of interest to us, we obtain 

aA-flw = a~eAd e~A [! + ln ye~d +(1- a2)/(a) J evA >w, 

aA-flw = afleAd.evAin( v ) evA~oo, 
2 2ydyw 2 +A2 (34) 

where (35) r dx sin~x 
f(a)= J -:--::--~. 

0 x3 cos2 x+a2 sin2 x 

The asymptotic expressions for the function f(a) are 

f(a)= :rt2 (a2)''•~(3)- ta ch't +t+z-e-•t-2 .' a~ 1 I 7 ""s dt ( 1 1 3) 

ln2 +(1- a2) (:ln2- 3ln3), 1- a2~ 1 (36) 
where l: (x) is the Riemann Zeta function. 

The ordering parameter !:!.. and the current density j 
are expressed in terms of the Green's function by means 
of the formulas 

II· I mpo "' (' A =~T ..::.; J [~Co+aCz]dQp, 

" 

(37) 

Substituting here the expression for the coefficients 
Co and C2 from formulas (29)-(32), we obtain in the 
region evA >> 1TT 

A= if.lmpo T ~ ~(w), 
2:rt 

j =- eAd epo• T ~ (1- a2) [rn-1- + (1- a2)x(a) J, (38) 
2:rt 00 yeAd 

where a and {3 are determined by formulas (28) and (34), 
and 

""s dt sinS t cost 
X a)= · · 

( t2 cos2 t + a• sin2 t 
0 

(39) 

For the function x (a) we have 

x(a)= 2 0 x• ch2 x :n2 ' l ~ ""s dx ( sh 2x._ sin2x)- 14(a')''• ~(3) a~ 1 

1/zln2+'/s(1-a2)(8ln2-3ln3), 1-a•~f (40) 

In the temperature region d/~ 0 « (T - T)/T « 1 
we obtain from (34) and (37) the followi;g expreisions 
for A and for the current: 

Tc- T 7A2 n ( 1 1 ) --·=-2- 2 ~(3)+-(eAd)(evA) -+In-- , 
To Sn Tc ST. 2 veAd 

epo2 1 
j =- eAd--A2 ln--. 

SnT veAd 
(41) 

With logarithmic accuracy we obtain from (41) the criti
cal current 

. = 4ep02 (T.-T)''• r3ndln( v )]''• 
lcr 63~(3) L V d(Tc- T) ' 

(42) 

The critical current is reached when 

[ d(T.-T>j ( v )]''· 
(eAd) cr.c ~ 4 3nv In d(Tc-'- T) . (43) 

This quantity is smaller by a factor ..f3 than the critical 
value eAd, at which A vanishes. 

In a very narrow region near Tc, (Tc- T)/Tc 
« d/~o, we get in lieu of formulas (41) and (42) 

j =- eAd epo• a•[ 1 + ln (-v~) +~In2 + ~'(2) J, 
SnT 2nydTc 3 ~(2) 

A'= ~~;~;•[T.~T -dd ~~~n(1+In 2:rt;dTc+~In2+;;~~))]1 
(44) 

. 4ep0•, '(2nd)'''[ v 1 ~'(2)]''• 
lee= 21~(3) (Tc- T) J, 3v 1 + ln 2:rtydTc + 3ln2 + ~(2) 

(44) 
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The dependence of the critical current on the tem
perature away from Tc can be determined from formu
las (34), (35), and (38). However, it is impossible to 
obtain a closed expression for the critical current in 
analytic form, and a numerical calculation is necessary. 
At T = 0 we obtain from (34) and (38), with logarithmic 
accuracy 

Llo n . mpoll2 ( 4 ) ln-=-x J=- --x 1---x zo;;::1· 
.1. 4' 2nA 3n' """"'' 

(45) 

Llo - x ( 1 ) 1 --In-= ln(x..l...yx2 -1)+-arcsin - --"fz2 -1 
.1. 2 z 2x ' 

. mpoll2 [ ( 1 ) 2x 1 ( 1 ) -] J=---z arcsin---+- 2+- "fx•-1 
n2A z 3 3 x2 ' 

x~1, 

where 
(46) 

evA 1 
z = eAd--ln--, (47) 

2.1. yeAd 

and ~o is the value of the gap in the absence of the cur
rent. 

Analogous formulas are obtained in an analysis of 
superconductors of small dimensions in a strong mag
netic field (l,sJ. The values x > 1 correspond to gapless 
superconductivity. In our case, the points x ~ 1 lie in 
the unstable region, to the right of the point of the cur
rent maximum on the (j, A) diagram. 

From (45) we obtain an equation for xo, at which the 
maximum current is reached 

1- 4xo=2[1-~xo_~). (48) 
3n 3:rc 4-nxo 

Solving Eq. (48), we get x0 = 0.3, and substituting 
this value of Xo in the expression for the curve (45), we 
obtain 

( d v )''• icr = 0.027epo2Llo'l• -In- • 
v Llod 

(49) 

We note that the character of the reflection of the elec
trons from the surface affects strongly the magnitude 
of the critical current. In the case of specular reflec
tion, the density of the critical current does not depend 
in general on the thickness of the film. 

The results obtained in this section pertain to the 
case of pure films. Near Tc, however, we can obtain an 
expression for jcr also in the case d « l = TV, using 
only the form of the kernel :Ytw (formulas (21)- (24)). 
When ~ is finite, we obtain in lieu of (21) 

1 -- IJ..ImPor~{ 1 evA( v )} "-l eAd-- 1-j-ln--~---
2:rc ., iw2 + .1.2 2w2 2yd(l w I+ 1/2T) ' 

(50) 

From (50) in the vicinity of TV « ~ 0 we obtain an ex
pression for ~= 

T0 -T 7.1.2 evA ( v-r) 
--=--6(3)+eAd--n 1+ln-

T0 8n2T.• 8T yd ' 
(51) 

The current is equal to the derivative of the thermo
dynamic potential Os with respect to the potential A: 

(52) 

Near Tc we have(2J 

R - R = lrl d(1/p.l) Ll•dll =- 7!J.& "(3) ..!.!"P• (53) 
' n J• dll 32 " n'Tc". 

Differentiating (53) with allowance for (51), we obtain 

i=-eAd epT02 .1.2 (1+In~). (54) 
8n c yd 

From (51) and (54) we obtain an expression for the criti
cal current 

4eprf , ( 2nd )''• ( V"t" )''• 
/cr=216(3)(T.-T)I• ---g;;- 1+In--:ya ' (55) 

d~TV~ SO· 
4. EXCITATION SPECTRUM 

At T = 0, the density of states is expressed in terms 
of the Green's function Gp(r) in accordance with the 
formula 

P = ! Po rm[ ;n Sp1:, ~ G...;.,(p)dQp]. (56) 

where Po is the density of states in the normal metal, 
G-iw is the analytic continuation of the function Gw from 
the imaginary axis to the real axis. It can be easily 
shown that when evA< ~. there is a finite gap in the 
spectrum. In the region evA > 1::. there appears a finite 
density of states at E = 0. The region evA - ~ is of no 
interest, since this is the region of very small currents. 
We shall therefore consider directly the case evA >> ~. 
From (27), (29), and (56) it follows that when E = 0 we 
can write for the density of states 

P =Po Im ta(ro = 0). (57) 
In the stable region of the currents, the density of 

states at E = 0 turns out to be logarithmically small 

76(3) evA / [ evA ( r )) p = po--eAd-- 1-eAd--ln -
n2 2.1. 2.1. eAd ' 

(58) 

where 

1 00~dt[ 1 1 3] Inr=--lny- - --+t+-e-21-- .· 
2 0 t'l ch2 t 2 2 

The logarithmic smallness and the density of states at 
E = 0 remains up to the point x = 1, which lies in the un
stable region near the critical value of the vector poten
tial Acr· The density of states at E = 0 becomes of the 
order of Po only when x > 1. 

5. DEPENDENCE OF DEPTH OF PENETRATION ON 
THE MAGNETIC FIELD 

The correction to the depth of penetration was first 
considered by Rusinov and Shapoval. IncsJ, the reflec
tion of the electrons on the boundary was assumed to be 
specular, and inc7J it was assumed to be diffuse. The 
use of the diffuse boundary condition, proposed in Sec. 
1, makes it possible to calculate the correction to the 
depth of penetration in a much simpler manner. In the 
London and in the strong- Pippard cases, the results 
agree with those of Shapoval l?J , but they differ in the 
intermediate region o - ~ o· Just as inl'l, we consider 
only the case of a pure sample. We choose the coordin
ate system in such a way that the vector potential A(z) 
is directed along the x axis, and the sample occupies 
the half-space z > 0. As before, we seek the Green's 
function Gp(r) in the form 

(59) 

where 

( Llo ro ) . ( w Llo ) (noT)=cosx "F;Ty+ET' +smx. E:r:y-ETz , 
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E = (w2 + 1'102 ) '!,_ (60) 

Here flo is the magnitude of the gap in the absence of 
the field, and the angle x is determined by the boundary 
condition (10). In the chosen gauge of the vector poten
tial, the correction to ll and the angle x appear only in 
the second order in the field. 

Expanding the coefficients Ci in powers of the vector 
potential A(z), and substituting this expansion in (1) in 
each order in the field, we obtain the system of equa
tions 

( i) ) 2ie Llo ( iJ ) v- B 1 + 2EFt = -- (pA) --, v-- Ft + 2EB1 = 0, 
fJr m E c. or 

( 6 ) 2wl'!2 2ie w 
v__:_ B2 +2EF,= -2Ex+-E +- (pA)-F., or ~- m E 

( 
f) ) 2ie w 

v- F2 + 2EB2 =-(pA)-Bt. or m E 

(61) 

where 
1'1 = L'lo + L'lz, C, = B, + Bz + Ba, 

Cz = F, + Fz +Fa, Co= 1 + Dz + Ds. (62) 

The indices of the coefficients indicate the order of the 
expansion in the field. 

The boundary conditions for the system (61) are ob
tained by simply expanding (10) in the field. The equa
tions (61) can be easily solved, and by using the expres
sions for ll and for the current in terms of the Green's 
function Gp(r) 

il~- ilA-lm~T _3sp(o 1)~ Gp(r)dQp, 
8n2 , 0 0 

(63) 

we obtain the equation for the correction to ll of second
order in the field and the equation for the vector poten
tial A(z). To obtain the latter, it is necessary to use 
Maxwell's equation 

iF A 
-di,2=4nj. 

In the notation of Shapoval [?J , the expression for the 
correction to ll is 

r (L(z-zt)+L'(zzt)}l'!z{zt)dzt= r~ {Lz(ZZtZz) 
0 0 

+ L2' (zz1z2 ) }A (z 1)A (z2 ) dzt dz2• 

For the kernels we obtain the following expressions: 

L(g)=nT ~~ ~ [M+~(gux) 2 lrLE2+_1_(gux)']-•ax,. 
E J 4' J 4 

"' 0 

2 1 1 

L_'(ggt) =- 2nTu ~ ~2 ~ dx·x[2E + i&xg]-1 ~ dx1 ·x1 [2E + iux1gt]-t, 

"' 0 0 

X'{il'[ 1 J 0 (2E + iuxg2 ) (2E + ibx(g + g2 )) + (12) 

- w' [ ("2E +ivxg) ('2.:+ iux(g+ g1))- +(iZ)+(OZ)+((HZ) ]}, 

where (12), (02), etc., are cyclic permutations of the 
indices. The kernels L, L', and L2 _ coincide with the 
corresponding expressions ofr71 • However, the kernel 
L~- does not coincide. This discrepancy is apparently 
connected with a misprint inr71 • Following Shapoval l71 , 

we write the equation for the vector potential A(z) in the 
form 

i)ZA = "" 
- i)zZ + s Jl'(z- Zt)A (Zt)dz1 = ~ ~ [Jl'2(zz1z2) 

0 0 

~ 

+.Ytz'(zZtZz)]A(z!)L'lz(z2)dzt dz, + ~ ~ ~ [.Yts(ZZtZzZa) 
u 

+ X''s' (zztz2zs)] A (zt)A (zz)A (za) dzt dz, dzs. 

For the kernels :Ytwe obtain the following expressions: 

6n2Ne0Llo2 1 t [ 1 -t 
.Yt(g)= T~-J dx(1-x2 ) E'+-(uxg)'] 

m "' E 0 4 ' 

I [ 1 
X \ax-x(i-x') ------· +(Ot)J 

~ (2E + i&xg1 ) (2E + iux(g + g1)) ' 

3i(eu) 4 mp0& 2 1 (-
Jl',_(g{f1g2g2)=- + + + . T~E4 .ldx(1-x')' 

g !?"1 g2 ffJ- n: (•) 0 

>'{2w 2 [ -~ 1 
(2E + ivxg) (2E + ivx(g + gi)) (2E + ivx(g + g1 + g2)) 

+(0123)+(01)+(012) J 
-Llo2 [ 

1 
(2E + iuxg) (2E + iuxg3 ) (2E + iux ( g + g1 + g3)) 

+ (2E + ivxga) (4E
1
+ iux(g1 + g3 )) CE + iux(g: + g2 + g3 ) + (ZO)) ]} 

The kernels :X3 and .it'3 differ from the corresponding 
expressions ofr71 • 

6. DENSITY OF STATES OF THE EXCITATIONS IN A 
MAGNETIC FIELD 

The properties of thin superconducting films in a 
magnetic field in diffuse reflection of the electrons from 
the boundaries of the sample were investigated by 
Thompson in raJ. In particular, it was shown that the 
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excitation spectrum has a gap, i.e., the density of states 
vanishes at energies below a certain value. A similar 
problem in specular reflection was considered in [gJ • 

In the case of specular reflection, the excitations are 
characterized by a quasimomentum, and the gap in the 
excitation spectrum vanishes at certain directions of the 
quasimomentum. Traces of such anisotropy should re
main also in diffuse reflection of the electrons from the 
sample boundaries. It will be shown below that the 
statement that the excitation spectrum has a gap in the 
case of diffuse reflection is valid only in the zeroth 
order in the small parameter d/~ o-the ratio of the film 
thickness to the coherence length of the superconductor. 
Allowance for the first order does not lead to an apprec
iable change of the properties of the system at T ~ Tc, 
but is significant at T < Tc/ln(~o/d). This is connected 
with the fact that in sufficiently strong fields 
(eH » (d~ or1) the density of states differs from zero 
everywhere. We confine ourselves only to considera
tion of a thin pure film in a magnetic field directed 
along its surface. 

We choose the coordinate system in such a way that 
the y axis is directed transversely to the film and on the 
film boundaries y = ±d/2, while the x axis is along the 
magnetic field H. We can then choose the vector poten
tial A with a direction along the z axis and with 

A,=Hy. (64) 

We seek the solution of a system (1) in the form 
1 1 

Gp (r)= ftr:" + --=fz(-r, + i'l'x) +-=- /3(-ru- i-r:x). (65) 
11? l'2 

Introducing in lieu of y a new dimensionless variable 

Z= r2(1+(~[~-ieHycose](l eHcosG 1)-'" 
sin e .sin <i' v . sin e sin <(J 

X exp [ -- i: ( 2 - signcos 8 -sign sin <p) J 
and putting 

v(y)= (1+i)~(y) (I ~Hco~ 1)'/, 
2euH cos 8 Sill 8 Sill <p 

X exp [ i: ( 2- signcos 8 - ~ignsin <p) J , 
we obtain from formulas (1) and (65) at I: = 0 

(66) 

(67) 

a~(~:)=+(~-~~)(~:)+ v( ~ ~ -~)(~:)\ ·(68) 
fa 0 0 1 /s -1 0 0 /s 

We confine ourselves to a strong field 

(69) 

Then the solution of the system (68) can be sought in the 
form of a series in powers of z;. Accurate to terms of 
second order in v, the general solution of the system 
(68) is 

/I (z) = B1 + B,ljl(z) - B,x(z) + B1 (D(z) + F(z)), 

12(z) = exp (- ~) [B2 +B1x(z)+(B2F(z)- B3F1 (z) )], 

fa(z) = exp ( : 2-)rBs- B11jl (z) + (B3D (z)- B2D1 (z) )], (70) 

where 
z 2 l 2 

x(z)= ~ v(z)exp( ~) dz, ljl(z)= ~ v(z)exp (-:) dz, 
~ ~ 

Xo=z(y=O), 

D(z)= ~ v(z)x(z)exp(- ~ )az, F(z)= ~ v(z)1Jl(z)exp( : 2 )dz, 
Xo Xo 

D1 (z)= ~·v(z)lJl(z)exp(- :2 )dz, F,(z)= ~v(z)x(z)exp(~)az. 
x, x, (71) 

It can be shown that the coefficients Bi in (70) satisfy 
the condition 

B;(G,<p) =B;(n-8, n+<p). (72) 

We shall therefore consider only the angle region 0 5 q; 
5 11. In the chosen gauge of the vector potential (formula 
(64)), the matrices (ni 7) which enter in the boundary 
condition (10) and (11), can be chosen in the form 

(n;T) = 't'x, (noT) = a-r, + ~'t'y, (n2-r) = -~'t', + a'ty, 

a2 + ~2 = 1, a,~= const. (73) 

From (65) and (73) it follows that in the angle region 
0 5 <p 5 11 the boundary condition (10), (11) can be writ
ten in the form 

1+a 1-a 
~j,(z,)---=---/2 (z1 )+ -_-f,(z1)= 0, 

i2 l'2 

a.f,(z,)+ ~ h(zt)+ ~ / 3 (z1)= 1, (74) 
-y2 -y2 

1-a 1+a Mt (z2) + -_-J.(z,)- -_-- fa(z,) = 0, 
l'2 12 

~ d<p ~dGsin<p~in 2 8(f2 (zt)-fa(z1 )]=0, (75) 

where z1 and z2 are the values of z on the film boun
daries: 

z1 = z(-d/2), z, = z(d/2). 

The coefficients Bi are determined by the system (74), 
and the integral relation (75) together with condition 
(7 4) defines the coefficients a and {3. 

It can be shown that the terms proportional to z;2 and 
vwd/v do not lead to a noticeable change of the spectrum 
of the system in the solution of the system (74). Omit
ting these terms, we obtain for the coefficients Bi the 
following expression: 

where 

(!:) = [(1 +a) e'i' + (1- a) e-'I'J-'· 
B, 
(1 +a) e112 - (1- a) e-t/2 

X I ~ y2 exp ( ~i + ~ ) ;·· + (D 
\ ~ (2 cxp (- 2 - ~ ) 

2wd 
t= 

4 vx 

1'2 = ~cxp C"'"-)[(1 + a 2)0,- B'M 
1'2 vx 4 

l\ = ~exp (- ~)[- ~20 1 +(1 + a2 )8,]. 
vxi2 4 

d/2 --

e, = exp ( -~) \ Ll(y)exp f- ieHy2 11 -x' COS<p'l dy, 
, 4 ~ L X _ 

z 2 d/.2 l'1 - x' ] 
82 = exp ( ~ ) ~ Ll (y) exp [ ielly2 -------;-- rosrp'. rly, 

0 

(76) 

x=sinGsin<p, 11-x2 cos<p'=ns8. (77) 
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Substituting in (75) the explicit expressions for the func
tions f2 and f3 , we obtain 

231 1 d/2 --

a ~ dq{ ~ dx ~ ely d ( y) exp [ ieH l" 1 ~ x' cos cp' ( : - y') J 
0 0 01 

f dt exp(wtd/v)- exp(- wtd/v) 
=nvj3 ,to- (1-1-a)exp(;td/u)+{i-a)exp{-wtd/v) {78) 

To find the spectrum it is necessary to find the co
efficients a and {3 from the system (73) and (78), accur
ate to terms dA o· We find first the ordering parameter 
.6-(y) in the zeroth approximation in the parameter dA 0 • 

Using Eqs. (63) for .6-{y) and expression (65) for the 
Green's function Gp{r), we obtain 

an i 

d{y)= IAI~Po T ~ ~ dcp' ~ dxf>(z). 
2y2n2 w o • 

In the zeroth approximation in d/~ 0 , this yields 

d(y)= 1"1;:0 T~J3(w)exp[ -eH(~-y')J. (79) 
"' 

i.e., .6-{y) can be written in the form 

Ll(y) = !l,exp[-eH(<l-'/4-y')]. (80) 

To determine the constants a, {3, and .6.1, we solve 
Eq. (78) in the zeroth approximation in d/~ o· In this ap
proximation, the integral in the right side of (78) is 
equal to wd/v. Substituting the expression (80) for .6-(y) 
in (78) and using (73), we obtain 

a(w)- 00 "(w)= Ll,tD (81) 
- (w2 -\- ( d,llJj2)'/, ' IJ. . (<u2-\- ( d 1llJ) 2)'/, ' 

where 

( 3 eHd2 ) lP=<Di----, 2' 2 (82) 

is the confluent hypergeometric function. Substituting 
the value of {3(w) from (81) and (79) we obtain an equa
tion for .6.1: 

(83) 

in (83) it is necessary to replace 4> by unity when 
w > evHd. Equation (83) for .6.1 was obtained earlier 
by Thompson [BJ. 

The density of states is expressed in terms of the 
Green's function G-iw by means of formula (56), where 
G-iw is the analytic continuation of the function Gw 
from the values w = 1TT(2n + 1) to the imaginary axis. 
Accurate to terms d/~ o, we get from (65) and (70) 

. . • 1 

p(w)=p0 Im-1 . \ f,(-iw)dydQp=p 0 Im !.__I drp' I dxB 1(--iw). 
~d- ~J J 

0 0 (84) 
Substituting in (84) the expression for B1 from formula 
(76), we get 

{ in wd 
p(w)=Polm ia-\----132 

2 v 

+ B' ~ -~---,----exp(wtd/v)- exp(- wtd/v) } 
; l 2 (1-1-a)exp(wtd/v)-1-(1-a)exp(-wtd/v) 

(85) 

where the values of a and {3 are determined by formulas 
(73) and (78), with the substitution w --iw. In the 
zeroth approximation in d/~ o, only the first term re
mains in (85). Using expression (81) for a, we obtain[sJ 

p (w) =Po { [w'- ~,QJ)2]'1,' 
0, (86) 

where 4> is given by (82). 
In the first order in d/~ o, the density of states differs 

from zero also when w < .6.1\l>. From (85) it follows that 
to find p with accuracy to first order in d/~ o it is neces
sary to know a with the same accuracy. Since .6-{y) is 
real in all orders in d/~ 0 , it is sufficient to know .6-{y) in 
the zeroth approximation in dA o (formula (80)). Carry
ing out the analytic continuation of the expressions in 
(78) with respect tow and replacing w- -iw, we ob
tain, with account taken of terms of order d/~ 0 , 

aa,tD = - __!!_13 {f !:i. exp (wtd/v)- exp ( -wtd/v) 
d ·, t'1 (1 + a)oxp(wtd/v)-1-(1- u)exp(- wtd/v) 

,,,d in ( wd ) '} -1-(i-1) ---a -- , 
I! 2 v 

(87) 

where a = a(- i w), {3 = {3(- i w), and we used expression 
(80) for .6-(y). The formulas (73), (85), and (87) deter
mine the density of the states at arbitrary ratios of w 
and .6.1\l>. In the simplest case, when w << .6.14>, the 
integral in (87) can be readily evaluated, and we obtain 
for a the expression 

. iw 7\:;(3) ,,,d w 
u(-zw)= --+-- ··-·--. {88) 

;\,lll :n' v I'.,QJ 

Substituting this value of a in (85) and calculating the 
integral contained in it at w « .6.1\l> {which corresponds 
to Ia I « 1), we obtain 

(89) 

The presence or excitations with energy E < .6.14> can 
be observed, for example, in experiments on tunneling. 
Allowance for such excitations leads to the appearance 
at T = 0 of a single-particle current at eV < .6.1\l>. For 
the case when one metal is normal, the expression for 
the current is of the form [101 

I = - 1 r dw _fl__{uJ_l_ . 
eR ~ Po 

(90) 

Here V is the voltage on the contact, B is the resistance 
of the contact in the normal state. Substituting in (90) 
the value of p(w) from (89), we get 

V eVd [ n 7 eV l 1=--- -+~~(3)··-' 
R v 4 :n2 L'I 1<D 

7. CONCLUSION 

We obtained boundary conditions for the integral of 
the Green's function with respect to ~ for the case of 
diffuse reflection from the walls. These boundary condi
tions coincide, in the approximation linear in .6., with the 
diffuse boundary conditions for the distribution function 
of the normal metal. It is customary to use the method 
of classical trajectories [7 ' 111 for diffuse reflection of 
electrons from the wall, but this method is not valid in 
the presence of impurities in the superconductor [41 • In 
addition, in this method correlation functions of four and 
more momentum electrons appear, in the expansion in 
terms of the field. To find these functions it is neces
sary to make additional assumptions concerning the cal
culation method. This causes the correction of third-
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order in the field to the penetration depth to deviate at 
o ~ ~ 0 from the corresponding result of the classical
trajectories methodr7J. 

An expression was obtained for the critical current 
near Tc. For T = 0, the critical current was calculated 
with logarithmic accuracy. In the remaining tempera
ture region, algebraic equations were obtained for the 
determination of the critical current; these can be 
solved only numerically. We also obtained the excita
tion spectrum of thin films in the presence of a current 
as well as in strong magnetic fields. The presence of 
gapless excitations can be observed, for example, in 
tunnel experiments. Allowance for such excitations leads 
to the appearance of a single-particle current that does 
not vanish when T- 0. 

In conclusion, I am grateful to A. I. Larkin for a dis
cussion of the problems considered here. 
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