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An exact solution is obtained for the problem of a quantum oscillator with a time-dependent fre­
quency w(t) whose law of variation is arbitrary. The probabilities wmn are found for quantum 
transitions between states of the discrete spectrum which are stationary as t - ± oo. The variation 
of the adiabatic invariant I= E/w under the action of the variable frequency w (t) is calculated for 
an arbitrary initial state. 

l. As a rule nonstationary problems in quantum mechan­
ics are solved by approximate methods (time-depend-
ent perturbation theory, the adiabatic approximation, 
the method of sudden perturbations, etcY• 21 ). Only in 
rare cases is it possible to solve a nonstationary prob­
lem exactly. Such a solution is always of interest if 
only from the point of view that it enables one to clarify 
the accuracy of various approximate methods. As an 
example one can point out the problem of an oscillator 
acted upon by an external force f ( t ); the solution of 
this problem was obtained in articlesr3- 51 • 

The present article is devoted to an examination of 
a quantum oscillator whose frequency w(t) is an arbi­
trary function of the time (one can easily reduce the 
general case when both m(t) and w(t) are time-depend­
ent to this case with the aid of the following substitu-

t 
tions: t' = J dt/m(t), w' = mw). The principal possi-

bility of solving the Schrodinger equation (1) now follows 
from a well-known result of Feynman.r 6 l As shown 
inr 61 , the formula 1/J(x, t) = exp{iS(x, t)} is exact if the 
potential V(x, t) does not contain x to a power higher 
than the second (S is the classical action). Many as­
pects of this problem were considered by Husimi;rsJ in 
particular he found an explicit expression for the 
Green's function. However, the formulas given in[ 5 l 
for the transition probabilities Wmn between station­
ary states are complicated in form and yield to analy­
sis with difficulty. In that important case when the 
frequency w ( t) changes adiabatically, the quantum 
transition probabilities Wmn are calculated in the 
article by Dykhne. [7] 

Let us enumerate the basic results of the present 
article. The Schrodinger representation is used in 
Sec. 2. Formula (11) is obtained for the transition 
probabilities Wmn, and various limiting cases are 
considered. For certain initial states (a coherent state 
I a) and a Planck distribution) the populations wn are 
found as t - oo. The Heisenberg representation is con­
sidered in Sec. 3, a connection with the noncompact 
group SU(1, 1) is pointed out, and formulas (33) are 
obtained which give a complete solution of the problem 
for arbitrary initial conditions. The question of the 
exactness of the conservation of the adiabatic invariant 
I= w-1 ( H) is discussed in Sec. 4. The relative change 
E = (I+ - L)/L is given by formulas (39) and (43 ), 
which are valid for an arbitrary initial density matrix 

p ( 0 ). Several specific examples for the variation of 
w ( t) are analyzed in Sec. 5; one of these is of interest 
in connection with a theory of the parametric amplifica­
tion of light. r a-101 

2 : The Schrodinger equation for a quantum oscillator 
with a variable frequency w( t) has the form ( m = ll 
=1) 

a.p 1 az,p 1 
i at=- 2 ax2 + 2 oo2(t)xz,p. 

With regard to w(t) we shall assume that"> 

{ 
W-

w(t)= 
W+ 

for 
for 

t<O 
t-++ 00, 

Under these conditions stationary states exist for 
t- ±co 

{ 1 v w }''' { oox2 } --<Jln(x,uJ)= 2"n! ~ exp --2- Hn('Ywx), 

(1) 

(2) 

(3) 

and transitions occur between these states. We shall 
calculate the probability wmn for a transition from the 
state <I{> to the state <Phi. 

In order to solve this problem we introduce the 
generating function 

~ zn 
G(z,x;t)=L;'¢n(x,t)-=-, (4) 

n=O l'n·! 

where z is a subsidiary complex variable, 2 > and 
<Pn(x, t) is that solution of Eq. (1) which goes over into 
<Ph-> as t - - oo. From (3) we find 

G (z, x; t = O) = (W-I :n) •i, exp { - 1/2( w__x2 - 2l'2w_xz + z2)}, (5) 

which is a Gaussian packet with respect to the variable 
x. Therefore for t > 0 one can seek G( z, x; t) in the 
form[sJ 

G(z, x; i) = (w-/:n);l,exp{- 1/ 2 (ax 2 -2bx+c)}, (6) 

where a, b, and c are functions of t and z. After 

1>The assumption that the frequency w(t) starts to change at the mo­
ment t 0 = 0 is introduced only in order to simplify the calculations. In 
the final formulas one can regard the moment t0 of "switching-on" as ar­
bitrary. If the perturbation liz[ w2 (t)- w_ 2 ] x2 is switched on adiabati­
cally at t-> -=,then one should assume t0 -> -=. 

2lThe introduction of G(z, x; t) is essentially a transition to the Fock­
Bargmann representation for the harmonic oscillator. (" •12 ] 
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PARAMETRIC EXCITATION OF A QUANTUM OSCILLATOR 739 

some calculations we obtain 
. ~(t) 

x(t)=-t--·· 
W)' 

l'2w_ · 
b(t)=--Z S(t) , 

c(t) = z2e-2 iv(t) +In ~(t). (7) 

Here ;(t) =I Ht)l eiy(t) is the (complex) solution of 
the classical equation of motion: 

-~ + w2 (t)6 = 0, £{[) = eiw-t for t-+ -oo. (8) 

Expanding (6) in powers of z, we find the form of 
the wave functions IJ!n(x, t) at any arbitrary moment of 
time: 

IJl,(x,t)=fz,n!\(t) v-wn- }"'exp[ -(a;' +.iny)] Hn( ~£~;)-\) .(9) 

We note that Re a(t) = w-1 Ht)l- 2 , which guarantees 
the correct normalization of the wave functions 
IJ!n(x, t). As t- +"" 

!;(t) = C,ciw+t- C,e-iw+t, 

[ w ]'" .· 1 + se-2iw+t (10) 
'W)\= ------ \1-se- 2"''t 1 \. a(t)=w+-~-:--:-
1 w+(1-\s\ 2) 1-se-2"''-: 1 

(s = Cz/C1, 0 :5 I s I < 1). From here it is clear that 
IJ!n( x, t) oscillates periodically (with a frequency w+) 
even as t - ""· However the transition probability 
Wmn tends to a constant value: 

. n<! --, lm-nl/2 --,2 
Wmn=hm\\'!Jm+(t)\'!Jn(t))\ 2 =--1'1-p P(m+n);i(l'1--p) . 

t--+oo n>! 
(11) 

Here 
n< =min (m, n), n> =max (m, n), 

p = \s\ 2 = \Czf Cd', 

and P~(x) is an associated Legendre function. The 
value of the integral (A.ll) (see Appendix A) is used in 
order to obtain formula (11 ). We emphasize that in 
order to determine p it is sufficient to solve the 
classical equation (8) (in regard to other methods for 
evaluating p and certain specific examples, see Sec. 
5). In the adiabatic case when w(t) is a slowly-varying 
function of t which is analytic in a certain region 
I Im t I < £, the quantity p is exponentially smallr14• 15 l 

Now let us discuss expression (11) for Wmn in 
more detail. 

1) Transitions occur only between states I n, w_) 
and I m, w+) for which the numbers m and n have the 
same parity. This is related in an obvious way to the 
parity of the potential V(x, t) = Y2 w2(t)x2 • 

2) In quantum mechanics the adiabatic invariants 
are the quantum numbers and also the distribution with 
respect to the energy levelsY61 The adiabatic case 
corresponds to p - 0; in this connection from (11) we 
obtain 

w,,,. = 1-- 1/ 2 (n2 +n+ 1)p + O(p2 ); 

w --~-- •[1-( n<(n>+i) +1)~+ J (12) 
mn- 2"(/d) 2 n<! p I• + 1 2 .. ' ' 

k = 1/2\ m --- n \ = 0, 1, 2, ... 

The main terms of this expansion coincide with the 
result obtained by DykhneYl The correction is of 
order n2p; therefore the accuracy of formula (12) 
rapidly deteriorates with increase of the initial excita­
tion n. For n >> 1 a case may be realized in which 
p « 1 but n2p 2: 1. Then in Eq. (12) it is necessary to 

sum over all the terms in the series, which gives 3 > 

n>' -- ) 
Wmn ~ ." \h('ymnp) \2 (13 

(mn) nd 

(the conditions for the validity of this formula are: 
m, n >> 1; p « 1). If mnp « 1 then expression (13) 
automatically goes over into expression (12 ). 

3) The quantity ~n = 1 - Wnm is of special interest 
(it gives the probability that the oscillator changes its 
initial state). Graphs of the functions ~n = ~n(P) are 
shown in Fig. 1. From this figure and also from for­
mula (13) it follows that the adiabatic approximation 
(12) for the transition probabilities Wmn is valid only 
upon fulfillment of the conditions p « 1 and mnp « 1. 

4) Expression (11) for Wmn simplifies considerably 
for n = 0 and n = 1 (in these cases transitions only 
occur upward, m 2:n): 

(2n)! . (2n+1)! , (14) 
w 0 - ---(1- o) p" w, +I ,------ --(1- n) ;, o" 

2"' - 2'"(n!)2 ' · ' '' ' - 2'"(n!)' ' ' 

(in a somewhat different form, these expressions are 
contained in article[ 5l). 

5) In the opposite case when n » 1 (and p is not 
too small), in (11) one can substitute the quasiclassical 
asymptote for the Legendre functions. Assuming m to 
be a continuous variable, let us transform Eq. (11) to 
the form 

4cos2 CDmn 
Wmn = ~ nm--=-;;,-}(7~~=-1;;.-)f:' (15) 

where 
1-yp 

m1=n--_-, 
1 + YP 

1 + l'r m,,=n ---
1- -vr-

and <I>mn is a rapidly oscillating phase. The distribu­
tion of the transition probabilities Wmn is primarily 
concentrated in the region m1 s m :5 m 2 ; for m < m1 
and m > m 2 the probabilities Wmn decrease expo­
nentially (see Fig. 2 ). Averaging wmn over the rapid 
oscillations, we have 

(15a) 

One can obtain this distribution within the framework 
of classical mechanics (see Appendix B for further 
details). The oscillations represented by the factor 
cos 2 <1>mn are a quantum effect. An explicit expression 
for the phases <I>mn is given in Appendix B. 

The maximum value of the transition probabilities 
wmn is reached for m close to m1 and mz. Compari-

FIG. I. The quantity Ll.n = I- Wnn 
as a function of p for various values of n. 

0 ""'-'---'----'---~"-:--'--'-~ 

3lJn the simplest case m = n, formula (13) can be generalized to ar­
bitrary values of p. Applying Hilb's asymptotic expression [ 17 ] for Pn 
(cos 0), from expression (II) we find 

Wnn-'" 8ctg8!lo((n+'/,)e)l', 

where n ~ I, but p = sin2 0 is arbitrary. 
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FIG. 2. Probabilities Wmn for transitions from an initial state In, 
w_) into the state lm, w.) for different values of nand p (p = sin2 0): 
Fig. 2a is for n = 0, p = 0.75; Fig. 2b is for n = 6, p = 1.1 (0 = 18°); 
Fig. 2c is for n = 20, p = 0.12 (0 = 20°). The dotted curves indicate 
the classical envelope Wmn. see formula (IS a). The deviations of the 
probabilities Wmn from the dotted curves represent a quantum effect 
and occur due to the presence of the factor cos2 <I>mn· The tables 
given in [ 13 ] were used for the construction of these graphs. 

son of formulas (14) and (15) indicates a substantial 
difference in the behavior of Wmn for n ~ 1 and 
n » 1. This difference is clearly evident from Fig. 2. 

6) From the general principles of quantum mechan­
ics it follows that the transition probabilities Wmn are 
symmetric with respect to the initial (n) and final (m) 
states if w( -t) =w(t). As is clear from (11), the 
equality Wmn = Wnm is actually observed for arbitrary 
dependence w(t). One can understand the reason for 
this additional symmetry if p is related to the coeffi­
cient for reflection from a one-dimensional barrier 
(with regard to this reason, see Sec. 5). 

We emphasize that only the absolute value of the 
ratio C2 /C, but not its phase enters into formula (11) 
for Wmn· Such will not always be the case. Let us 
consider, for example, the evolution of a coherent 
state :4 > 

/a) o=exp( _N) ;~/n), 
2 ~~~ol'n! 

(16a) 

1(•a(:r, O) = (x/a) 

= (<•L :cr)''• exp {-1/,[<•J-X2 - 2T2w-ax + a2 +/a /2]}. (16b) 

Comparison with (5) shows that, to within a constant 
factor exp( -Y2I a 12), 1/Ja(x, t = 0) coincides with the 
generating function G(a, x; 0). Therefore, for arbi­
trary t > 0 

tf•,(x,t) = exp (- 1/ 2 /a/')G(a.x;t), (17) 

where G is given by formula (6). Since a(t) ,e. w(t) 
(even fort -oo, see Eq. (10)), the state 1/Ja(x, t) is no 
longer coherent for t > 0. As t - +oo the energy level 
distribution becomes stationary: 

4 >coherent states were introduced by Glauber [ 18 ], and at the pre­
sent time they are widely used in quantum optics. [ 19 ] With regard to 
their properties, they are nearest to the states of a classical oscillator. If 
one sets ex= rei<P, then r is related to the amplitude and <Pis the phase of 
the classical oscillation. 

~,1 ii 
II II b 
II II 
II II O.J 
I /I 
I 

fl.J 
\ I 

I "- ,./ I 
o.z 

I I 
I ll.l II I 

rn 

{!.I 

!--'---''---'----'--+-'-~~~ m 
zo 0 

m, 
0 /(} zo 
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" / I 
' 0,05 - -r-1 I 

{/ 

---
I I I 
J rn, /0 zo 

: I I 
Jfl 

m ~m 
Jfl 

wo(a) = 11- p exp {-[1- p'hcos2(rp- 6)] /a/ 2}, 

pn/2 I (V 1 _ p ) ,2 Wn(a)= wo(a)-- Hn --/a/e'<~-O) I 
2"n! 2p'" 

(18) 

Here Hn ( z) i~? a Hermite polynomial, a = I a I ei <P, and 
C2 /C1 = fPe 210 • In contrast to (11) the distribution 
Wn (a) is not determined by only the single quantity p, 
but also depends on the phase <P of the initial state 
I a). The quasiclassical nature of the coherent state 
appears in this. 

In the adiabatic region this formula simplifies to: 

wn(a)= e-v :·: [ 1 +l'"P( v- n(n: 1)) cos2(rp- 6)+ O(p) 1 
(v = /a/ 2). (19) 

As an example of the latter let us assume that at 
t = 0 the oscillator is in a state of thermal equilibrium: 

Pmn (0) = (1- S}Sn6mn, ~ = exp(-/ioo_ / kT) (20) 

(a Planck distribution with temperature T ). In this case 
as t - oo the populations wn are given by 

( 1- p )'''( 1- p~-2 )n/2 ( 1- p ) 
W, = (1- ~)~" ~--;;~ ~p£2 Pn Y(i.....:. p~W- p£-2) . 

(21) 
Since the initial state (20) is an incoherent mixture of 
n-quantum states, the phase of the ratio c2;c, does 
not enter into (21 ). 

We note that the generating function 

Gn(z,t)= L; Wmn(t)zm, 
m=O 

which corresponds to transitions out of the n-quantum 
state, also has the form (21 ). In order to obtain 
Gn ( z, t) it is only necessary to omit the factor 1 - ~ 

in (21) and replace the variable ~ by z. With the aid 
of Gn ( z, t) it is not difficult to obtain formulas for the 
average value n(t) and for the dispersion ~n2(t). 

3. Let us go on to a consideration of the Heisenberg 
representation. The coordinate operator x ( t) satis-
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fies the equation x + w2(t)x = 0. Therefore 

x(t) = CJIX(O) + c,2p(UJ, p(t) = C2ti(O) + C22f1(0), (22) 

where the Cij are real functions of the time. One can 
express them in terms of the function ~ ( t) introduced 
in (8): 

£+ 6' 
Cl!=--2-, 

s- 6' 
C12=--. -, 

2~w-

c,, = c11, c22 = 612, det (c;;) = 1. (23) 

Let us denote by a (t) the Heisenberg operator which 
satisfies the initial condition 

~(t) = a(w-)e-iro-t for t-+ -oo. (24) 

(Here a( w) (without the caret) is a time-independent 
operator in the Schrodinger representation: a( w) 
= ( 2w t 112 ( wx + ip ).) From Eqs. (22) and (24) it follows 
that 

(25) 

Hence 

d(t) = u'a,(O) + u'a-,(0), d+(t) = z;"~(O) + u"~+(O), (26) 

where 

u'(i) = 1 /2(s'+iw--l~'), v'(t) ='h(s+iw--1~). 

Since the commutator [a(t), a+(t)j =1 does not depend 
on t, then I u' 12 - I v' 12 = 1 (which is not difficult to 
verify by a direct check). From here it follows that the 
transformation (2 6) (let us denote it by S ( t)) be longs 
to the group SU (1, 1 ). 

Now let us introduce the transformation T corre­
sponding to a change in the frequency of the oscillator 
functions: TIJ!n ( w_) = 1/!n ( w+ ). It is not difficult to see 
that it is also contained in the group SU ( 1, 1 ) : 
a(w+) = u"a(w-) + v"a+(w-), a+(w+) = v"a(w-) + u"a+(w-), 

where 
" w++ W- v" -- w+- W-

u = ' 
2l"w+w- :!fw+w-

The matrix element for the transition I n, w_) 
- m, w+) now takes the form 

(27) 

(m, W+IIJln(t)) = (m, w-IT+S(t) In, w-). (28) 

Since the states inside the brackets now pertain to the 
single frequency w_, Eq. (28) represents the matrix 
element of a finite "rotation" for the group SU(l, 1). 
An arbitrary transformation of SU( 1, 1) is determined 
by the three parameters 1J!' e' and cp and has the form 

U ( u L' ) u = ch _(l_ eiC~+~J/2 v = sh _(l_ ei<¢-~l/2 (2 9) 
= v" u* ' 2 ' 2 

(the range of variation of the parameters is given by: 
0 ::5 1/!, cp ::5 21T, - oo <!! < ""). By multiplying T and S 
we can determine the values of u and v corresponding 
to the transformation U = T+ S: 

1 ,; "'+ ( • i .• ) 
u=--;- v- s +-s , 

2 "'- "'+ 
(30) 

I vi= V-P-, 
1-p 

As is well known, [20 ' 211 two irreducible representa­
tions of the group SU(1, 1) are realized by the wave 
functions of an oscillator: the states with even n form 

one of these representations, the other is formed by 
states with odd n. The irreducible representations of 
the group SU( 1, 1) were investigated in articles [22 • 231 

in which the matrix elements of finite "rotations" were 
calculated. In terms of Bargmann's notation, [231 the 
representations we are considering are related to the 
discrete series Dk. with values of the parameter 
k = % (even n) and k = % (odd n). Therefore the transi­
tion probability is Wmn = I 6.. (k) (e) 12, where 6.. (k) is 

ron 
the analogue of the Wigner D-function for the indicated 
representations of the group SU(1, 1), and the angle !! 
is given by formula (31 ). In principle this is the easiest 
way to obtain formula (11 ). However, certain transfor­
mations are required in order to bring the formula 
given in[ 23 l for t,..(k)(!J) to the form (11). 

mn 
The Heisenberg representation of the operators x 

and p is even more important because it enables us to 
explicitly write a solution of Eq. (1) for an arbitrary 
initial state. In this connection it is convenient to work 
with the characteristic function x and the Wigner 
quasiprobability W: 

x(A., [.1; t) = Sp {p(t) exp [i(IJ (l!) + f.lll (0)) ]}, 

W(x,p;t)=(z!)') dA.drtxO-,rt;t)e-iCI.x+""l 
(32) 

(the properties of the functions x and W and, in par­
ticular, their relation to the density matrix are set 
forth, for example, in[9•10• 19 l ). From (22) we immedi­
ately obtain 

(33) 

Thus, the time evolution of the functions x and W re­
duces to a linear transformation of their arguments, 
having exactly the same form as in classical mechan­
ics.51 

We emphasize that relations (33) are valid in the 
most general case when the initial state of the oscilla­
tor is a mixed state and is described by a density 
matrix. The problem of the evolution of an arbitrary 
initial state is in principle completely solved by the 
same equations (33 ). However, the transition from (33) 
to the populations wm requires an evaluation of rather 
complicated integrals. 

4. In the quantum case 

(if ljl= ~cnln)). 
n=O 

(34) 

serves as an analogue of the adiabatic invariant Ic1 
= E/w. One can determine the change of I as follows. 
Let us write the density matrix of the initial state in 
the form of Glauber's P-representation:[taJ 

p(O)= ~ cl"nP(a)!a)(al, (35) 

S) Similar relations for a system of N coupled oscillators are derived 
in article [ 10 ] . In contrast to [ 10 ] in our case it is possible to obtain ex­
plicit expressions for the coefficients Cij (t)- see formula (23). 

A transformation of the coordinates Xi (t) and momenta Pj (t) for ar­
bitrary N belongs to the group of real symplectic matrices Sp (2N, R) 
of order 2N. In the case N = 1, as is clear from Eq. (23), this transforma­
tion is contained in the group SL (2, R). This is a characteristic of the 
elementary case N = 1. As is well known from the theory of groups, all 
three groups Sp (2, R), SL (2, R), and SU ( 1, 1) are isomorphic among 
themselves. 
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where P( a) is a weight function. Then for arbitrary 
t>O 

p(t) = j d2aP(a) J¢a(t))(¢a(t) J, (36) 

where l/Ja{t) is determined by formula (17) (in the x­
representation). Hence for an arbitrary operator A we 
have 

Thus, it is sufficient to average A over the states 
l/Ja(t). After simple calculations we find 

(n_)= JaJ2, 
1 -

<n+) = -1--[p + I a I' ( 1 + p - 21" p cos 2 ( 'f - 6) ) ] 
-p 

(38) 

(here ( n±) are the average values of n for the state 
l/Ja(t) as t- ±oo, cp = arg a, and o is defined in Eq. 
(18)). From Eqs. (37) and (38) it follows that 

1+-·L 2 L - (A )] s=---=-- p-l'pRe -e2i6 
L 1-p B ' 

(39) 

where 
A= (a+')_= j d2aP(a)a' 2, 

B=L= jd2aP(a)(JaJ 2 +{-). (39a) 

Formulas (39) are valid for an arbitrary state. 
From the uncertainty relation it follows that I A I 

::: ( B2 - Y4 )112 . Therefore the quantity E is always 
confined within the limits 

- 21"~ < e < 2l'R -· (40) 
1+l'r 1-l'r 

lf the initial state is stationary, then P (a, to ) 
= P( I a I), whence A = 0; consequently 

1+-l_ 2p (4 ) 
s=----c-= 1 _P 1 

(a result which is independent of the specific form of 
this state). In particular, formula (41) is valid for all 
n-quantum states. For n = 0 or 1 it is not difficult to 
verify this directly from the distributions (14). 

As is evident from Eqs. (40) and (41), on the average 
I+ > L. Having considered an oscillator with a slowly­
varying frequency, one can easily understand the rea­
son for the increase of the invariant I. Let w = w0 

+ Aw, Aw << wo: 
p2 wx' L'lw ( p2 ) ( L'lw )2 p2 

1=-+-=10+- x2-- +- -·-+··· 
2w 2 2 wo2 w0 2wo 

Averaging this operator with respect to the unperturbed 
wave functions, we take into consideration that accord­
ing to the virial theorem, ( p2) = ( w~x2 ) = w010 , from 
which it follows that 

1 = 1.{ 1 +-i-{ ""ww.n > 1 •. 

By a similar method one can find the average even 
for operators which are more complicated than n. We 
shall present an expression for the dipersion An: 
= ( n2 - n 2 >t- 00• In this connection since the general 
formula has a rather cumbersome form, let us confine 
our attention to the case of a stationary state (for 
t - - oo ). Then 

l'.n '= 1 + 4p + p'~ 2p - ' -
+ (1 - p)' - + (1 -p)' (n- + n-+ 1). (42) 

lf the variation of the frequency w(t) takes place 
adiabatically, then p - 0. In this case formulas (39) 
and (42) take the simpler form 

e =- 2Re( ~R), L1n+2 = L'ln-2 + 2p (iL2 + iL+ 1 + 31'1n-'), (43) 

where R = p 112 e 2io is the coefficient of reflection 
(see Eq. (44) below). 

The problem of the change of the adiabatic invariant 
I for a quantum oscillator was considered earlier by 
Dykhne Y 1 The formula for E obtained by him is in 
agreement with (43) in that case when A =B. This 
equation is satisfied only for quasiclassical wave pack­
ets l/! = ~cn In) for which all of the expansion coeffi­
cients Cn have the same phase. Thus, if a coherent 
state I a) is taken as the initial state of the oscillator, 
then 

A - 2 JaJ' e-2i~___..e-2i~ for JaJ >1 
73- 1+2JaJ 2 

(a= JaJei~). 

Therefore E is not determined by only the real part of 
the reflection coefficient R, but it also depends on the 
phase cp of the initial state. 

5. As already mentioned above, the solution of the 
problem of a quantum oscillator is completely deter­
mined by the values of the constants C1, C2, and 
p = I C2/C1I 2. In principle one can find these quantities 
by directly solving the differential equation (8 ). There 
is, however, a more intuitive interpretation of p as the 
coefficient of reflection from a one-dimensional poten­
tial barrier. 6 l Namely, out of i;(t) and i;*(t) we form 
a linear combination cp ( t) with the following proper­
ties: 

<p(l) = 6(1) + Rs' (t) = { eiw~t + Re-iw_t for t--+- oo. (44) 
De'w+t for t _,.. +. oo 

From here it is clear that cp ( t) coincides with the wave 
function of the one-dimensional Schrodinger equation if 
we replace t by x and w(t) by k(x). The coefficients 
R and D are the amplitudes of the reflected and trans­
mitted waves. From a comparison of (44) with (10) we 
find 

D 

1-JRI'' 
c, RD' 

1-JRI'' 
P =IRJ'. (45) 

Thus, the solution (44) corresponds to a wave inci­
dent on the barrier from the left. Time reversal 
(t- -t, w(t)- w( -t)) corresponds to the transition 
to a wave which is incident from the right. Denoting the 
coefficients of reflection for these two waves by p and 
p', we have Wmn(P) = Wnm(p'). But, as is well 
known, [1J p' = p; the additional symmetry of the transi­
tion probability wmn with respect to the indices m 
and n, mentioned in Sec. 2, also follows from here. 

Since w2(t) > 0, the question concerns above-barrier 
reflection. This analogy enables us to apply methods 
developed in quantum mechanics in order to evaluate 
p, Thus, if w(t) = wo[1 + Ef(t)] (€- 0) then the 
formula of perturbation theory[1,2J is valid, 

P = s2 / wo_I dt f(t) e2iwot J'. 

6lThis idea is due to L. P. Pitaevskit, see [7 ]. 

(46) 
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If w ( t) is changing adiabatically, then one can apply 
the quasiclassical method developed by Pokrovski'l and 
others. [24 • 25 1 We shall confine our attention to several 
examples in which Eq. (8) can be solved exactly, but we 
shall also consider the especially interesting case of 
parametric resonance. 

1) Let 
w 2 -w 2 ay" 

w2(t)=w-"+ + -+ (47) 
. 1 + e-2vt ( evt + e-Y') 2 

(such a dependence for w ( t) corresponds to the Eckart 
potential which is well known from quantum mechanics). 
Here a> -(w. + w_) 2/y 2 or else w 2(t) takes negative 
values. The function w(t) has a minimum for -a0 <a 
< - a 1, a maximum for a > a1, and for I a I :::: a1 it 
changes monotonically from w _ to w. (here ao 
= ( w. + w_ )2/ y 2, a 1 = I w~ - w~ I/ y 2). The coefficient 
of reflection for (47) is given byf 26l 

cb(u- ~) + COSA 

P = 7b(u+ PT+-cosf. ·, 

W­
(l = n;-, 

y 
(48) 

2) With the aid of (47) one can accomplish a contin­
uous transition from the adiabatic region to an abrupt 
change in the value of w(t). Assuming a =0 we have 

P = [sb(u- ~)/2] 2 

sb(u + ~)/2 

for v~ w± 

(49) 

The value p = ( w. - w-) 2/ ( w. + w_ )2 corresponds to an 
abrupt change in the frequency and may be obtained by 
the method of sudden perturbations. [2J 

3) One can indicate a law of variation for w(t) for 
which, in general, no reflection is present. Namely, 
let f ( t) be an arbitrary function satisfying only the 
conditions f ( t) - W± as t - ± oo. Then for 

f 3 . 2 

w2(t) = f2 +-- ...:._(.!_) 
2/ 4 f 

(50) 

Eq. (8) has the exact solution 

const { 1 
} S(t) = --= exp i ~ f(t')dt' 

1/f(t) 0 

(51) 

and p = 0. Here Wmn = 6mn, i.e., the oscillator re­
mains in its initial state. A number of specific exam­
ples of such types of w(t) are considered in article[zrJ. 

4) As is evident from (46) one can expect a notice­
able increase of p in that case when the spectrum 
w(t) contains a component with the doubled fre~uency 
2w 0 (for a simple explanation of this fact, seef 28 ). This 
is the case of parametric resonance. Assuming w2(t) 
= wg[l + 2E sin (2 + o)wotl. where IE I, I o I« 1, we 
find 

e2 sb2 -r 
for I el>16i 

4f12 + e2 sh21: 

E2 sin2 't' 
4f1' + e' sin•' for I e I< I 6 I 

p= (52) 

(here J.!. = Y2v'IE 2 - o21 and r =J.J.wot). For lEI> lol 
(a ..r.egion of instability for Mathieu's equation) p in­
creases monotonically from 0 to 1. For I E I < I o I 

the solution has an oscillatory character, and its maxi­
mum value is given by Pmax = ( E/ o )2 < 1. In both 
cases strong excitation of the oscillator (p ~ 1' is 
possible for an arbitrarily small value of E . This 
example may serve as a model for a quantum para­
metric amplifier (with a single mode). The theory of 
two-mode amplifiers is considered in articles(a,aJ. 

6. From unitarity it follows that 0:::: Wmn(P):::: 1 
for arbitrary m, n, and p. One can somewhat 
strengthen the upper bound for Wmn· In fact from the 
inequality 

IPt'(x)l<[(l+m)!/{l-m)Jl'h (-1<x<1) 

it immediately follows that 

Wmn(P) ~ Woo(p) = Y1- P (53) 

(for p > 0 and m + n > 0 this inequality is strict). For 
a given value of p the probability w 00(p) has the maxi­
mum value, which is in complete agreement with Fig. 
1. 

In conclusion we note that inequality (53) enables us 
to find a simple example of unitary inequivalence of 
the canonical commutation relations [ ai. aj j = Oij for 
a system with an infinite number of degrees of free­
dom.7) For this purpose let us consider two systems 
of oscillators with frequencies w ~ and wi ( i = 1, 2, 
3, ... ). Transformation (27), whi~h corresponds to a 
change of the frequency, may be written in the form 

The scalar product of the vacuum vectors <1> 0 and <P~ 
is given by 

where Pi = wi - wi )2/ ( wi + wi )2 (this value for Pi 
corresponds to an abrupt change of the frequency from 
wi to wi ). Because of the fact that the product in (55) 
contains an infinite number of factors, it may be equal 
to zero even if all Ci ,. 0. In this case the vacua <P (j 
and <P 6 are orthogonal to each other. Now let us take 
two arbitrary basis vectors <P{n} and <I>{m} from the 

Hilbert spaces J'&_ and J'&. spanned by <1> 0 and <P~: 

With inequality (53) taken into account we find 

i=i 

Consequently if the vacuum vectors are orthogonal to 
each other, then any two vectors <P • and <P- from the 
spaces~. and J'&_ are orthogonal: (q,• I q,-) =0, i.e., 
the representations of the canonical commutation rela­
tions which are realizable in the spaces d&. and J'&_ are 
not unitarily equivalent. 8> 

7 >see, for example, articles [29 >30 ) for examples of inequivalent re­
presentations. One can find a more detailed discussion and references to 
the literature in the book r 31 l . 

8lThe condition II2ci/O + Ci2 ) = 0, which is necessary and sufficient 
for unitary inequivalence of two representations, is not new and is men­
tioned in [31 ). As is evident from the account set forth here, utilization 
of inequality (53) gives a very simple derivation of this condition. 
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APPENDIX A 

Let us deduce the values of certain integrals which 
are required in order to obtain the formulas of Section 
2. 

1) Let 
= 

In(a,J3)'= ~ e-ax'+2~xHn(x)dx, Rea>O. (A.1) 

Let us transform the generating function 

. = t" v~ { (1-a)t'+2J3t+J3'} (A.2 ) g(t)= ~ -ln(a, J3)= -exp 
n=On! a a 

(the generating function for Hermite polynomials is 
used in order to obtain this formula). Expanding in a 
series in powers of t we obtain 

In(a,J3)= V_':_e~',a(1-__1_r' Hn(. 13 ). 
a a Ya(a-1) 

2) Now let us consider the integrals J mn: 

= 
lmn(a,J3,,J3,)= ~ e-ax'Hm(J3,x)Iln(J3zx)dx 

(Jmn = 0 if the numbers m and n have different 
parity). Let us form h(t1, t2) according to: 

"' 1 h(t~o t,) = LJ m!n! lmnt,mt,n 
m,n=O 

(A.3) 

(A.4) 

= V~exp{~t•+}'12 ) 2 -(112 +122)}. (A.5) 

Introducing the polynomials qmn(x) which are deter­
mined from the expansion 

m,n=O 

from Eq. (A.5) we obtain 

1;-;;( p12 )m/2 ( J3z' )n/2 
lmn = m!n! V--,;- ·····;.;-·- 1 ;; - 1 

(A.7) 
( J3,J3, ) 

·qmn T(il,'-a)(J3z'-=-a)]'i; . 

One can relate the polynomials qmn{x) to the associ­
ated Legendre funetions. In fact, from Eq. (A.6) we 
have 

qmn(X)= :Z (2x)k/k!( m;k) 1( n--;;k )1 
h 

(/; = n<, n<- 2. n<- 4, ... ; n< =Dlin (n~, n) ). (A.8) 

On the other hand 

., ( x) ;m(l+m)!1r .. (1-+ x-) 1 -P,m --== = -------- J (x+ zc~•q:) 1 cosmrpdq:. 

l'1 + x2 Z! 2n " (A.g) 

Expanding the binomial ( x + i cos cp ) l, integrating 
term-by-term, and comparing the result with Eq. (A.8), 
we arrive at the desired identity: 

i">n>!qmn (- ix) = (2 l'1 + x2)1m+ni/ZP(m+nJ/2 . • -- .lm-nl/2( X ) {A 10) 
l'1 + x2 

Taking this equality into consideration, we transform 

Eq. (A.7) to its final form: 

V :rr ( 1 _ f.1 )(m-n)/4 
lmn=n<! - -- (2yt.1 +t.2-1)1m+n)/2, 

a 1-1.2 

--- (A.ll) 
p lm-nl/2 (1/ t.jAz ) 

(m+n)/2 V AI + Az _ 1 , 
where Al = {3~ /a and A2 = {3~/ a. 

We note that the polynomials qmn(x) can be ex­
pressed in terms of a hyper geometric function: 

(2x)"< ·( "< 1-n< jm-nl 1) 
!fmn(X)= ('hlm-nj)!ndf --2,--2---, 1 +--2-;-;;: . 

(A.12) 
One can verify the validity of this equation if the hyper-
geometric function is expanded in a series and it is 
taken into consideration that 

( n) ( 1-n) n! 
-2 k -2- k = 22k(n-2k)! · 

Relations (A.10) and (A.ll) also follow from here if the 
expressions for PfP( cos e) given in bookf 32l are used. 
Finally, by performing a transformation of the argu­
ment of the type z - z- 1 in Eq. (A.12), we obtain 

1 
qzm, zn(x) = m! n! F(-m, -n, 1/ 2 ; x2), 

2x 
qzm+I,Zn+! (x)= - 1-,F(-m, -n, 3/2; x'). 

m.n. 

(A.13) 

APPENDIX B 

Expression (15a) for a classical oscillator follows 
from geometrical considerations. The initial state with 
a random phase uniformly distributed in the interval 
0 s cp s 27T is represented in the phase plane by the 
ellipsoid (p2jw_) + w_x 2 =2L. According to Eq. (22) 
the time evolution of x and p leads to a rotation and 
an elongation of this ellipse with conservation of its 
initial area (since det (Cij) = 1 ). 

The distribution with respect to I+ = w ~ 1 E (for 
t - oo) (the adiabatic invariant I plays the role of the 
number of quanta) has the form 

zndrp p' ) 1 
w(J,_) = ~ 2n b( f.w+x' + f.w+- 2L = :rr [(h-I,) (I,- h)J'I.' 

0 (B.1) 
where -rz;;:-x = 12.1 cos cp, p/ .fW; = /2I. sin cp, 11 = .\L, I2 

= A-1L, and (Aw+/w-l12 is the coefficient of elonga­
tion of the ellipse where A = ( 1 - ..fP) ( 1 + ..f{if1. One 
can find the distribution w( I+) in similar fashion even 
in that case when in addition an external force f(t) acts 
on the oscillator. In this connection the initial ellipse, 
besides rotation and elongation, also undergoes a dis­
placement in the phase plane. 

Thus, the envelope of the distribution (15) can be 
found from purely classical considerations. However, 
in (15) there is also a factor cos 2<1>mn which leads to 
quantum oscillations of the probabilities Wmn around 
their average classical values (these oscillations are 
clearly shown in Fig. 2). 

In order to obtain the phases 4>mn we shall use a 
quasiclassical asymptotic expressionf2J for the associ­
ated Legendre functions. In the limit m, n >> 1 we 
obtain 

!llmn = ! k(x)dx = ~-{ (m + n)f. -1m- njarc ctg (I m-.!.:l_ctg ),)}, 
.__ 2 m+n 

vl-p 

(B.2) 
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where 

m + n 1X1-:_ x2 
k(x)=------

2 1- x 2 ' 

2l'mn 
Xo=-­

m+n 

and the parameter A is introduced according to the 
equation ,;-r-::p = Xo cos A (A varies within the limits 
0 :S A :S sin -l /P; the value A = sin -l -fP; corresponds 
to m = n). From Eq. (B.2) we find 

o<l>mn r' ok 1 { ( I m- n I )} --= J -dx=- 1.-sign(m -n)arcctg ctgJ. . 
am _am 2 m+n 

,,_" (B.3) 

From here it follows that the inequality 0 < oil>/om 
< rr/2 is satisfied for m 1 < m < n, and for n < m 
< m2 we have 0 > awjam > -rr/4. At the point m = n 
the phase il>mn as a function of m has a break, where 
<t>nn = n sin-1/P· Since <Pmn = 0 form= m1 , m2 and 
I o<Pmn/om I < rr/2 then the number N of zeros of 
cos 24>mn is given by N =2rr-14>nn < n. The average 
distance between the zeros characterizes the period of 
quantum oscillations of the distribution (15); it is equal 
to 

m2-m1 
!-.n = ---- = 2n:-

N (1-p)arcsinyp 
(B.4) 

Note added in proof (February 28, 1969). We note that the quasi­
classical approximation (IS) for the transition probabilities wmn is only 
valid upon fulfilment of the conditions: n, m2 - m1 , m1 ~ I. This cor­
responds to the values p ~ n-2 , (I - p) ~ n-1 . In the limiting case p --> I 
(a strongly excited oscillator, n(l- p) :S I) one can reduce formula (II) 

"'"'" = _1_v ~_(1_=~H,2 (V m(1--- P)) exp{- m(I---p)_'l, 
2nnJ :rem 2 ~ f 

i.e., Wmn is essentially proportional to the square of the wave function 
of an oscillator in the n-quantum state. In this connection the maximum 
value of the transition probability is reached for a value of m close to 
4n I (I- p). 
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