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Some properties of the surface impedance of a metal in a magnetic field H perpendicular to its 
surface are studied. Theoretical estimates of the contribution to the impedance of the wave vectors 
near single branching points of the conductivity Fourier components a(q) indicate that a peculiar 
type of resonance manifest as a single resonance line should exist. This type of resonance has been 
termed diamagnetic resonance. Resonance of this type was experimentally observed in cadmium at 
H 11 n 11 [0001) and H 11 n 11 [1120) (n is the normal to the sample surface). In this case the resonance 
is due to reference point electrons and to electrons of the cross sections in which extremum of 
asjakH is attained. 

1. The surface impedance of a semi-infinite metal in a 
magnetic field normal to its surface was considered 
many times. It was shown[ll that in the first approxi
mation the surface impedance is independent in this 
case of the magnetic field, and all the expressions of 
the theory of anomalous skin effects for a circularly
polarized external electric field E± =Ex± iEy remain 
valid if w is replaced by w ~ 0, where w is the fre
quency of the external field and 0 is the cyclotron fre
quency of revolution of the electrons in the magnetic 
field. Considering the anomalous skin effect for both 
specular and diffuse reflection of the electrons from 
the surface of a metal, for a spherical Fermi surface, 
Dingle[ 2l obtained expressions for the surface imped
ance, in which account is taken of several approxima
tions in o/l ( o-depth of skin layer' l-mean free 
path). When the magnetic field is taken into account, 
these expressions assume the following form: for 
specular reflection 

4rriwl 
z± ~ ~{C.7698(nia)-'h + 0.6534(nia) -'!.a± 

+ (nia)-1a±2[0.1318In(nia/a±3) + 0,852] + ... }, (1) 

and for diffuse reflection 

~lrriwl 
z± ~ - 2- {0.866(niu)-'" +(nia)-'~>a± 

c 

The diffuse reflection gives a singularity larger by 
(l/o)213 than specular. 

2. The independence of the main part of the imped
ance on the magnetic field and the occurrence of small 
resonant additions can be understood in this case on 
the basis of the following reasoning. We assume that 
the electrons under the influence of the magnetic field 
move along such trajectories, that vx = v 1 cos e, vy 
= V 1 Sin e, and Vz does not depend On e ( e = Qt is 
the dimensionless time of motion of the electron on the 
orbit, vf = v~ + v~ ). This means that with the excep
tion of the electrons of the central cross section all 
the remaining electrons will be ineffective ( Vz "" 0 ). 

The sharp inhomogeneity of the electric field in the 
metal can be represented as a superposition of electro
magnetic waves with different wave numbers q. For 
circularly polarized components of the field in specu
lar reflection, we can write 

where 

E±(q) = E±'(O) [q2 - 4rriwc-2cr±(q) )-1 

is the Fourier component of the field, a±(q) is the 
Fourier component of the conductivity and 

(5) 

X [0.1013ln(nia/~I±3 ) + 0.3991] + ... }, (2) 
E±'(O)= fJE± I E(z, t)= E(z)e-''"'· 

where 

a±= 1 + i(w + Q)<, a = 3/ 212 /62, 

T is the free path time of the electron. 
As seen from these expressions, the first term does 

not depend on the magnetic field and is practically the 
same for specular and diffuse reflection. However, the 
third term in (1) and the second term in (2) have re
spective resonant singularities 

4niCill ( nia) Llz± ~ --(nia)-1a+2Jn -
10c2 a+' 

(3) 

and 

(4) 

fJz z=O 

Inasmuch as in the anomalous skin effect the mean 
free path l is much larger than o, the attenuation of 
the waves has a collisionless character and is due 
mainly to the electrons, for which the Doppler-shifted 
frequency of the external electromagnetic field 
w ± qvz coincides with the cyclotron frequency n, i.e., 
electrons moving at velocity Vz will interact the most 
with that spatial harmonic of the field, whose wave 
number is 

where u = 21TVz /0 is the shift of the electron along z 
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over the cyclotron period, and y = w/a. The only role 
of the magnetic field is that when the field H is differ
ent, the given electron interacts maximally with a dif
ferent Fourier component of the electric field. If the 
metal contains electrons with different velocities Vz 
and frequencies a, then for a continuous wave spec
trum no group of electrons is preferred, (with the 
exception of the electrons with Vz = 0). Here, of 
course, the main contribution to the formation of the 
skin layer is made by electrons with small vz, which 
interact with the Fourier component of the field, the 
wave number of which is ~o-1 and is determined by 
the roots of the dispersion equation q 2 - 41Tiwc-2 a±(q) 
= 0. The change of the magnetic field can in this case 
lead only to a monotonic change of the surface imped
ance. 

A somewhat different situation arises if there exists 
in the metal a sufficiently large group of electrons 
having the same cyclotron frequency and the same 
Doppler frequency shift qvz at a given q. Since the 
number of such electrons is not small, they make an 
appreciable contribution to the impedance, and a 
change of the magnetic field may change this contribu
tion. If the magnetic field is sufficiently large, such 
that q = I (w - a)/vz I coincides with the real part of 
the root of the dispersion equation, the contribution 
made to the impedance by this group of electrons will 
be maximal and will depend in a resonant manner on 
the magnetic field. In this case a resonant increase of 
the impedance should be observed at a ~ w + o~~ r 31, 

If the frequencies are equal, w =a, the electrons 
will interact maximally with the Fourier component 
having q = 0. And since the amplitude of this compon
ent is minimal, the contribution of these electrons to 
the impedance will also be minimal. Such electrons 
are, so to speak, eliminated from the game and should 
cause a resonant singularity of the impedance at 
w =a. This resonance differs from the ordinary cyclo
tron resonance and is called diamagnetic. 

The condition under which many electrons have the 
same value of 

I w-Q~ ~y-il -- =2n --, 
v, u 

is that the quantities u and y be simultaneously ex
tremal as functions of the projection of the wave num
ber of the electron on the direction of z, which is 
equivalent to the requirement that S'(kz)= 8S(kz)/8kz 
and m*(kz) be extremal, where S(kz) is the area of 
the intersection of the Fermi surface by the plane kz 
= conse>. The extremum of u(kz) and y(kz) must be 
reached at the elliptical limiting point of the Fermi 
surface. It is precisely the electrons near the limiting 
point that cause the singularities of the impedance (3) 
and (4), rather than the electrons of the central section, 
as proposed in [4 J. Although the central-section elec
trons with Vz = 0 can interact with all the Fourier 
components of the field, their number is so small that 
their contribution to the impedance is insignificant (we 
bear in mind, of course, that v~ ;" 0). 

1lit will be shown later that a resonant change of the impedance is 
possible if S' has an extremum and if m* changes sufficiently little with
in the limits of the extremum of S'. 

By virtue of the symmetry of the Fermi surface 
(E(kz) = E( -kz)), the metal contains electrons that 
move both towards and away from the metal surface. 
Some electrons will carry the field to the interior of 
the metal, and others will, to the contrary, carry it to 
the surface. However, the roles of the different elec
trons are not equal, and the net contribution to the im
pedance will differ from zero. 

The dependence of the resonant additions of the im
pedance on the character of reflection of the electrons 
from the surface of the metal is connected with the 
fact that the electrons that carry the field to the sur
face will again carry the field to the interior after 
specular reflection, and their contribution will be much 
smaller than in diffuse reflection. 

3. As shown inr 5l, at low frequencies, when w can 
be neglected compared with a, the ineffective electrons, 
which have a displacement extremum within the cyclo
tron period u = 21Tvz/a, cause the appearance of single 
branch points in the Fourier component of the conduc
tivity a(q). This makes it possible for an electromag
netic wave with wave number q = a/vz to penetrate 
into the metal to a large depth. 

At high frequencies, the branch points a ( q) are 
determined not by the frequency a but by the differ
ence w - a. It can be shown that because of this, both 
the distribution of the field in the interior of the metal 
and the surface impedance will change near the reso
nance w -a. 

Let us consider a Fermi surface that is axially 
symmetrical with respect to the z axis, on which there 
is at kz = kzo a section with a displacement extremum 
within the cyclotron period. To simplify the calculations 
we assume that m*(kz) = const. 

The Fourier components of the conductivity a±( q), 
in a magnetic field normal to the surface of the metal 
(H 11 n 11 z), for circularly polarized waves, are given 
by[5]: 

where y 1 = v/a, v is the frequency of the collisions 
between the electrons and the scatterers. Expanding 
u(kz) in powers of kz - kzo, we obtain approximately 
for a±(q) 

Assuming that u" ~ ua/k2 and v 1 ~ Vz ~ v, we can 
rewrite the expression for a±( q), accurate to a numer
ical coefficient, in the form 

3n Ne2t [ ·( q )''• ( q )'"l <l±(q)~--- L -- - -- ' 
4 hkq q± - q ' q± + q 

(8) 

where N = k 3/ 31T 2 is the electron density. As seen from 
(8), the branch points for a± ( q) are located at q = ±q±, 
and their position is determined by the relation between 
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wand n. Substituting (8) in (5) and finding, as in["l, the 
asymptotic value of the integral at large z, which is 
determined mainly by the value near the point q± we 
obtain an express:ion for the electric field inside the 
metal: 

where 

l1 =uo/21Ty1, 1io is the depth of the skin layer at H =0, 
and 1i~ = c 2fik/ 3Nta 2wJT 2 • 

The obtained field distribution is a helical wave 
whose phase veloeity is Vph± = -uow/21T(y ± 1). 

The phase velocity of the wave E- ( z) is always 
negative, whereas the waves E. ( z) reverse sign, de
pending on the sign of ( w - n ), becoming infinite at 
w = n. This means that the length of the wave E. be
comes infinitely large and the field oscillates only in 
time, varying in amplitude as a function of z like 
e- z/ zl I z 3/ 2 • 

The amplitude of the electric field also depends on 
the difference w -- n, decreasing greatly when w = n. 
In the case of a limiting point, branch points of the 
logarithmic type appear in <Y±( q)[ 5J. Analogous calcu
lations yield the following expression for the field: 

flo' e-z!l { [ oo =t= Q 11 ]} 
E±(z)~-E±'(O)-exp -i --z-:- , 

11 z2 VJim 2 
(10) 

where l = Vlimlv, and Vlim is the velocity at the 
limiting point. Let us estimate the contribution made 
to the impedance by the Fourier components a±( q) 
near the branch points q. for electrons moving along 
helical trajectories. In the case of diffuse reflecti.on of 
the electrons from the surface, the impedance is given 
by[6] 

_ 4n2 iw {(? [ q2 - 411iwc-'a+(q) J }-' 
"+ = -- \ In - dq . 

c' ; q' 

Substituting in (11) a+ ( q) from (8) and transforming, 
we obtain for z~1 

( 4n2ioo )-! r {[ q3 - iflo-'l } 
z+-'= --,;;--· .I In --q-,-~[1-j(q)] dq 

0 

( 4n2iw )-'{ 01? [ q3 - ifJ .. -3 ] r } = ----;:2 .lin --q-3 - dq+J ln[1-j(q)]dq, 
0 0 

where 

(11) 

(12) 

i 1 ] } f(q)=il\ 0-'{iq'f,[. - -1 (q3 -i60- 3)-1• 

(q+-q)''' (q++q)''' (12a) 

The first integral in (12) gives the value of the high
frequency conductivity at H = 0 

(13) 

At large q, the f(q) dependence tends to zero, and 
therefore the main contribution to the second integral 
(12) is made by q < 6-1 • 

Then, expandin1~ (q 3 - i1i 03 f 1 in (12a) in a series, 
and confining ourselves to the first term of the expan-

sian, we obtain for the addition to the high-frequency 
conductivity 

( 4112iw )-1 r { [ i 1 ]} ( ) 
z1-1 ~ ~ J In iq'f, (q+-q)'l• (q++q)'" dq, 14 

0 

where Re q. < M < 601 • Calculating and omitting terms 
that are independent of q. and the linear terms, we 
obtain 

(15) 

Using the smallness of z11 compared with z()\ we can 
write 

z = zo + L'.z, 

where 

(16) 

Analogous calculations for specular reflection of the 
electrons yield an addition to the impedance of the 
order of 

(17) 

The obtained expressions (16) and (17) coincide, apart 
from coefficients with expressions (4) and (3) calcu
lated for a spherical Fermi surface. 

Figure 1 shows the derivative dR/ dH, calculated 
from the formula 

dR -
dH= B {In [1- (Q- w)4:2] + 2l'3 arctg(Q- w )"r}, (18) 

where B =(%)w1igeT/c 3ml1 and R is the real part of 
the additional impedance Az in (16). 

So far we have considered the simplest case, when 
m*(kz) = canst. The group of "resonance" electrons 
was distinguished by the extremal character of their 
displacement within the cyclotron period, i.e., by the 
extremal character of S' ( kz). It is perfectly obvious 
that nothing changes if the effective mass depends on 
kz but the extremum is reached at kz = kzo, i.e., on 
that section where S'(kz) = s'ext· The number of elec
trons taking part in the diamagnetic resonance will be 
determined in this case not only by the sharpness of 
the extremum o~ S'(kz) (i.e., by the value of S"'), but 
also by the sharpness of the extremum of the mass or 
by the value of m* ". If the effective mass is not ex
tremal at kz =kz0 , then in the calculation of a±(q) in 
(7) it is necessary to substitute in the first approxima
tion in place of y the quantity yo+ y'(kz- kzo ). The 

FIG. I. Theoretical dependence of dR/dH on 
(il- w )r in the presence of a section with extre
mum S(kH), m* = const, and diffuse reflection of 
the electrons from the surface of the metal. Here 
B = (3/2) wli5er/c3 11 m*. 
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expression for a±( q) will in this case be of the form 

3n Ne2i { qi q } (19) 
<1±(q)~4 likq [q(q±-=q)+~f" -[q(q++q)-~1'"' 

where (3 = 2(y')2/u"u0 • Substituting (19) in (11) and 
calculating the integral, we obtain terms of the type 

Liz= ( q; + V q:' +~)In ( ;+ + V q;' + ~). (20) 

This means that the non-constancy of m* will lead to 
a suppression of the resonant singularity of the imped
ance. When 

m" ( S'" )'" Jt --~--
m·· 2S' wT 

the constancy of m* can be neglected. 
4. Diamagnetic resonance of this type can be ob

served experimentally in cadmium( 4 J and zinc(7,aJ on 
the electronic "lens like" Fermi surface. Figure 2a 
shows plots of J1 (kH) = m*/mo, S'(kH), and VH(kH) 
for cadmium in the model of almost free electrons at 
H 1 [0001]. Although in this model S' has a broad 
extremum at kH""' 0.6 A->, the effective mass at this 
value of kH changes quite appreciably. This circum
stance should be apparently smear out the resonance 
completely. In a real metal, the situation is somewhat 
different. An investigation of the radio frequency side 
effect at H 1 [0001j and at different inclinations of the 
magnetic field to the surface of the sample has 
shown[ 9 • 10l that S'(kH) remains practically constant in 
the interval kH ""'(0.4-0.7)A-1 • In addition, from the 
results of the study of the cyclotron resonance and the 
radio frequency side effect in a magnetic field parallel 
to the surface of the metal[uJ it can be concluded that 
the velocity of the electrons changes on the Fermi 
surface and amounts to 1.15 x 10 8 and 0.64 x 10 8 em/sec 
respectively at the center of the "lens" and on the 
edge. 

If we disregard the rounding off of the edges of the 
"lens" and assume that the velocity is the same 
throughout and is equal to the velocity at the center, 
then the velocity component VH averaged over the 
period would depend on kH like VH = VH = :likH/miim' 

where mi- is the effective mass at the limiting point 
at the cent~ of the "lens" (shown by the thin line in 
Fig. 2b). On the other hand, if the edges are rounded 
off the "lens" becomes similar to an ellipsoid of 
re~olution with an axis ratio ~ 3. If the velocity on 
the edge is then assumed to be the velocity on the en-

FIG. 2. Dependence of Jl, S', and vH on kH for the "lens" of cadmium. 
a-In the model of almost free electrons; b-approximate form of real de
pendence which agree with the data on cyclotron resonance and the radio
frequency side effect. 

tire surface, then vH should vary as a function of kH 
in the manner shown by the dashed line in Fig. 2b. 

Since at small values of kH the electron is located 
during its course of motion in the magnetic field 
mostly on Fermi-surface sections with large velocity 
(the role of the edges is small), the real dependence 
will approximately correspond to the first case. With 
increasing kH, the role of the edges will increase and 
the growth of VH will slow down. Directly at the edge 
of the "lens" the real dependence of VH will be close 
to that corresponding to an ellipsoid. 

The heavy line in Fig. 2b shows the approximate 
form of the real dependence of VH on kH. Since 11 (kH), 
S(kH), and vH(kH) are connected by the relatio~ VH 
= :liS'/27TJJ.m0 , then when S(kH) is constant and VH(kH) 
decreases in a certain interval of kH, the dependence 
of 11 on kH should also decrease. Figure 2b shows the 
mutually-compatible dependences JJ.(kH), S'(kH) and 
VH(kH) (the value JJ.(O) =0.53 was taken from cyclo
tron-resonance data(uJ ). 

Thus, the changes of the real Fermi surface com
pared with the model of almost free electrons are such 
that we can expect realization of the condition for the 
occurrence of diamagnetic resonance. 

Indeed, in zinc[ 8 J and cadmium, at approximately the 
same direction of the magnetic field at which the radio
frequency side effect of a quasiharmonic type takes 
place[9 l, a single peak of dR/dH is observed at high 
frequencies. The cadmium experiment was performed 
on a sample whose plane coincided with the crystallo
graphic (1120) plane. The ratio of the resistance at 
room and helium temperatures for the cadmium used 
in the sample was p( 4.2°K)/ p ( 300°K)""' (3-5) x 10-5 • 

The frequency of the electromagnetic field was 
f =3.67 x 1010 Hz, and T =1.7°K. The sample served 
as the bottom of a cylindrical resonator with Hou 
mode. 

Figure 3 shows plots of the dependence of dR/ dH on 
H for cadmium at different angles between the magnetic 
field and the surface of the sample. We see that the 
greatest resonance-line intensity is observed at 
H 11 n 11 [1120]. When H deviates from the normal 
direction, the line changes its shape and decreases in 
intensity. The maximum interval of inclination angles 
in which resonance can be observed is ~ ± 20°, which 
is somewhat smaller than the angle interval where the 
size effect is observed. The effective mass at H 11 n, 
determined from the value of the field at the minimum 
of dR/dH, ism* =0.49 mo. The mass anisotropy, as 
in the case of zinc, is insignificant. 

At the magnetic-field direction H 11 n 11 [0001}, 
where there are circular limiting points on the ''lens'' 
with large curvature radii, there is also observed a 
single resonance line, shown in Fig. 3e. The magnetic 
field in which it is observed corresponds to the effec
tive mass of the limiting point ( miim = 1.32 mo). 

A detailed comparison of the experimental and 
theoretical dR/ dH curves is difficult, since the condi
tions under which they were obtained are somewhat 
different. Thus, for example, the field employed in the 
experiment was not circularly polarized, the magnetic 
field was not strictly perpendicular to the surface of 
the sample, the Fermi surface was not axially sym
metrical, m*.,. const, etc. 
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dK/dH 

FIG. 3. Plot of dR/dH in cadmium. 
Curves a, b, c, and d were obtained for 
n II [ 1120] at angles <P between H and n 
equal respectively to 0, 8, II, and 13°. 
The gain used to plot lines b, c, and d, 
compared with line a, is approximately 
10: I, 10: I, and 20: I. Curve e was ob
tained for H II n [ 000 1). The gain was 
the same as for curve d. The accuracy 
of setting of H was± I o. 

Nonetheless, as seen from Figs. 1 and 3, the general 
character of the theoretical and experimental curves is 
quite close. 

5. Thus, in metals, a unique resonance on the inef
fective electrons is possible in a magnetic field normal 
to the surface of the metal. Unlike the cyclotron reso
nance on the effective electrons, which has harmonics 
at w =nO, this resonance appears in the form of a 
single resonance lilne and is called diamagnetic. Taking 

part in the resonance are the electrons near the 
elliptic limiting points and the electrons of the helical 
trajectories, for which S'(kH) has an extremum with 
respect to kH, and the effective mass changes little 
within the limits of the extremum of s'. 

In conclusion, the authors are grateful to A. A. 
Galkin for interest in the work and to E. A. Kaner for 
useful advice and discussions. 
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