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A method is developed for calculating the fluctuation correlation functions in a nonequilibrium elec­
tron gas in which electrons are scattered by phonons, impurities (in crystals), or molecules (in 
gases). Extraneous fluctuation fluxes in an element of phase space are introduced into the kinetic 
equation. The correlation function is found for these fluxes and employed for determining the cor­
relation functions of the occupation numbers and the current density. These quantities are expressed 
in terms of the Green's function of the kinetic equation, which, in the case of a nondegenerate elec­
tron gas in a strong stationary homogeneous electric field, is calculated for almost elastic collisions, 
taking or not taking into account weak spatial dispersion. 

1. INTRODUCTION 

IN nonequilibrium thermodynamic systems, the fluctu­
ation spectral density is not connected by a universal 
relation with the corresponding kinetic coefficient, i.e., 
the fluctuation-dissipation theorem does not hold. 
Therefore, the calculation (and measurement) of the 
fluctuation correlation function for such systems repre­
sents a completely independent problem. 

We shall set forth briefly the basic results obtained 
in fluctuation theory for a nonequilibrium electron gas. 
The fluctuation spectral density in a plasma at high 
frequencies, when the collisions can be neglected, has 
been calculated in a number of papers. [l-43 Bunkin[ 53 

considered fluctuations in a nonequilibrium plasma with 
a finite mean time of flight of the electrons. In the cal­
culation of the correlation function of the velocities, it 
was assumed that the correlation exists during there­
laxation time of the momentum T 1(E) and vanishes after 
a collision. Actually, such an approach is valid only for 
frequencies that are greater than the reciprocal of the 
energy relaxation time, or for spatially homogeneous 
fluctuations in the plasma, in which the time of scatter­
ing of the momentum T 1 does not depend on the energy 
of the electrons Ep· Besides the fact that essentially T 1 

usually depends on € , here the rather fundamental ef­
feet, which is characferistic precisely for nonequilib­
rium systems, is lost. 

The fact is that the energy fluctuation of the elec­
trons is damped after the energy scattering time T 0, 

which, for small nonelasticity of the collisions of the 
electrons with molecules or with lattice vibrations, is 
much greater than T 1• The energy of the electron gas 
fluctuates even in a state of thermodynamic equilib­
rium. However, only under non equilibrium conditions 
(in the presence of a strong field), and when T 1 (€) 
* const are energy fluctuations observed in electric 
(in particular, current) fluctuations. (We note that un­
der these same conditions, a nonlinear dependence of 
the current on the field exists.) A significant disper­
sion of the spectral density of the current fluctuations 
arises in the frequency region w ~ T ; 1 • [ 6• 73 Owing to 
the mutual effect of the current fluctuations and the en­
ergy of the electrons, the fluctuation-dissipation theo-

rem is invalid in a nonequilibrium electron gas even 
when the energy distribution of the electrons has the 
form of the equilibrium function with a certain elec­
tron temperature. [ 8 • 93 

The theory of spatially homogeneous fluctuations of 
current in a nondegenerate electron gas of a semicon­
ductor in the presence of a strong electric field has 
been developed in the researches of Gurevich[ 63 and 
Gurevich and Katilyus. c 103 It was assumed that the cor­
relation function of the occupation numbers satisfies the 
same kinetic equation as the mean value of the occupa­
tion number (the distribution function). The problem 
was reduced to the calculation of the instantaneous cor­
relation function of the occupation numbers (mean 
square value). Such a method could be called the meth­
od of moments. 

In the present work, a different (Langevin) approach 
is used, based on the introduction of extraneous random 
fluxes in the kinetic equation for the fluctuations of the 
occupation numbers. In the final analysis, i.e., from the 
viewpoint of the results obtained, both approaches are 
equivalent. However, the Langevin procedure developed 
here has some advantages, which allow us to calculate 
the correlation function of the fluctuations (with ease) 
also for those cases (interelectronic collisions, degen­
erate gas) for which this problem has not been solved 
by the method of moments. Furthermore, in the method 
of moments, in consideration of the spatially homogene­
ous fluctuations, one takes into account the conservation 
of the total number of particles N and computes the 
mean square of the fluctuation of the occupation num­
bers, keeping components of order N-\ [ 103 which is 
generally a difficult task. The method of extraneous 
random fluxes has such a great clarity that it is of no 
small value in the search for approximate ways of solu­
tion of the equations (a detailed comparison of both ap­
proaches is given in [llJ, see also [ 123 , Sec. 24). The 
Langevin approach is ordinarily used in the theory of 
fluctuations in electrodynamics ([ 13 ' 143 , Ch. Xlll). 

The kinetic equation for fluctuations of the occupa­
tion numbers with extraneous random fluxes was intro­
duced earlier by a number of authors.[ 15 - 17 l In the 
work of Kadomtsev, [153 a scheme for solution of the 
problem of fluctuations in a nonequilibrium gas with 
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pair collisions was given in the Langevin approach. The 
correlation function for random fluxes of particles in a 
given element of phase space has been found. 

Fluctuations about the thermodynamic equilibrium 
state of the gas was considered in [ 16 ' 171 • 

In a study of fluctuations in a nonequilibrium weakly 
ionized plasma, Angeleiko and I. Akhiezer[ 181 intro­
duced extraneous fluctuations of the occupation num­
bers, which play the role of sources of the observed 
fluctuations. Use of extraneous fluctuations of occupa­
tion numbers in place of extraneous fluctuation fluxes 
is less suitable, particularly because, for an estimate 
of the correlation functions of extraneous sources, it is 
generally necessary to solve a certain integral equa­
tion. Moreover, the correlations of the symmetric 
parts of extraneous fluctuations of occupation numbers 
were discarded in [ 181 , which is invalid for spatially 
inhomogeneous fluctuations in a gas of hot electrons, 
even for T 1 = const. 

A series of researches by Lax should be noted; these 
were devoted both to the general theory of fluctuations 
in nonequilibrium systems and to their application to 
problems of quantum electronics (see [ 11 ' 191 ). In par­
ticular, Lax showed, under definite assumptions, that 
the method of moments and the Langevin method are 
equivalent. [lOJ 

A theory of fluctuations in an electron gas is devel­
oped in the present work. In this gas, the transport 
phenomena are described by the classical kinetic equa­
tion. The correlation function of extraneous particle 
fluxes is computed in a unified fashion, both for the 
case in which the electrons are scattered by a "thermo­
stat" (by phonons, impurities, molecules), and in the 
presence of pair collisions. The fluctuation spectral 
densities of the occupation numbers are expressed in 
terms of these correlation functions, as are the extra­
neous currents that enter into the equations for the 
fluctuation electromagnetic fields. For a nondegenerate 
gas, these quantities are computed explicitly, with ac­
count of spatial dispersion. Although the current fluctu­
ation spectral density is not proportional to the real 
part of the differential conductivity, they are both ex­
pressed in terms of the distribution function of the par­
ticles and the Green's function of the kinetic equation. 
Knowledge of the latter two quantities suffices for cal­
culation of the fluctuations in the nonequilibrium elec­
tron gas. 

2. CORRELATION FUNCTIONS OF THE 
FLUCTUATING EXTRANEOUS FLUXES 

We consider a gas of electrons scattered by phonons 
or (and) by impurities (if the problem is one of an elec­
tron gas in a semiconductor), or by molecules {in a 
weakly ionized plasma). We assume that the interelec­
tronic collisions, and also the generation and recombi­
nation of electrons are unimportant. We limit ourselves 
to conditions under which the scattering system can be 
regarded as a "thermostat." As applied to lattice vi­
brations, this means that the relaxation time of the pho­
nons (with which the electrons interact), associated with 
nonelectron processes of scattering (for example, with 
scattering on the basic mass of phonons) is rather 
small. 

If the field E(rt) which acts on the electron is quasi­
classical and the interaction with the scattering system 
is weak, the mean value of the occupation number (the 
distribution function) np(rt) satisfies the kinetic equa­
tion: 

(2.1) 

where 

2 ={}I {}t + VpO I or+ (eE I h){} I {}p, (2.2) 

Sp{n}= ~ (JP'P -JPP')= ]p+-Jp-, (2.3) 
p' 

JPP' = W pp•np(rt)[1- np,(rt) ], (2.4) 

W pp' is the transition probability of the electron (per 
unit time) from state p to state p'. (Unless otherwise 
mentioned, p also includes the spin quantum number.) 

The flux of particles in each given state p fluctu­
ates. The flux fluctuations consist of two parts. The 
first arises directly from the fluctuations of the occu­
pation numbers linp(rt) and is equal to the fluctuation 
change of the collision integral: 

Sp'{6n}= ~ (Wp•p(1-np)+ Wpp•np]6np.-6np~ (Wpp•(1-np•) 
P' p' 

+ W p•pnp,] == ~ K (pp') 6np•. (2.5) 
p' 

The second part reflects the random character of the 
electron scattering and would have existed even if the 
occupation number had been regarded as given. We 
shall consider this part of the fluctuation flux as the ex­
traneous source of fluctuations in the kinetic equation. 
We denote the extraneous flux of particles in state p by 
liJp(rt): 

lllp(rt)=~ (tl/p•p-6/pp•)==lllp+-{J/p-. (2.6) 
p' 

The equation for the fluctuations of occupation numbers 
takes the form 

~ e onp { 1 } (2 7)* !l'bnp(rt)-Sp' {6n} =-hap llE+c[vpllH] + lllp(rt). • 

Here liE(rt) and liH(rt) are the field fluctuations, which 
are connected by means of the equations of electrody­
namics (or Kirchhoff's law in a quasistationary circuit) 
with the fluctuations of current density and charge, and 
in the final analysis with linp. Because of the linearity 
of the equations describing the fluctuations, all the nec­
essary correlation functions are expressed in terms of 
the correlation function of the extraneous fluxes liJ P• 
which we shall also compute. 

If we limit ourselves to quasiclassical fluctuations, 
which change rather slowly in space (characteristic 
k << p) and in time (frequency w small in comparison 
with the characteristic energy divided by Planck's con­
stant), then the scattering acts at different points of 
space and different moments of time are statistically 
independent and the correlation function of the extra­
neous fluxes (liJp (r t )liJp (r t2)) must be regarded as 

1 1 1 2 2 

proportional to li (r1 - r 2)li (t1 - t 2 ) (only such fluctua­
tions can be described by the quasiclassical equation). 
It follows from (2.6) that (the variables r and t are 

*[vpt5H] = Vp X t5H. 
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omitted for brevity): 

(blp,blp,) = ~ [(blp,'p,I\Jp;p) + (lilp,p,'blp,p,) 

(2. 8) 

The flow of particles between the states, Jp1p~ and 

JP2P~ are correlated when and only when the initial and 
final states are identical (V is the volume of the crys­
tal): 

Here we have used the fact that the fluctuations of col­
lisions numbers are analogous to shot noise, and have 

2 -assumed (0Jp1p) = Jp1p2 (a Poisson process). The 
property (2.9) is based on the same independence of the 
separate acts of scattering, which lie at the basis of the 
collision integral of the kinetic equation (2.3). 

From (2.8) and (2.9), we get 

(b/p,(r1t 1)blp,(r2t2)) = Vb(r,- r,)b(t,- t2 ) {bp,p,(lp,+ + ]p,-) 

- lp,p, - J p,p,}. (2.10) 

This expression has a simple meaning. The fluxes 
liJp1 and oJp2 are correlated only when p1 = p2 and 

their correlation functions are proportional to the mean 
flux Jp . In similar fashion, the correlations of fluxes 

1 -
following from p1 and p2 are proportional to lip1p2 Jp1. 

The flux of the particles coming into p1 and the flux of 
particles coming from p2 are correlated only if p1 * p2 
owing to the fact that the entry of a particle into p1 
from p2 is at the same time the emission of a particle 
from p2 (into p1 ). The latter reflects the conservation 
of the number of particles in collisions. 

We use the same reasoning for the derivation of the 
correlation of extraneous fluxes in a gas with pair col­
lisions. We assume that particles with momenta p1 
and p2 and identical projections of spins (a) collide and 
take on the momenta k1 and k2. We denote the number 
of such collisions by JH(p1p2; k1ka), and the number 
of collisions of particles with opposite spins by JH(p1 p2 
k1 ke). The extraneous fluctuation flux is equal to 

bJ (pcr) = ~ {~ bJ11 (k1k2 ; p'p) + M" (k1k 2; p'p)- }6111 (pp'; k1k2} 

p'k,k2 ..;..o 

-bf1(pp'; k,k,)}. (2.11) 

The factors 1/ 2 take into account the identical nature of 
the particles (see, for example, [ 20 l). In the calculation 
of the correlation functions we again use the fact that 
the extraneous fluxes between the states are correlated 
only each with itself. Therefore (spin indices are again 
omitted): 

(0/p, (r1t 1) {j] p,(r2t2)) = Vb (11 - 12) {j (r, - r,) {llp,p,[l;;> + J;,,-] 
+ J+(p,p,) + F(p,p,) - 1 "'"'- lp,v,). (2.12) 

Here ;J-(p1p2) is the mean number of collisions of par­
ticles from p1 with particles from Pa. j+ (p1p2) is the 
number of collisions ending in the simultaneous appear­
ance of particles in Pu and p2, Jp1p2 is in each case 

equal to the number of collisions, at the input of which 
there is a particle from p1 and at the output a particle 

Jp,p, = ~ ( 60,a,Jff (p1k,; p2k 2) + Jfi (p1k1 ; p2k 2)}. 

k1k2 

By virtue of the conservation of the number of parti­
cles in the collisions ~ oJp = o, and we should have 

p 

p, p, 

It is easy to prove that Eqs. (2.10) and (2.12) satisfy 
this condition. 

If the gas is nondegenerate and the exchange effects 
unimportant, it is convenient to use the expression for 
the correlation function of extraneous fluxes, which is 
obtained from (2.12) after summation over the spins: 

(lil.,(r1t1)6lp,(r2t2)) = Vb(t1 - t2)6(r1 - r2 ) 

X { 1\p,p, ~[W(k1k2 ; p1p)nk,nk, + W(p1p; k,k2)np,np] 
k,k2p 

+,~ [TV(k1k 2; p1p2)nk,nk, + W(p,p2; k 1k,)np,hp,] 
k,k2 

-2 ~ [W(k1p1; k2p2)nk,np, + W(k2p2; k,p1)nk,npJ }. (2,14) 
klk2 

Here W(k1k2; P1P2) is the probability of collision of 
two particles with momenta k1 and k 2, after which the 
emerging particles have momenta P1 and P2. 

The expression (2.14) corresponds to the formula (6) 
of the work of Kadomtsev.[ 15 J In thermodynamic equi­
librium, there is detailed balance and Eq. (2.13) goes 
over into the correlation function of the extraneous 
fluxes, found by a different method in the work of Gor­
'kov, Dzyaloshinskii, and Pitaevskii. [ 16 l 

3. GREEN'S FUNCTION OF THE KINETIC 
EQUATION 

The calculation of the correlation function of the 
fluctuations of the occupation numbers includes, accord­
ing to (2. 7), the solution of the inhomogeneous linearized 
kinetic equation. It is convenient to represent the de­
sired quantity in terms of the Green's function, which 
satisfies the equation 

2p(rt)Gpp,(rt, r't') -Sp'{G} = Vb(r- r')li(t- t')llPP' (3.1) 

and the condition G = 0 for t :s t'. It has the meaning 
of the change in the mean occupation number of state p 
at the point r at the time t as a result of the introduc­
tion, at the point r' and time t' of a single particle 
with momentum p'. We now enumerate the properties 
of the Green's function. 

The limiting value of G as t - t'-- oo is equal to the 
change in the distribution function n p(rt) associated with 

the increase in the total number of particles in the sys­
tem 

by one: 

N = V-1 ~ ~ d3rnp (rt), 
p 

(3.2) 

(3.3) 

Here the field is regarded as fixed. The derivative 
(Clnp/ClN)E satisfies Eq. (2. 7) without the right-hand 

part. In a nondegenerate gas without pair collisions, 

( 8np (rt)) = np (rt) 
aN E N • 

(3.3a) 
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It follows from (3.1) that 
V-1 ~· s d3rGPP'(rt, r't') = 9(t- t') (3.4) 

p 

(conservation of the number of particles). 
By means of (3.1), it is easy to prove that the follow­

ing sum rule holds: 

i anp• (r't') anp (rt) ( 5) 
V-1 ~ J d3r'GPP'(rt, r't') aN = 9(t-t')a~· 3. 

P' 

The equation for Gpp'(rt, r't') as a function of the argu-

ments p', r', t' is (here K is the kernel of the integral 
equation Sp') 

-2p•(r't')Gpp•(rt, r't')- ~Gpp"(rt, r't')K(p"p') 
P" 

= Vll(r-r')ll(t- t')llpp'. (3.6) 

Inasmuch as 2::; llJp = 0 (see (2.13)), we actually need 
p 

the function 

anp (rt) ( ) gpp•(rt, r't') = Gpp•(rt, r't')- El(t- t')aN, 3. 7 

which, in accord with (3.3), can be called the relaxing 
part of the Green's function. It follows from (3.4), (3.5), 
and (3.2) that 

~ S d3rgpp•(rt, r't') = 0, 
p 

S an ·(r't') 
~ d3r'gpp•(rt, r't') Pa!V = 0. 
p' 

(3.4a) 

(3.5a) 

For stationary systems, we can write down the sum 
rule over the frequencies relative to the Fourier com­
ponents g( w) over the time difference t - t '. From the 
analyticity of g(w) in the upper half-plane of w we ob­
tain the dispersion relations between Re g(w) and 
Im g(w) in the usual way. Furthermore, using the fact 
that as w-oo 

[ anp (r) J 
gpp•(rr',w)~ iw-1 Vllpp•ll(r-r')-ON. (3.8) 

(this follows from (3.1) and (3. 7)), we can easily estab­
lish the following sum rule over the frequencies: 

1 r anp(r) 
-;:;-~oo droRegppo(rr',w)= Vllpp•ll(r-r')---;m-· (3.9) 

We find the Green's function for the homogeneous 
stationary nondegenerate gas under the conditions that 
the inelasticity of the collisions of the electrons (with 
phonons, impurities, molecules). In this case, as is 
known the distribution function in a strong electric 

, [21 22] field is calculated by the method of Davydov, ' 
which is based on the smallness of the quantities 
eET1 /mv ~ o1 12 << 1 and kvT 1 << 1, where T1 is the 
scattering time of the momentum, and o the character­
istic parameter of inelasticity. 

Let us represent the Fourier component of the 
Green's function 1> 

Gpp•(kw) = V-1 S'd(r- r') d(t- t') eiro(t-t')-ik(r-r'>Gpp•(rt, r't') (3.10) 

l)We shall not consider further in this section scattering with spin 
reversal; therefore G will be diagonal in the spin indices and any of the 
diagonal components of the Green's function is denoted below by Gpp' 
(rt, r't'), while N = nV/2, where n is the concentration. 

in the form of an expansion in spherical harmonics: 

Gppo(kro) = ~ G1m; l'm•(pp'; kw) Yzm(9, cp) Y,.;..(e', cp'), (3.11) 
lm;l'm' 

which we agree to normalize to 47T. We assume that the 
scattering probability Wpp' is a function of p, p" and 

the angle 8 = p • p ". The equations for Gzm; l'm' have 
the form 

eE 
(- iw +"')Glm;l'm' + i(kvpG)zm;l'm' +(2l + 1)-'1• N(e) 

X {[ (l +;~~; m2 ]"'e-112 d~ [ell2vN(e)Gz+t. m; z•m•J 

+( z;-m2 )"'ez12v__i_[e-l12N(e)G1_ 1,m;z'm') }+ ~ [Wpp"Glm;l'm•(pp'} 
2.-1 de P" 

- Wp .. pPz(cos9")Gzm:l'm'(P"P')] = [ll(e- e')/N(e)V]IIwllmm'· 
(3.12) 

in this case. Here € = :li2 p2 /2m, the density of elec­
tron states without account of the spin N(€) = 
= (m3€ /2) 112 /1r2 :1i3 , the polar axis is directed along the 
field E, TJ- +0. 

As usual in the case of weakly inelastic scattering, 
we can neglect, for all l * 0, the differences between 
p and p" in the collision integral and introduce the re­
laxation time Tz(€), where 

-r1- 1 (e}= ~ Wppo.[1-Pz(cos6"}], l ;;:;;.1. (3.13) 
P'' 

It is known that for small inelasticity of collisions, 
the harmonic functions of the electron distribution fall 
off with increase in l even in a strong electric field.[ 213 

For harmonic Green's functions with l = l' and m = m', 
this does not generally hold, especially for small times 
t - t'. For example, we give the expression for 
Gzm; l'm' with l * 0 in the absence of an electric field 
and for k = 0 (it follows from (3.12)): 

Gzm,!•m•(pp'; Oro) = (-i(J}+'t'z-1)-1(11(e- e') I N(e) V]llwllmm•· (3.14) 

It is seen that the harmonic Green's functions Gzm; lm 
with different l and m are generally of the same order. 
Nevertheless the Davydov approximation can be used in 
the definite form and in the calculation of the Green's 
function. It follows from (3.12) that for each given l' 
the harmonics with l > l' are less than the diagonal 
Gz'Z' and fall off with increase of l, just as the corre­
sponding harmonics of the distribution function. This 
makes it possible to cut off the chain of equations at an 
arbitrary l = l' + 1. 

For the calculation of the various physical quantities 
in terms of the Green's function, only its harmonics 
with l, l' = 0, 1 are usually necessary. For brevity, we 
represent gpp'(kw) in the form of a sum of symmetric 

(g0) and antisymmetric (ga) parts (in p), meaning there­
by only the harmonics with l = 0 and l = 1, respective­
ly. It follows from the equation for gpp'(kw) (see (3.1), 
(3.6)) and 

[ -iro+TJ+ikvp+ e: Vp Jg-Sp {g} = riiPP'- ';;llko J (3.15) 

that 

gapp• (kw) = ( -iw + 't"I-•) 1{ ( llpp• - ~~-~. P'} I 2 - ikvgo 

- (eEIIi)Vpg0 - (n.IN)IIko}, (3.16) 
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_!£ f N(e)e ( T" ___c!_ + 1) g0 ] + N(e) [ iw- k•v:!.t, + iekE v:!.t, ___c!_J !fo 
de L To de 3 3 de 

kE d N(e) 
+ ie--[N(e)-rtv2go] = /lkOno (s) --

3 de N 

- V-1 [ 1 ~ ikv'-r1(e')- eEv'-r1 (e') :J /l(e- e'). (3.17) 

Here n0 and na are the symmetric and antisymmetric 
parts of the distribution function, T 0 the scattering 
time of the energy, 

N(e)e-ro-'(e)={VT)-1 ~ Wp~i~~(ep,.-e) 2 /l(ep'-e). (3.18) 
P'P" 

where w~\>;, is the probability of collision with absorp­

tion of energy, T the temperature of the scattering 
system, 

(3.19) 

v' = vp' . It is assumed in (3 .17) that w T 1 << 1. 
We seek such a solution of Eq. (3.17) which is nor­

malized, i.e., the solution itself and also its derivatives 
tend to zero necessarily as E -- oo and satisfy the con­
tinuity equation 

oo\ r k2v:!.t1 iekEv:!.t, d ] 
deN(e) 1-iw+------- g0 (ep';kw) 

• L 3 3 de 
0 

=V-I (1-/lko- ikVp•Tt (e')]. (3.20) 

The latter follows from (3.15) and reflects the conser­
vation of the number of particles (see (3.4)). 

We first consider the case k = 0. For WT0 << 1 we 
can neglect the component with w in the equation for g0 

(g(w), in contrast with G(w), does not have a pole sin­
gularity as w-- 0). Equation (3.17) can easily be inte­
grated with account of (3.20): 

, no(e) i dX't'o(x) 
Ko(ep ;0,0)= V J N(x)xT'no(x) [8(s-x)-f(x)] 

0 

X [S(e'- x)- f(x)+ eEvp•T1(e')ll(x- s')]. (3.21) 

Here 
2 "" f{s)=-) dxN(x)no(x), 
n 

e 

where n is the concentration of electrons. 

(3.22) 

At high frequencies, wT0 >> 1, the imaginary part of 
g0(ep'; Ow) falls off with frequency as (wT0)-1 while the 
real part falls off at (wT0 ) - 2 and they can easily be 
computed by iterating (3 .1 7). 

For k "4: 0, the function g0 (ep'; kw) describes not 
only the relaxation of the energy of the particles, but 
also the relaxation in coordinate space. Equation (3 .17) 
for g0 can be solved in general form only when the fol­
lowing characteristic parameters are small in compar­
ison with unity (or, conversely, are large): wT 0 , k2 l~, 
and klde· Here le = (v2 T1 T0 /3)1 / 2 is the energy scat­
tering length, lde = eET1 T0 /3m is the drift distance in 
the time T 0• We note that the parameters k2~ and 
klde can be represented in the form 

T" - T ( kT')z T' - T kT' 
k2le" ~ --T-.- eE , klae ~ -r-·---;E· (3.23) 

If the heating up of the electron gas is large, i.e., T* 
- T ,.. T*, then the parameters shown are small only 
for such k for which 2 > 

2> A similar restriction arises, naturally, in the solution of the problem 
in the electron temperature approximation. [23 ] 

kT'~ eE. (3.24) 

This restriction does not apply to k if the heating is 
insignificant and the nonequilibrium character of the 
system reduces only to the presence of electron drift 
in it. 

We now calculate g0 for the case of weak spatial and 
temporal dispersion, i.e., under the conditions 

oo-ro ~ 1, k2lc2 ~ 1, klae ~ 1. (3.25) 

For compactness, we introduce the notation 

~ N(e)s( d ) lgo=--- T'~+1 go, 
To(s) de 

(3.26) 

F(ep'; k) = r 1- ikVp•tt{e')+ eEvp'tt{e') dd'] 8(e'- e)-llk,uf(e), 
L e 

~ r 28'1't d 28Tt ] (3 •27) 
Mo=N(e) -iw-iekE---d +k•-3- Ko 

" 3m e m 

d [ 2e-r, J - iekE- ---N(s)g0 • 
de 3m 

(3 .28) 

The quantity ig0 has the meaning of a flux of particles 
caused by the field and collisions, out of the energy re­
gion bounded by the isoenergetic surface E. 

Taking into account the normalizability condition for 
g0 , Eq. (3.17) can be integrated once and, using (3.26)­
(3.28), the result written in the form -

Ig0 + S dx£g0 = V-•F ( ep'; k). (3.29) 

• 
Taking the inequalities (3.25) into account, we find the 
particular solution (3.29) and the solution of the corre­
sponding homogeneous equation by the method of suc­
cessive approximations in L We require that the de­
sired function g0 satisfy the condition (3.20). As are­
sult we obtain the following, with the required degree 
of accuracy: 

( '· k ) = 2no(e) {c[ 1 + ""s dx-ro(x) r dx' ~no] 
go ep' 00 nV N(x)xT'n J 

e 0 X 

n 'f dx-ro(x)F(xp')) 
-2 J N(x)xr;;.~-;j J• 

e 

(3.30) 

< • ~ r To(x')F(x'p') } 
C= 1-llk,o-ikvp,Tt(s')+ dx/,n(J dx' 1'\(x')x'T'no(x') 

0 X 

l To(x') r dx"~no(x") -l 

X 2i A i x! 
-i(w-ku)+k2D+nJ dx!,n0 J dx' 

0 x N(x')x'T'n0 (x') (a.a 1) 

Here 

U= 4eE r dxN(x)x-r,(x) (- dno) 
3nm o- dx 

(3.32a) 

is the drift velocity in a constant field, and 

D =-4- 5 dxN(x)xt1 (x)no(x) (3,32b) 
3mn 0 

is the diffusion coefficient in the direction perpendicu­
lar to the constant electric field. 

We note that the solution (3.30) satisfying the physi­
cal requirements (in particular, (3.20)) contains small 
parameters in the denominator. Therefore, it is impos­
sible to obtain g0 directly by iterations of Eq. (3.9). We 
also note that from the inequality (3.24), which follows 
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from (3.25) and is also the condition of weakness of spa­
tial dispersion in strong heating, it follows that k2D 
<< ku. 

Equation (3.30) for the Green's function allows us to 
compute (see Sec. 4) the differential conductivity a(kw) 
and the spatially inhomogeneous fluctuations of an elec­
tron gas located in a strong electric field. Expressions 
for the functions g0 (€p', kw), a(kw) and the fluctuation 
correlation functions deserve a detailed consideration 
and a separate paper will be devoted to this question. 
Here we shall only show that if a constant electric field 
creates only electron drift, and heating can be neglected, 
then we must omit in (3.3) all terms proportional toT 0 

in order to obtain g0 in this case. Then (k * 0): 

, k ) 2no(e) 1- ikvp•'t't(e') 
go(ep · w = ------~.-

, nV -i(w--ku)+k2D' 
(3.33) 

4. CORRELATION FUNCTIONS OF THE FLUCTUA­
TION OF THE OCCUPATION NUMBERS AND 
THE CURRENT FLUCTUATIONS IN A 
NONDEGENERATE GAS 

The fluctuation change in the occupation number 
onp(rt) is made up, according to (2.6), of the response 

to the fluctuation change of field (to the first component 
at the right) and of the response to the extraneous fluc­
tuation flux oJp(rt). We shall call this second part of 

on the extraneous fluctuations of the occupation number 
and denote it by on~x(rt). Such would be the fluctuations 

of on if there were no field fluctuations: oE = oH = 0. 
The observed fluctuations of the current density, like 
on, consist of two parts: 

bja(rt) = ~ CJa~(rt; r't')bEdr't')dr' dt' + bja•x(rt). (4.1) 

The first part is the response to the fluctuations of the 
field (aaj3(rt; r't') is the electrical conductivity tensor 
(see below), the second component, equal to 

. e "" b]a•x(rt) = V LJ Vapbnpex(rt), (4.2) 
p 

is known in the theory of electromagnetic fluctuations 
as the extraneous fluctuation current. l 13 J 

We compute the correlation function (onpex(r 1 t 1) 

ex 1 
x onp2 (r2 t2 )) for a nondegenerate electron gas in the 

absence of interelectronic collisions. In accord with 
(2.6) and (3.1), 

({)n•x( 1) 6n•X(2) > = v-z ~ d1' d2' G ( 1, 1') G (2, 2') (bl ( 1') bl (2')) (4.3) 

(for brevity, we let p1 , r 1 , t 1 = 1). We substitute Eq. 
(2.9) for the flux correlation function Jp and take into 
account Eq. (3.6) for G in the primed variables and 
(2.1). We obtain 

(on•x(1)bn•x(2)) = G(1,2)n(2)+G(2, 1)n(1) 

- V-• ~ d'r' z; n.,(r', -oo)G(i; p'r', -oo)G(2; p'r', -co). (4.4) 
p' 

By virtue of (3. 7), (3.2), and (3.3a), this expression 
reduces finally to the form 

<bn•x(1}bn•x(2}> = g(1,2)n(2) +g(2,1)n(1). (4.5) 

In the presence of pair collisions in the fluctuation 
correlation function of the occupation numbers (4.4), the 

component 

V-1 ~ tFr' dt' ~ G ( 1; p,'r't') G (2; p(r't')[J+ (pt'pz') --F (p/pz')] 

"'"" (4.4a) 

appears in addition to the terms contained on the right 
side of (4.4) (see (2.12)). This naturally changes the 
correlation function (4.5). In the state of thermal equi­
librium, (4.4a) vanishes and Eq. (4.5) is seen to be 
valid for a gas with pair collisions. 

It follows from ( 4. 5) that the correlation function of 
extraneous currents is equal to 

(IJjaeX(rtlt) {)hex(rzl2}) = V-2 ~ e2Vap,V~p,{g( 1, 2) n (2) -;- g(2, 1) n ( 1)}. 
p,p, (4.6) 

If the electron gas is stationary and homogeneous and, 
moreover, if the fluctuations considered are homo­
geneous (k = 0), then one can also write3 > 

(bjaex(tt} lih•x(tz) )"' = ; ~ [VapWp (w} + V~r>Vap ( -w}], (4. 7) 
p 

where 

Yap(w)= ; ~ gpp'(Ow)uap•n.,. 
p' 

(4. 7a) 

Equation (4. 7) corresponds to the formula for the fluc­
tuation spectral density (FSD) of the currents, obtained 
by Gurevich and Katilyusl 10 J by the method of moments 
(the function Ya is the same as the solution of Eq. (3.14) 
in [10J). 

We compare (4. 7) with the expression for the differ­
ential electrical conductivity tensor, which connects the 
linear changes in current and field: 

bja(r,t,)= ~ dlzdrzcra~(r,t.,r212)6E~(rzlz). (4.8) 

According to (2.6), (3.1), and (3. 7) (we neglect the con­
tribution from oH here), 

( e )2 .._, [ iln(2} J 
<Ja~(r1 1 1 ; rzlz} = - LJ Vap,g(1, 2) --- . v ilh.[i2~ 

P1P2 

(4.9) 

In the state of thermodynamic equilibrium (the contribu­
tion to a from oH is strictly equal to zero) anp/ilfiPJ3 

= -VJ3pnp/T and, by comparing (4.6) with (4.9), we es­

tablish the fact that the fluctuation-dissipation theorem 
is satisfied. l 13 ' 14 J In a nonequilibrium electron gas, 
there is no such general connection between the fluctua­
tion spectral density and the electrical conductivity. 
However, it is seen that each is expressed by one and 
the same quantity: the particle distribution function and 
the Green's function of the kinetic equation. 

Now let us compute the FSD of the current in a homo­
geneous nondegenerate gas. For k = 0 and in the ab­
sence of a magnetic field, it is possible to put it in di­
agonal form in the indices a and J3. The current fluc­
tuations in a direction normal to the strong field, for 
WT 1 << 1, are simply equal to (see (4.6), (3 .16), and 
(3.26)) 

3lThe transition to the fluctuation spectral density over positive 
frequencies v = w/211 is carried out by multiplication of (4.7) by 2. 
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The longitudinal fluctuations of the current have the 
same spectral density: 

<llj,0X(t 1){)j,•x(t2)>., = 2V-1ne2D, ,;0-1 ~ w~,;1-1• (4.11) 

At low frequencies (wT 0 << 1), the contribution from 
g0{ep'; Ow) (energy fluctuation) becomes important in 
the current fluctuations. This contribution is calculated 
by means of (4.6), (3.16), and {3.21). This addition can 
be positive or negative, and leads to the result that the 
low frequency value of the FSD of the current is corre­
spondingly greater or less than the high frequency. 
However, it is more convenient to study the sign of the 
integral over the frequency of the contribution of 
g0{ep'; Ow) to the FSD of the current. Thanks to the 
monotonic dependence of g0(ep'; Ow) on w, the sign of 
this integral is identical with the sign of the difference 
(oj~x(t)oj;x(t2)) w- 2ne2 DV-1• With the help of the sum 
rule over frequencies, we get for g0 (ep'; Ow): 

1 +:"' { 2ne2D} -;-l dw (bj,•x(t1)1lj,•x(t2)).,- -v-,-

ne•E• {- 1 ,ed-r12 } 

= 1n•v -r,•-;; 1•+3---a;- · (4.12) 

This follows from (3.9). The bar here indicates aver­
aging of the form 

- 4 r ( dno) 
,;1 =- J deN(e)e -- -rt(e). 

3n 0 de 
(4.13) 

It follows from (4.12) that the sign of the difference 
between the low frequency and high frequency plateaus 
in the spectrum of current fluctuations depends on 
whether T 1 rises or falls with the energy E, i.e., on the 
form of the nonlinearity of the volt-ampere character­
istic. This conclusion had been reached earlier in [ 81 , 

in which the electron temperature was used. 4 > If T 1 does 
not depend on the energy, then there is no frequency dis­
persion of the FSD of the current (and voltage) at w T 0 

"' 1. If dT 1 /de > 0 ("superlinear" volt-ampere charac­
teristic), then the FSD of the current falls on going from 
low to high frequencies (see curve a in the drawing). In 
scattering by the deformation potential of acoustic pho­
nons (as also in the scattering on molecules in a weakly 
ionized plasma) T1 ex: e-1 ; 2 , T0 ex: e-1 / 2 and the charac­
teristic is sublinear. Analysis shows that in this case 
the low-frequency plateau is lower than the high-fre­
quency one (this conclusion is contained in [ 101 ) (see 
curve b in the drawing). 

The frequencies w ;:, T ;;1 make a contribution to the 
integral (4.12). Therefore, the relative value of the ex­
cess of the low-frequency plateau over the high-fre-
quency one is 

I (bj,ex (t1) lljP (t2 ) ) 0 - 2ne2D/V I T*- T 
2ne2D/V ~ -T-.-, (4.14) 

i.e., of the order of the relative heating of the electron 
gas. 

4iTo avoid misunderstanding, we note that in [8 ) we studied the 
FSD of the voltage (see ( 4.17) below), the frequency dispersion of which 
in the region w - T 0 -J has a sign opposite that of the frequency disper­
sion of the FSD of the current. 

, 
Schematic representation of the spectral density of the current fluc­

tuations in a short-circuited specimen; a-dT 1 /de > 0, spuerlinear volt-am­
pere characteristic; b-dT1 /de < 0 (scattering by the deformation potential 
of acoustical phonons or by neutral molecules), sublinear volt-ampere 
characteristic. 

Let us make clear whether or not one can connect 
with a semiconductor in which a nonequilibrium distri­
bution of current carriers has been created by a strong 
constant field, certain EMF fluctuations independent of 
the lead Zext(w) in the circuit. Doubts arise as to the 
existence of such a possibility (they have been expressed 
by Lax[ 241 for example; see also the book of Rytov, [ 121 

p. 155) because, in a semiconductor with hot electrons 
and a nonlinear volt-ampere characteristic, the exter­
nal circuit influences the relaxation of the energy of the 
electron gas and the current (in particular, on there­
laxation time). [ 8 1 

It follows from (4.1) that the current fluctuations in 
the circuit are equal to 

lll(w) = z-•(w)IIU(w) + Mc•(w), (4.15) 

where Z - 1 (w) is the differential conductivity of the 
semiconductor (see (4.9)). oU(w) is the voltage fluctua­
tion, and oiex the external current fluctuation, the FSD 
of which we found above. According to (4.15), oiex is 
the external current fluctuation in the short-circuited 
case, when oU = 0. It follows from (4.15) and Kirch­
hoff's laws that the FSD of the current in the presence 
of a load is equal to 

(4.16) 

Here 

(4.17) 

is the FSD of the voltage in the given current regime. It 
plays the role of the Nyquist noise EMF and can be used 
completely analogously to the latter in the analysis of 
electrical fluctuations. Here the non-ohmic semiconduc­
tor in the corresponding equivalent circuit must be re­
placed by its impedance Z(w) (see (4.16)). 

Let us consider current fluctuations with k '¢ 0. If 
the constant field is such that it only creates an elec­
tron drift, and the heating is small, then it suffices, in 
the calculation of the FSD of the current, to use only 
(3.33). Substituting (3.33) and (4.6), we obtain (V = 1) 

(Iliac• (r,ti) 6j~cT (rztz) )k., = 2ne2D{Ba~ + [ ({J)- ku) (kau~ + Uak~) 
+ k2(uau~- ku.kpD2)] [ (ro- ku) 2 + (Dk2)2]-•}. {4.18) 

We compare (4.18) with the expression for the real 
part of the differential conductivity, which is easily ob­
tained with the help of (3.16), (3.33), and (4.9): 

Rea,=crw(w-ku)[(m-ku)•+ (Di.:•p)-1. (4.19) 

Since ne~ = Ta in the absence of heating, we have 
established that the fluctuation-dissipation theorem is 
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not valid in systems with drift but without heating. 
The authors are grateful to B. B. Kadomtsev, L. v. 

Keldysh, Ya. L. Klimontovich, L. I. Pitaevskii, and 
V. P. Silin for discussion of the work. The authors also 
thank v. L. Gurevich, S. v. Gantsevich, and R. Katilyus 
for discussions and for making available certain un­
published results. 
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