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Bearing in mind the instability of one-dimensional wave distributions in non-linear electrodynamics 
and in optics, it seems essential, in analogy with the nonlinear theory of stability of hydrodynamic 
flows, to study two-dimensional and three-dimensional steady-state distributions of the electro­
magnetic field. To construct such solutions of the nonlinear field equations, a general scheme of 
asymptotic expansions is proposed, representing a generalization oi the theory of weakly-non­
linear natural oscillations of system with many degrees of freedom to the case of distributed 
systems. A large number of concrete two-dimensional solutions of nonlinear electrodynamics is 
constructed. 

1. In many recent papers [1- 31 devoted to nonlinear elec­
trodynamics and optics, the exact one-dimensional 
steady-state distribution of the electromagnetic field 
in the nonlinear medium were investigated in sufficient 
detail (for example, solutions of the type of a plane 
wave of finite amplitude or a plane waveguide layer). 
It was shown in some cases[4 J that the steady-state one­
dimensional distributions mentioned above are unstable 
against vanishingly small perturbations. Using the 
analogy with the theory of nonlinear stability of hydro­
dynamic flows [s,e), we can expect that under certain 
conditions, two-dimensional (or three-dimensional) 
steady-state distributions, which may turn out also to 
be stable, will exist near the unstable one-dimensional 
distributions of the electromagnetic field in a nonlinear 
medium. Moreover, regardless of whether the two­
dimensional distributions of the field are stable or not, 
the answer to the question of the existence and charac­
teristic features of the latter is, in our opinion, of un­
disputed interest. We recall that an analysis of hydro­
dynamic flows under conditions when the laminar flow 
becomes unstable and turbulent motion sets in, shows 
that in many cases the development of the linear insta­
bility for flows with a one-dimensional distribution of 
the velocity field leads to the occurrence of a two­
dimensional (or three-dimensional) flow which is close 
to the initial one-dimensional flow. At small ampli­
tudes of the perturbations, the resultant two-dimen­
sional flow has in a number of cases a certain periodic 
structure. At small but finite amplitudes of the per­
turbations, the occurrence of a certain periodic struc­
ture in the distributions of the hydrodynamic quantities 
may be connected with the excitation of not only the 
fundamental but also of higher two-dimensional (or 
three-dimensional) modes. The fundamental mode, 
which predetermines at small amplitudes the charac­
ter of the perturbed flow, is revealed in an analysis of 
the linear approximation. However, the influence of 
the nonlinearity leads not only to the excitation of 
higher spatial modes in the steady-state (or time­
averaged) flows, but also to a difference between the 
average distribution of the hydrodynamic quantities 
across the flow, compared with the corresponding 
distributions in the unperturbed one-dimensional flow. 
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A complete analysis of analogous processes in non­
linear electrodynamics should be based on an investi­
gation of two-dimensional (and three-dimensional) 
nonstationary distributions of the electromagnetic field 
in the nonlinear medium, which would make it possible 
to trace the evolution of the linear perturbations and to 
solve completely the problem of establishment of two­
dimensional (or three- dimensional) field distributions. 
As the first step, we investigate below the question of 
the construction and characteristic features of two­
dimensional steady-state field distributions in a non­
linear medium. We use here the following general 
scheme of constructing asymptotic expansions in terms 
of the small amplitude; these expansions represent 
steady-state two-dimensional field distributions in the 
nonlinear medium. We consider the linear approxima­
tion of one of the exact steady-state one-dimensional 
electromagnetic-field distributions in a nonlinear 
medium. Out of all the admissible solutions of the 
linear approximation, we single out those that lead to 
solutions that are bounded and are periodic in the 
"new" spatial variable. The latter is reached as a 
result of an analysis of the eigenvalue problem arising 
in the linear approximation and making it possible to 
separate the fundamental wave number and the funda­
mental two-dimensional mode, which at low amplitudes 
characterize the structure of the perturbed two-dimen­
sional field distribution. During the course of the con­
struction of the asymptotic expansion it becomes neces­
sary to exclude the secular terms. In analogy with the 
theory of weakly-linear natural oscillations[7l, the 
secular terms are £-.<eluded by using the assumption 
that the fundamental wave number depends on the per­
turbation amplitude. In the construction of the asymp­
totic solution, there arise not only higher two-dimen­
sional modes and not only the aforementioned distortion 
of the field distribution averaged over the "new" 
variable compared with the initial one-dimensional 
distribution, but also a distortion of the fundamental 
two-dimensional mode compared with that arising in 
the linear approximation. Further, the process of 
eliminating the secular terms gives rise to an asymp­
totic expansion of the fundamental wave number in 
terms of the perturbation amplitude (more accurately, 
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the total amplitude of the fundamental two-dimensional 
mode), which should be regarded as an asymptotic ex­
pansion of the relation that determines in implicit 
manner the wave number of the two-dimensional 
steady-state distribution. 

The performed investigation shows that near certain 
one-dimensional steady-state distributions of the 
electromagnetic field in a nonlinear medium there 
exist two-dimensional steady-state field distributions 
that have, at small but finite amplitudes of the funda­
mental two-dimensional mode, a certain periodic 
structure. In their character, these field distributions 
are analogous to weakly-nonlinear single-frequency 
stationary eigenstates that occur under certain condi­
tions in nonlinear oscillating systems with many de­
grees of freedom[7l. In spite of the fact that the analy­
sis of the two-dimensional field distributions has been 
carried out in this case for a planar geometry, we can 
state that the fundamental conclusions concerning the 
character of the two-dimensional field distributions 
that are close to the exact one-dimensional distribu­
tions in the nonlinear medium, will be valid also in the 
case of a more complicated field geometry. 

Writing the transverse electric field in the form 

E(r, t) = E ,.(r) ein ,,,t + IL(r) cos UJt (1.1) 

and using the usual notion wherein the nonlinear die­
lectric constant of the medium at the frequency w does 
not lead to the occurrence of higher harmonics of the 
electromagnetic-field frequency[ 3 l, we can show that 
the system of equations for the functions E±( r ), which 
determine the steady-state distribution of the electric 
field in the nonlinear medium, isp,s] 

AK= -t- [kffi0 -x2 -j-x2N(E_,_2 -j-K_2)]E± = 0. (1.2) 

Here k~ == w 2/ c 2 , and 

-x2[1- N(E2 )]== /.,,2 [e(w; E 2 ) -1]. (1.3) 

where the nonlinear dielectric constant E(w; E 2 ) is 
assumed to be real, corresponding to neglect of the 
dissipative processes in the medium. Substitution of 
E+ = E cos \f! and E_ = E sin \f! leads to a system of 
equations that determines the amplitude E and the 
phase \f! of the electric field: 

i';E + [k,.,2 - (grnd '!')'- x' + x2N(E2 ) ]E = 0, 

div[E2 gT<Iil '!') = 0. (1.4) 

We consider below the case of a planar geometry 
when the functions E and \f! depend only on two spatial 
variables-' 'transverse'' x and ''longitudinal'' z. 
Moreover, we confine ourselves to the case when 

N(E2 ) = E2 / E,2, 

where Ec is a certain critical field. This form of the 
nonlinearity is sufficient for the understanding of a 
wide gamut of phenomena in nonlinear electrodynamics 
and optics. In addition, for a given form of nonlinearity 
there are knownP• 31 explicit analytic expressions for 
the exact one-dimensional solutions of the system (1.4). 
We call attention to the fact that the system of non­
linear equations (1.4) admits of several types of exact 
solutions, namely solutions with zero field, solutions 
of the type of plane wave with finite constant amplitude, 
and finally exact one-dimensional solutions of the form 

E == E(x) and \f! == -koez, where k 00 = const. We shall 
consider below two-dimensional steady-state solutions 
that are close to the exact solutions of all the afore­
mentioned types. 

2. To clarify the characteristic features of two­
dimensional steady-state distributions of the electro­
magnetic field in a nonlinear medium and their asymp­
totic representations, we consider first the simpler 
case .Y = const. The system (1.4) for the nonlinearity 
assumed by us degenerates into one equation for the 
amplitude of the electric field 

AE + (k,.2 - x2 + x2E2 / E,2 )E = 0. (2 .1) 

Let k~ > K 2, corresponding to transparency of the 
medium in the linear approximation. The transforma­
tion E = ae( x, z ), a = const leads to the equation 

(2 .2) 

which degenerates when a- 0 into the linear equation 

(2 .3) 

One of the solutions of (2 .3 ), bounded and periodic 
in each of the variables, is 

e''' = cos (1;1-:T) cos (k 11 z). (2 .4) 

Here k1, 11 are the projections of the wave vector, such 
that 

(2 .5) 

When (a/Ec )2 « 1 we can expect the weakly-linear 
two-dimensional solutions of (2 .1 ), close to the solu­
tion of the linear approximation (2 .4 ), to be represented 
in the form of an asymptotic expansion in integer 
powers of the power ( a/Ec )2 • We note that the weakly 
nonlinear solutions of the equation for the field ampli­
tude (2 .1 ), close to the solution of the linear approxi­
mation, make it possible to understand many proper­
ties possessed also by other similar solutions. 

We shall attempt to construct an asymptotic expan­
sion of the form 

e = el•> + ( _t:_ )' e(t) + (!!__)' el2> + ... , (2 .6) 
IE, E, 

in which all the e<ll> are bounded and periodic in each 
of the variables. To eliminate the secular terms that 
arise in the perturbation-theory series, it is necessary 
to use the assumption that the wave vector of the sought 
solution depends on the parameter ( a/Ec )2 • It is thus 
assumed that the sought weakly-nonlinear solution, 
which is close at ( a/Ec )2 « 1 to the solution of the 
linear problem (2.4), is periodic in each of the vari­
ables and can be characterized by a definite funda­
mental wave vector, the modulus of which depends on 
the parameter ( a/Ec )2 , It will become obvious from 
the succeeding calculations that the projections of the 
fundamental wave vectors are subject to the condition 

k_j_2 -l-k11' = k,2 -x2 -j-f[kl-2 , kn2, (a/ E,) 2], (2.7) 

which is the nonlinear analog of relation (2 .5 ). To some 
degree, such a weakly-nonlinear solution of the field 
equation (2 .2) can be regarded as the analog of the 
weakly-nonlinear single-frequency natural oscillations 
in systems with many degrees of freedom [71 • 

Introducing new independent variables, namely the 



THEORY OF WAVES THAT ARE CLOSE TO EXACT SOLUTIONS 319 

phases cp 1 = k 1 x and cp 11 = k11 z, we rewrite (2 .2) in the 
form 

(2 .8) 

Here k 1 11 should be regarded as a function of the 
parameter ( a/Ec )2 , which should be determined during 
the course of constructing the asymptotic expansion 
(2.6). When a- 0, we get from (2.8) the linear equa­
tion 

(2 .9) 

which by virtue of relation (2.5) admits of the solution 
e< 0 > = cos cp 1 cos cp 11 . Representing kJ. 11 in the form of 
the expansions ' 

kl,11(a) = kl, 11 + wf~ll(a/E,) 2 + wT.11 (a!E,) 4 +... (2 .10) 

and using (2. 6 ), we find that the nonlinear equation (2 .8) 
leads to the following sequence of linear inhomogeneous 
equations: 

(2 .11) 

(2 .12) 

Using the solutions of (2.11) and (2.12), we find that 
the first terms of the sought asymptotic expression 
(2.6) can be represented in the form 

3 ( a )' x 2 
[ { a )' x'a11 J + -:-- - --- 1 + - --- cos <r .1. cos 3q:11 

128 E, k 11 2 1 E, k.~.'k112 

1 ( a )' x' [ 1 a )' x'a II l 
+ 128 E, k.,'- ~ 1 + \ E, k.~.'kll' cos 3<p.L cos 3'1'11 

(a/E)' [ x4 x' 
+ 1632~ k.1.' ~.I. cos 5<p.L cos 'I'll+¥ ~II cos '1'.1. cos 5'1'11 

x'v.J. x'vll 
+ k2 (-k--, --,-cos Srp.1. cos 3rpll +---·--cos 3rp.~, cos 5rp11 

·.~. "'-x) k11 2 (k.,2 -x2) 

x4 J + , 2 cos 5rp.~, cos 5rp11 
<~·,'-x)' 

(2.13) 

Here the functions ct, ct 1 , 11 , f3l, 11, and y 1, 11, do not 
have any singularities at all the admissible values of 
k 1, II· We note that the functions ct 1, II, unlike ct, 131 , 11 
and y 1 11 depend not only on k 1 11 , but also on the quan­
tities ~i1 >11 . In the calculation df the first terms of 
(2.13), w~ eliminated the secular terms. This results 
in 

w.f> + w~1 > = flY- 2/16, 

,,> ,,> 3x' ( 1 n n ) 
W.J. +CUll = 2048 /,· z_ 2+-.:--2+7.2 ' 

Lto X N,...L hi! 

(2.14) 

Thus, the process of eliminating the secular terms 
resulting from the fact that the right-hand sides of the 
sequence of linear equations (2 .11) and (2 .12) and their 
like contain a series of terms proportional to the 
fundamental two-dimensional mode cos cp 1 cos 'PI I, leads 
to a determination of a sum w~t> + wlr> in each in the 
parameter ( a/Ec )2 << 1. Consequently, the process of 
constructing the asymptotic expansion for a weakly 
nonlinear two-dimensional distribution of the field leads 

not only to a determination of the amplitude functions 
for all the higher two-dimensional modes, correspond­
ing to multiple values of the projections of the funda­
mental wave vector, but also to an asymptotic expan­
sion for the square of the modulus of the fundamental 
wave vector 

k.1.2 (a) + k112 (a) = k.,2 - x2 + 9/.sx2 (a/Ec) 2 

+ 3x• (.!-...)'(_1 -+_!_+-9_) 
2048 E, 1 lc.,2 - x2 k.1.2 k112 (2.15) 

The latter expression should be regarded as an asymp­
totic expansion of (2. 7 ), which determines in implicit 
form the connection between the projections of the 
fundamental wave vector of the weakly-nonlinear two­
dimensional solution. By solving Eq. (2 .15) with re­
spect to one of the projections of the wave vector for 
a given value of the other projection, we can verify that 
the approximation corresponding to retaining the first 
three terms in the asymptotic expansion (2.15) leads to 
a one-to-one connection between the projections of the 
fundamental wave vector. We note that during the 
course of constructing the asymptotic expansion, the 
parameter a/Ec acquires the meaning of the total 
amplitude of the fundamental two-dimensional mode. 
Indeed, the elimination of the secular terms is carried 
out in such a way, that small divisors arise in the 
asymptotic expression (2.13) in any order in the 
parameter of the expansion ( a/Ec )2 << 1 the amplitude 
of the fundamental two-dimensional mode remains un­
changed and equal to a/Ec. As k1- 0 (or k11- 0). 
The parameter a/Ec then loses the meaning of the 
total amplitude of the fundamental mode, since not only 
the two-dimensional mode, but also all the higher two­
dimensional modes of the form cos ncp 1 cos cp 11 , or re­
spectively cos cp1 cos ncp11. degenerate into one of the 
fundamental one-dimensional modes (cos cp 11 or cos cpl). 
Consequently, when k - 0 (or k - 0 ), the method of 
eliminating the secular terms must also be changed. 

Thus, at a specified frequency w and at k~ > K 2, 

corresponding to the transparency of the medium in the 
linear approximation, it becomes possible for steady­
state weakly-nonlinear two-dimensional field distribu­
tions, characterized by a definite value of the wave 
vector, to exist in the nonlinear medium; the modulus 
of this wave vector depends on the amplitude of the 
fundamental two-dimensional mode. The asymptotic 
series representing such a field distribution contains 
higher two-dimensional modes cos ncpl cos mcp 11 

(where n and m are odd numbers), which correspond 
to spatial oscillations of the field with wave-vector 
projections that are multiples of the projections of the 
fundamental wave vector. At small but finite amplitude 
of the fundamental two-dimensional mode, a weakly­
nonlinear distribution of the field retains certain at­
tributes characteristic of the linearized problems. 
Namely, the weakly-nonlinear two-dimensional solution 
is periodic in each of the spatial variables, and the 
projections of the fundamental wave vector are con­
nected by relations that are the analog of relation (2.5). 
We note that averaging the field distribution over the 
longitudinal and transverse oscillations leads to a zero 
average field value. 

3. We proceed to construct two-dimensional solu­
tions that are close to the exact one-dimensional 
periodic solution of the nonlinear equation (2 .2 ). Let 
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k1 be the transverse wave number characterizing the 
one-dimensional periodic solution, and then (2 .2) leads 
us to the ordinary differential equation 

{ k.J._' ___:!____ + k.,2- x')EJ._ =- x'(~J._ )' EJ_. (3.1) 
, dcrJ_' E, 

The latter, as is well known [7 1, admits of the solution 
a a -

EJ_ =xej_(cpj_)= Ec cn(cpj_), (3.2) 

where en( z) is the Jacobi elliptic cosine, and the de­
pendence of the transverse wave number on the ampli­
tude a is given by 

-=="J_====-= _n_[ 1 +~--x'--(~)'J''• 
yk.,2- x2 2K 2 k.,2- x2 E, ' 

(3.3) 

where K is the complete elliptic integral of the first 
kind and qJJ. = (2/JT)KcpJ.. When a/Ec- 0, relations 
(3.2) and (3.3) lead to e 1 - coscp1 and k1 -..; k2- K2. 

When (a/Ec )2 << 1, the solution of (3.1) close to the 
linearized problem can be represented in the form 

Putting in (2 .2 ) 

(3.5) 

where a is a constant and en cifl is the exact one­
dimensional periodic solution of (2.2), we arrive at the 
following equation for the function h: 

( a\' - (a )' · = - 3ax2 - I en <pj_h2 - a2x 2 - h3• 
Ec. Ec 

(3.6) 

In writing down the last equation we took into ac­
count the fact that when a - 0 the linear approxima­
tion admits of a solution that is periodic in the longi­
tudinal variable. Consequently when a << 1 we can 
expect the two-dimensional solutions to have a periodic 
structure in the longitudinal direction, characterized 
by a fundamental longitudinal wave number k 11 • We call 
attention to the fact that the transverse wave number 
k1 depends only on the parameter ( a/Ec )2 , which in 
the general case is not assumed to be small, whereas 
the sought fundamental longitudinal wave number de­
pends not only on (a/Ec )2 but also on the small 
parameter a. When a « 1, the solution of (2 .2) that 
is close to the exact one-dimensional solution (3.2) is 
represented in the form of the expansion 

e(;pj_, <pu) = cn;j;J_+a[h(0>+ah(1>+a'hC2>+ ... ]. (3.7) 

It is natural to assume here that k~ admits of an ex­
pansion in the form 

(3.8) 

The linear approximation leads to the equation 

[ kj_2~+ku2 -:.-+k.,'-x'+3x'(~)2 cn•;fJ._]hP>=O, (3.9) 
aq:J._2 OqJn• Ec 

which admits of a solution h(o> = l{f(cpl) cos Cf'll, which 
is longitudinal in the periodic variable. Longitudinal 
wave number k 11 ( 0) is determined in the linear approx­
imation by the solution of the eigenvalue problem 

iJ_ 'l'(cpj_) = k11"'Y (<h) 

for the self-adjoint periodic operator 
~ tP ra)' -LJ_ == kj_2 - 2 + k.,2 - x2 + 3x2 --;- cn2 <p.l_. 

dcpj_ ,E, 

(3.10) 

(3.11) 

Consequently, in the linear approximation, the square 
of the longitudinal wave number should be equal to one 
of the non-negative eigenvalues of the operator. If the 
amplitude of the exact one-dimensional distribution is 
small, then the periodic operator (3 .11) is close to the 
Mathieu operator l.1. 

LJ_ ~ (lc.,2 - x2)~ = (k.,2 - x2 ) [~ + 1 +-.. 3x' -;;-(-';--)' cos'<Jlj_J, 
d<Jl.l2 k.,"- X" E, 

(3.12) 
whose eigenfunction and eigenvalues were investigated 
in sufficient detail[ 9l, When (a/Ec )2 « 1, it is easy 
to verify that longitudinal field oscillations result only 
from three eigenfunctions of the Mathieu operator, 
namely 

which degenerates as ( a/Ec )2 - 0 into the functions 1, 
cos cp, and sin cp. The eigenfunctions (3.13) correspond 
to the following eigenvalues: 

(3 .14) 

Sufficiently complete asymptotic expansions for the 
latter are shown in[91 • We note that when (a/Ec )2 

<< 1 and a << 1 there arises, essentially, a two­
parameter asymptotic expansion of the two-dimensional 
weakly-nonlinear field distribution, and in this case the 
parameter a determines the relation between the one­
dimensional and two-dimensional fundamental modes. 
A similar situation arises also in the theory of non­
linear hydrodynamic stability [5 1. 

Using the symbol k 11 ( n) for the longitudinal wave 
number corresponding to the eigenvalue An and the 
eigenfunction l{fn of the operator f.1, and considering 
the next higher approximation in the parameter a << 1, 
we arrive at the equation 

Putting in the latter 

M1> = ha1> + hp> cos 'I'll + h,u> cos 2<rn. 

we obtain the following system of equations 

[LJ._- k112 (n)] hJI> = w1\1) 'I'n, 

L.l_ho(l) =- 3/,x2 (a/Ec) 2'1'n2 cn ~j_, 

[LJ_- .1,kl?(n)] h!1> = - 3f,x2 (a/Ec)2\l',2 en ~j_. 

(3.15) 

(3 .16) 

(3.17) 

(3.18) 

~ Since k~ ( n) is one of the eigenvalues of the operator 
L 1, the condition under which the inhomogeneous equa­
tion (3.16) has a solution consists of orthogonality of 
the right-hand side of the equation to the eigenfunction 
-Itn, and leads to the relation 
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Consequently, wl1
11 = 0, and we can assume hP 1 = 0. 

Let us turllto Eq. (3.17). Since the eigenfunction of 
the operator L 1 corresponding to the zero eigenvalue 
is the derivative of the exact solution of the one­
dimensional problem d cnC,01 /d<Pl, the solvability con­
dition of the inhomogeneous equation (3.17) can be 
written in the form 

(3.19) 

The latter relation is satisfied by virtue of the fact that 
the functions cncifl and d cnlh/d<Pl have different 
parities. Finally, the inhomogeneous equation (3.18) 
has a solution if for all n' "'n and for a given value of 
the parameter a/Ec none of the eigenvalues of the 
operator L1 coincides with the square of double the 
wave number, An'"' 4kfl(n). 

Thus, the first terms of the asymptotic expansion 
for the two-dimensional solution close to the exact 
one-dimensional periodic solution can be written in 
the form 

e =en ~.L +a { 'l',.(<p.L)cos 'I'll--} a ( ~: Y L.L -1'I'n2 ('1'.L)cn ~.L 

- ~a (X:, )"r1.L -4k11•(n)]-1'l',.2 (<p.L)cn';f.Lcos2<p11 + .. .} .(3.20) 

Let us consider the next approximation in terms of 
the parameter a. For the function h< 21 we get 

[ - [)2 J { (2) 3(xa)' L.L + k112 (n) -- h<2l = w11 'I',.-- - qt,.3 
fJq;u2 4 Ec 

{ 1 ( xa ) 2 1 ( xa )' -+ - 4 F:; 'l',.3 +z-9 F.:-; 'l',.cn<pJ_ 

X (L.L- 4kll2 (n) ]-I 'I' n 2 en ~.L} cos 3<f!t· (3.21) 

The substitution 

h(2) = h~2) cos <I'll + h~2) cos 3cpll 

leads to the following equation for the function h~21 : 

- (2) { (2) 3(xa\2 , 
[L.L-ku2 (n)]ht ='I'n ffill -4 Eci'J!,.· 

(3.22) 

It is obvious that the condition for the solvability of the 
obtained equation determines the quantity wj1

21 "' 0 and 
makes it possible to write down the first terms of the 
asymptotic expansion of the square of the fundamental 
wave number for a << 1 in the form 

("a)~ i -- -+ 3 P .l d<p 'I'n2 cn q;L.L-1'l'n2 cn cp 

3(xa)2 i -- -} - "2 Ec .l dq; 'I'n2 en cp [L.L- 4ku2 (n)]-t 'I' ,.2 en q; (3.23) 

The obtained expansion must again be regarded as an 
expansion of the relation that determines in implicit 

fashion the dependence of the fundamental longitudinal 
wave number on the parameter a. Here, however, 
w "' 0, since the nondiagonal matrix element of the 
right-hand side of (3 .22) differ from zero. Consequently, 
the elimination of the secular terms in this case leads 
not only to a dependence of the longitudinal wave num­
ber on the amplitude of the fundamental two-dimensional 
mode, but also to a difference between the transverse 
distribution in the fundamental mode and the distribu­
tion 'ltn ( <P 1 ) which arises in the linear approximation. 
Indeed, the fact that the nondiagonal matrix element of 
the right-hand side of (3.22) do not equal to zero leads 
to a distortion of the fundamental two-dimensional 
mode 

(3.24) 

where 

(3.25) 

It is obvious that the change of the transverse dis­
tribution in the fundamental two-dimensional mode, 
noted above, can be connected with the change of the 
"potential" part of the operator L1, namely with the 
transition from the "potential" function 
3(Ka/Ec)2 cn2 cp1 and a certain perturbed potential func­
tion equal to 3(Ka/Ec )2 cn2 cPl + oU(cpl, a 2 ). In the 
lowest order in a « 1, the diagonal matrix element of 
the perturbations of the potential 1i U ( <P 1 a 2 ) coincides 
in essence with the quantity w 11

21 • The condition that 
determines completely the perturbed potential in the 
construction of the asymptotic expansion is a require­
ment that the transverse distribution in the funda­
mental two-dimensional mode remain unchanged in any 
order in the parameter a. We note that in the con­
struction of asymptotic expansions for two-dimensional 
solutions close to the exact one-dimensional solution, 
besides the terms corresponding to the longitudinal 
oscillations with wave numbers that are multiples of 
the fundamental longitudinal wave number, terms arise 
that are independent of the longitudinal variables. 
Consequently, the averaging of the two-dimensional 
distribution of the field over the longitudinal oscilla­
tions leads to a one-dimensional distribution of the 
field different from the distribution of the field for the 
initial one-dimensional solution 

(3.26) 

4. Let us assume that k~ < K2 • When the latter in­
equality is satisfied, the medium is opaque in the linear 
approximation. The Eq. (2 .1) admits of an exact solu­
tion corresponding to a field amplitude 
E = /l=~J2Ec which is constant in all of space. 
The substitution 

E=l'1- (k"'/x)2Ec[1+ae(x,z)) (4.1) 

leads to the following equation: 

M- 2(k"'2 - x2 )e =- (x2 - ""'') (3ae2 + a2e3). (4.2) 

In the linear approximation, the latter admits of the 



322 V. M. ELEONSKII and V. P. SILIN 

solution 
e<0l = cos(k..Lx)cos(knz), 

k..L2 + kn2 = 2(x2 - kw2) > 0. 

Transforming to dimensionless spatial variables 
1 --- 1 ---

c= £ = fx2 - kw2 X, ---=-~ = }x2 - k,,Zz 
p i2 

and accordingly to dimensionless wave numbers 

fZ X..L, 11 = k..L, 11/l'x' - kw2 

and introducing the phase variables cp 1 = Xl ~ and 
ffJ11 = X 11 s, we rewrite (4 .2) in the form 

( 82 82 3 1 
X..L2 - .. -, +XII'-~::+ 1) e = --ae' --a2e3• 

O<fr iJqli~ 2 2 

(4 .3) 

(4 .4) 

Here x1 11 is the projection of the sought fundamental 
wave vector' characterizing the periodic structure of 
the two-dimensional distribution of the field that is 
close to the exact solution with constant amplitude, and 
should be regarded as functions of the parameter 
a << 1. Simple calculations show that the first terms 
of the asymptotic expansion of such a two-dimensional 
solution are 

3a [ . cos 2q; ..L cos 2rpn 1 -J 
e =cos q;..L cos q; 1,-- 1 -r " + ---, -.. ,--cos 2rp..L cos 2q;li 

8 . 1 - 4 X..L" 1 - '±X:,~ 3 

-+- ~~cos 3rr ..L cos 3rrll + -_;;-. [_!1- ]' [t--~] cos 3rp..L cos rr;1 
(j., 12il X.L 1 - ""h 2 

+ -~ [ _(1_ ]'·Z [ 1 - _ __:.!2~-] CO"f .L COS 3'fll· ( 4 • 5) 
1~8 _ x: 1- 4x,,' 

Eliminating the secular terms of the expansion by using 

z~.n(a)= x~.11 + awT.II + a'"'I>11 + ... , 

h 2 2 1 w ere x1 + x11 = , we get 

w1J+w,\'l = 0, wfl+ul•l'l= _ __'l__~[--1--+--1 --J. 
' 4 1G 1-4X..L' 1-4xll' (4.6) 

The obtained relations show that the asymptotic expan­
sion of the equation that establishes the connection be­
tween the projections of the fundamental wave vector 
is of the form 

'+ .2 -1-_il_a2 -i._a2 [ 
1 --1-J (4 7) 

X..L x,, - 4 16 1- 4zJ.2 -t- 1 - 4XIi2 • • 

We call attention to the fact that in this case, when the 
medium is opaque in the linear approximation, the 
small divisors in the first terms of the asymptotic 
expansion of the two-dimensional solution occur both 
when Xl 11 = 0 and when Xl 11 = 1k It can be shown that 
in the higher approximation's, the small divisors arise 
only at the following values of xi or x~: Y4, %, 
Y16 ... 0; %, %, 1'l16 ..• 1. We note, however, that the 
region of values of Y4 < xi 11 < % remains free of 
small divisors. Consequently, it can be assumed that 
when a« 1 the asymptotic expansions (4.5) and (4.7) 
are two-dimensional field distributions close to the 
exact solution with a constant field amplitude. Unlike 
the previously considered case of weakly-nonlinear 
two-dimensional solutions close to the exact solution 
with zero field, when the averaging of the two-dimen­
sional distribution over the spatial oscillations has led 
to a zero average field, in this case the corresponding 
mean values for the two-dimensional distributions of 
the field turn out to differ from the value 
-/1- (kw/K)2Ec, since (e)lll=-3a/8. 

5. It is known[ 3 ' 81 that Eq: (2.1) when k~ < K 2 has 

an exact one-dimensional solution 

E (x) = iZ E, tit- (kw/xJ2/ch }x2 - k,, 2 x, (5.1) 

which corresponds to the occurrence in the medium of 
a field distribution localized with respect to one of the 
spatial variables. Putting in (2 .1) 

E = yi- (kw/x) 2 E, ['y2/ch ~ + ae(£, \;)], 

we obtain for the function e ( ~, s) an equat10n in the 
form 

, , 3 }2 a ) 
(~-t-6/ch~£-1)e= ---e2 -a2e3• (5.2 

ch s 
Let us consider the linear approximation to the 

exact one-dimensional solution (5.1 ), which admits of 
a solution in the form e<o> = >Jt(O cos (x 11 s) and leads 
to the eigenvalue problem 

~ d2 6 
Lj_ '¥=XII"¥, Lj_ = -+ ---1 

- d';2 ch 2 £ · (5.3) 

when A> -1, the problem L1 >ItA = A>JtA leads to dis­
crete eigenvalues An= (2 - n)2 - 1 (n = 0, 1, 2), 
whereas when A < - 1 the eigenvalue spectrum is con­
tinuous. It is obvious that solutions that are periodic 
in the longitudinal variables is obtained only from the 
ground state of the operator L1, for which n = 0 and 
A0 = 3. Thus, in the linear approximation, e<o> 
= /3(;'/ cosh 2 ~. Constructing the two-dimensional solu­
tion periodic in the longitudinal variable and close to 
the exact one-dimensional solution (5.1) by using the 
asymptotic expansions 
e = cos <r11/ ch2 s + ae(!J + a 2e('l + ... , XII' = 3 + aw1\'l + a2w1\'l + ... , 

(5.4) 
we arrive after a number of simple transformations to 
a system of linear inhomogeneous equations with re­
spect to the functions el 1 > ( ~ ), where i = 0, 1, 2, having 
the same form as the system of equations (3.16), (3.17), 
and (3.18). 

It is easy to verify that all the general conclusions 
concerning the character of the asymptotic expansions, 
the solvability conditions, and the change of the trans­
verse distribution of the field in the fundamental two­
dimensional mode are valid also in this case. In par­
ticular, wj 1u = 0 and the analog of relation (3.19) is 

"f (· sh s \ 1 ( 1 )' 
_: ~~~ ch2 £ J ch s ch2 s = O, 

wher~e sinh ~/cosh 2 ~ is the eigenfunction of the opera­
tor L1 corresponding to the zero eigenvalue. Finally, 
all the eigenvalues of the operator L1 satisfy the con­
dition An "' 4k~ = 12, a condition essential for the 
possibility of solving the inhomogeneous equation with 
respect to the function e 0 >(0. In the case under con­
sideration, an expression was obtained in explicit form 
for the function ef/>( 0, which determines in the first 
approximation the difference between the two-dimen­
sional field distribution averaged over the longitudinal 
oscillations and the distribution characteristic of the 
exact one-dimensional solution. It can be shown that 
the first terms of the asymptotic expansion of the 
sought two-dimensional solutions are given by 

cos 'I'll a ( 1 1 ) {t) e=-----= ---- -t-aez (s)cos2<fll+··· 
ch,' s }2 ch s 2 ch'l;; 

(5 .5) 

The function eP>( 0 admits of a representation in the 



THEORY OF WAVES THAT ARE CLOSE TO EXACT SOLUTIONS 323 

form of the following indefinite integral: 

z 

+ c ~dW- ~')'• [Ptu(z) Qtia(~)- Qt'"(z) P{ia(~)]. (5.6) 

Here c is a certain numerical constant, P( z) and 
Q( z) are the associated Legendre functions of first and 
second order, respectively, and the constants C± are 
determined from the condition for the vanishing of the 
function e~l)(z) at z = ±1. Thus, near a one-dimen­
sional field distribution (localized in one of the spatial 
variables and periodic in the other) the main period of 
the longitudinal oscillations of the field is comparable 
with the characteristic dimension of the localization 
region in the transverse direction, We note that the 
value of the field on the symmetry axis of the two­
dimensional distribution, which is a rigorously defined 
quantity for the one-dimensional solution, depends con­
tinuously in this case on the amplitude of the funda­
mental two- dimensional mode. 

6. Let us consider the case when the phase of the 
field ([t "" const and the field distribution in the non­
linear medium is connected with the field energy flux 
density. One of the exact solutions of the system (1.4) 
for the assumed nonlinearity is 

Eo= E, }'x2 + k,,,Z- k.,2/x, 'l'o = -k00Z. 

This solution corresponds to a plane wave of finite 
amplitude and leads to the presence of a longitudinal 
field energy flux density S11 = kooE~. The substitution 

E=Eo[1+ae(x, z)], 'l'='l'o+aw(x, z) (6.1) 

leads to the following system: 

( xEo\2 li¢ (xEo)' M+2 ~/ e+2koo-= -3a - e2 

E, liz E, 

- a•( t~ )'e•+ a(grad¢) 2 + a2e(grad ¢) 2 - 2akooe ::, 

lie ae• 
1'.¢- 2koo liz = ak"'az- 2a div(e grad¢)- a'div(e' grad¢). (6.2) 

In the linear approximation, a solution bounded and 
periodic in each of the variables is 

2k k 
e<OJ = cos(kl-x)cos(kuz), 1jl<0> = "' 11 cos(kl-x)sin(kuz). (6 3) 

k1-2 + k112 • 

The connection between the linear-approximation wave­
vector projections is given by 

(k-'-2 + ku2) [2(xEo/E,) 2 - k1-2 -/cn2] + 4koo2ku2 = 0. (6.4) 

Simple calculations show that when a « 1 the asymp­
totic expansion of the two-dimensional solution that is 
close to a plane wave of finite amplitude is given by 

E =Eo+ aEo{ cos '1'1- cos <pu- : a 

a[-~ ~ ( kn2 _ t)( kooEc )'] (xE0/E,) 2 cos,2rpl-. 
+ 8 + k2 k2 xEo (xE0/E,) 2 - 2k.1_2 

+a [ _ ~ + ( kn 2 )'( kooEc \ 2 _ _!__( kooEc )2] (xEo/E,) 2 c~2'l_'l_l -. _ 
8 k2 x£0 I 4 x£0 (xE0/E,) 2 - 2ku2 + 2koo2 

(6.5) 

To eliminate the secular terms, we again use the as­
sumption that the fundamental wave vector depends on 
the parameter a. Calculations show that 

(!) (!) 4k,2k2 (!) 

wn +wl-='k•+4koo'ku' wn. (6.6) 

In the limiting case k00 - 0, the asymptotic expan­
sion (6.5) coincides with the expansion (4.5) considered 
above. Elimination of the secular terms in the next­
higher approximation leads to the relation 

(6.7) 

the right- hand side of which is a linear inhomogeneous 
function of the quantity w~~>. Relation (6. 7), unlike the 

preceding relation (6.6), admits only of solutions with 
w~1211 "" 0. Let k2

00 ~ k2w >> K2 , and then E0 ~ Ec. If at 

the' same time kf1 » k~, then the asymptotic expansion 
( 6. 5) takes the form 

E ~ E, + aE, {cos 'P1- cos 'PII + 3 ~ (1 +cos 2q:l-) 

3 koo2 } 
+4a~cos2q:u+ ... , (6.8) 

provided only that when k!, » K 2 the parameter 
a« 1 is such that ak!, << K 2• The obtained asymptotic 
form corresponds to rapid oscillations in the longitud­
inal variable and slow ones in the transverse variable. 
Relation (6.4) shows that when ki « k~ the longitudinal 
wave number k11 ~ 2koo. We call attention to the fact 
that no small divisors appear in the asymptotic expan­
sion when the inequality ak;;., « K 2 is satisfied. The 
amplitude functions of the higher longitudinal modes 
are small, and the principal terms of the asymptotic 
expansion for the field distribution in the nonlinear 
medium are connected with the fundamental two-dimen­
sional mode and with the long-wave distortion of the 
field distribution in a plane orthogonal to the propaga­
tion direction of the plane wave of finite amplitude. 

7. In conclusion, let us consider two-dimensional 
field distributions close to the exact one-dimensional 
solution of the system (1.4), corresponding to the oc­
currence in the nonlinear medium of a plane wave­
guide layer[ 2•41 • The exact homogeneous solution is 
given by 

Eo(x)= y2E, "Vx'+k,'-k.,'/x., 'l'o(z)= -kooz. (7.1) 
ch yx2 + k,2 - k.,2 x 

The substitution E = Eo + ae, >It = >Ito + aljJ, after intro­
ducing the dimensionless variables ~ = x ..; K2 + k~ - k~ 
and ?; = z ..; K 2 + k;;., - k~ and the symbols 

ci> = l'Z E,¢ yx2 + k,2 - k.,2/x, a= xa/E, yx2 + koo2 - k.,2, 

Xoo2 = koo2 I (koo2 + x2 - k.,2)' 

leads to the following system of equations 

( 6 ) (1J -L'. + --- 1 e - 2xooiic- = - y2 axooe a_.q> 
ch2 6 ch 6 

1 - e• - (<JociJ)2 1 
+ -a2e(lic<D) 2- 3 ]12 a-- a2e3+l'2a---+-a'(li0ci>)• 

2 · ch 6 ch; 2 ' 

___!_,{(t. +;-2--1 \1~- 2x.,ace} = -y2 aile eiicci> 
ch 6 ch2 6 ch 6 ch 6 

(7 .2) 

1 1 - eii0ci> 1 
+ 2 ax,lice'- 2 a2iic(e2iicci>)- y2 aii0 ch 6 - 2 a2iJ0(e•a,ci>). (7 ,3) 

In the linear approximation, the latter degenerates into 
the system 

(I'.+ - 6-- 1 ) e<0> + 2xco8t ( Q)(O) \/ = 0, 
ch2 6 ch s 
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( 2 ) <lJ(O) 
-2v iJ,e(OJ+ 11+---1 ~=0 

.. ~ • ch2 ~ . ch s ' (7 .4) 

which admits of a solution in the form e<o> 
= e1cos [xn~J. q,<o> = <I>1 sin[x 11 ~]. For the functions e1 
and <I> 1, Eqs. (7 .4) lead to an eigenvalue problem for 
the longitudinal wave number x 11 : 

[ d2 6 ] J(ool(ll 
-+---1-xl12 e_!_+2--lD_j_=0, 
d£2 ch2 ~ ch s 

[ d2 2 ]<lJ_j_ 
2XooXIIe_!_+ d~,Z + ch2§ -1-Xll2 chs =0. {7.5) 

Eliminating <1>1, we obtain the fourth-order equation 

r ~ 2 ][ d2 6 ] -+---1-xn2 -+---1-xn2 e_j_-4)( 2Xll2e_j_= 0. 
L d£2 chz s d£2 ch2 s ~ · (7 , 6) 

When x!, » 1' the proper parameter of the problem 
is x~ -4x!,. We call attention to the fact that in the con­
struction of two-dimensional solutions close to a plane 
wave of finite amplitude, when k!, >> K 2, a similar re­
lation was obtained, Let 

X112 = 4x .. 2 + 21.., (7. 7) 

where K!, » 1 and .\ is finite. Equation (7.6) can be 
rewritten in the form 

{[~ + _ 2_- 1 ][ ~ + - 6-- 1 J -- 4A. [~ + - 4-- 1 J + 4A.2 
d62 ch2s CI§2 ch2 6 d62 ch2 ; 

-Bx 2 [~+-4--1-l..]}e_j_=O {7.8) "" d£2 chz s . 
In our case, the latter shows that the parameter .\, 
which determines the difference between the eigen­
value x~ and its limiting value 4x!, can be obtained by 
solving the eigenvalue problem for the second order 
equation 

(7 .9) 

where <1>1/cosh ~- X11e1/2Xoo· The solution (7.9) leads 
to two eigenfunctions satisfying the required boundary 
conditions: 

e (6, A.0) = (1- th2 6)<ii7-tJI~, 1-·m 
l..o=--2-; 

At= 7 +l'17 
2 . (7 .10) 

We proceed to construct the two-dimensional solu­
tions (periodic in the longitudinal variable and vanish­
ing at ~- ± oo) that are close to the one-dimensional 
waveguide solution (7 .1). Let e1 and <I> 1 be the exact 
eigenfunctions of the linear approximation, and let x11 
be the corresponding eigenvalue. Assuming that when 
a « 1 the distributions of the amplitude and of the 
phase of the field in the nonlinear medium admit of the 
asymptotic expansions 

e = e_1_ (6) cos If II+ ae<tJ (6, 'I'll) + .•. , <I> = <I> _1_ (6) sin Wll + a<I><'l (§, 'I'll) 

(7 .11) 
we find that e<ll and q,w satisfy the system of equa­
tions 

- 1-.[( 11 +-2-- 1\/ <I><<J- 2x .. a,e<'>] 
ch 1; ch2 § ch 1; 

[ - e_j_<I>_]_ 1 1 e_j_o£<1>_]_ J . 
= l'2xu2----x .. xne_!_2 --=..iJ<--- sm2cpJ1. (7.12) 

cb 6 2 l'2 ch s 
In writing down this system, account was taken of 

the fact that in the first approximation in the parameter 
a « 1 the longitudinal wave number retains the value 
characteristic of the linear approximation. In other 
words, xfJ (a) = x~ + 0( a 2 ). Indeed, assuming the con­
trary and analyzing the solvability conditions for the 
fundamental two-dimensional mode, we can verify that 
the quantity w\11 >, which determines the term that is 
linear in a in the asymptotic expansion of the funda­
mental longitudinal wave number, is equal to zero. 

Using the representations 

e<1l = e~'l + eJll cos 2<pn, <I><'l = rv~'l sin 2q;n, 

we find that e&1> satisfies the inhomogeneous equation 

(~+-6--1) e~'l =- 1_J(ooXIIe_!_(Jj_!_ 
d1;2 ch2 s l'2 

_,3e_j_2 + (iJ~<l>_!_) 2 _ 

2ch1; l'2ch~ 
(7 .13) 

In order for the obtained solution to be solvable it is 
necessary that the eigenfunction of the operator in the 
left side of (7.13), corresponding to zero eigenvalue, 
the orthogonal to the right-hand side. Such a condition 
is satisfied, since the parity of the functions e1 and 
<1>1 is the same, and the aforementioned eigenfunction, 
equal to sinh~/ cosh 2 ~, is odd. Consequently, 

(!) ( d2 6 \-'[ 1 eo = -+·---1} -~XooXIIe_!_<I>_j_ 
d£2 ch2 s . )'2 

_ ~e_1_2 + (iJ~<I>_!_)2J. 
l'2 ch 1; l'2 ch s (7 .14) 

Since two linearly independent solutions are known 
for the homogeneous equation corresponding to (7 .13) 
(one is sinh~/ cosh 2 ~. which coincides following the 
substitution tanh~ = z with the associated Legendre 
function of the first kind p~u, and the second is Q~ll, 
which is the associated Legendre function of the second 
kind), the solution of the inhomogeneous equation (7.13) 
can be written in the form of an indefinite integral 
similar to (5.6 ). The system of equations determining 
the functions e~ll and 2< 1 > is of the form 

( d2 6 ) (t) Ql~!) 
- +--- 1 - 4xn2 ez + 4J(ooXII ____, 
d£2 ch2 ~ ch s 

1 3e_j_• .(iJ£<1>_]_)2 
= --= XooXIIe_!_ <I> _1_- -.=--- ---- • 

l'2 l'2 ch 6 12 ch 6 
'!) 

_1_ [ 4x .. xne~'l + ( ~ + ,_2_- 1 - 4xn2) ~] 
ch s d~2 ch2 6 ch s 

- e_j_<I>_j_ 1 e_j_iJ;<I>_j_ 
= f2 X112 '--- -J(ool(lle_!_2- 00 ------. 

ch 6 2 l'2 ch s (7 .15) 

When x! » 1, the latter can be greatly simplified. 
Indeed, in the right sides of (7 .15) it is sufficient to 
retain only the terms containing the factors XooXII or 
X~· Moreover, in the left sides of (7.15), in the limiting 
case under consideration, there appear only differential 
operators with constant coefficients. Consequently, 
when x!, » 1 the system (7 .15) assumes the form 
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( d2 \ (1) <D?) 1 
-- 4X112J ez + 4X=XII- ~ - ----=-X=XIIe .L <D .Lt 
d';2 ch s 1"2 

1 [ (t) ( d2 ) <D~1l] - e.LID.L 1 
- 4X=XIIe2 + --4)(112 -h. ~ f2X112-h' --2 XooXIIe.L2-(7.16) 
cbs d62 cs cb 

For the combinations e~0 ± <1>~0 , the system (7.16) 
breaks up into two independent inhomogeneous equations 
of second degree, the solution of which entails no dif­
ficulty. 

Thus, near the field distribution corresponding to 
the occurrence in the nonlinear medium of a plane 
waveguide layer, there exist two-dimensional field 
distributions that are localized in the transverse vari­
able and are periodic in the longitudinal one. The longi­
tudinal wave number, which determines the periodic 
structure of the perturbed natural waveguide depends 
on the amplitude (more accurately, the square of the 
amplitude) of the fundamental two-dimensional mode 
and the wave number koo, which determines the energy 
flux density in the unperturbed plane waveguide layer. 
If koo << K, then the wavelength of the longitudinal 
spatial oscillations is comparable with the character­
istic dimension that determines the region of localiza­
tion of the field across the waveguide layer. On the 
other hand, if koo >> K, then, provided the parameter 
ax!. « 1, the wavelength of the longitudinal oscilla­
tions of the field is small compared with the character­
istic dimensions that determines the transverse dimen­
sion of the waveguide field. The principal terms of the 
asymptotic expansion for the field distribution in the 
nonlinear medium are the fundamental two-dimensional 
mode and the term that does not depend on the longitud­
inal variable and determines the difference between the 
two-dimensional field amplitude distribution averaged 
over the longitudinal oscillations, and the correspond-

ing distribution for the unperturbed waveguide. On the 
other hand, the amplitude functions of the higher two­
dimensional modes turn out to be small. We note that 
the considered limiting case is similar to the previously 
investigated case of two-dimensional field distributions 
close to a plane wave of finite amplitude. 
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