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Thermodynamic methods are used to analyze the possibility of producing a region of continuous sensi­
tivity to ions in a binary liquid solution. It is shown that such a region exists in solutions with limited 
solubility of the liquid components, and that it is possible to produce in it particle tracks consisting of 
excess matter released from the solution on the ions and having a large dielectric constant. 

1. INTRODUCTION 

IN 1957, Good proposed a bubble chamber of constant 
sensitivity[ll. The gist of his idea is to produce arti­
ficially in a layer of gas-filled liquid distributions of 
the temperature and of the gas concentrations such that 
supersaturation is produced in a small region of the 
solution, sufficient to cause the solution to boil along 
the particle track. The very first experiment with a 
solution of C02 gas in acetone, methanol, and in other 
liquids, performed by Good, confirmed the correctness 
of his idea. However, these experiments revealed also 
serious shortcomings of such an instrument. Thus, by 
virtue of the high volatility of the gas dissolved in the 
liquid, the metastable region of the solution should be 
only in a weakly superheated state, which is insuffi­
ciently sensitive to fast particles and to y quanta. For 
the same reason, the depth of the sensitive layer was 
also small and did not exceed 1 em in the experiment. 
Finally, in the proposed version of the chamber, owing 
to the low density of the dissolved gas and to the slow 
rate of its diffusion in the liquid, the sensitive zone of 
the chamber could handle only a weak particle flux. 

Subsequent investigations of a bubble chamber of 
constant sensitivity, performed by Katof2l, did not im­
prove its main characteristic greatly. 

In this paper we analyzed a variant of a chamber, 
which also has constant sensitivity, but is based not on 
the boiling of a liquid, as in Good's chamber, but on the 
stratification of a binary liquid solution on longlived 
ions produced in the particle track. In such a chamber, 
in the metastable (supersaturating) region of the solu­
tion, the ions generate centers in which the solution be­
comes stratified into individual liquid components hav­
ing different refractive indices. Obviously, such a 
chamber is the analog, from the point of view of the 
operating principle, of the gas diffusion chamber widely 
used in experimental physics. Just as in the diffusion 
chamber and in Good's chamber, in our version of the 
chamber the metastable region in the solution should be 
produced by creating in it a definite temperature grad­
ient and a definite distribution of the concentration of 
the dissolved substance. 

The possibility of stratification of a binary liquid 
solution in a metastable state by ions was demonstrated 
in[3 • 4 l. In turn, the possibility of ensuring prolonged 
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supersaturation of a solution in a definite temperature 
interval is well known from a number of investigations. 
Thus, already in 1898 Rothman[ 51 succeeded in super­
cooling different solutions by 2° below the dew point for 
a long time. A similar result was obtained also in£6 • 7 1. 

Among the investigations of supercooling of solutions, 
a particular place is occupied, in light of the problem 
under consideration, by the work of Hermanie et alYl, 
in which solutions of 0.01-0.02% of water in liquid hy­
drocarbons were supercooled 5-10° below the stratifi­
cation point. A further decrease of the temperature in 
the experiments led to a rapid separation of water from 
the solution, in the form of fog droplets. The authors 
offal advanced the hypothesis that the formation of the 
fog in the supercooled liquid solution is connected with 
the effect of cosmic particles and y rays on the solu­
tions. This undoubtedly interesting guess, however, 
found theoretical justification or a special experimental 
verification neither in [a] nor in any other investigations 
of solutions. The purpose of the present work was 
therefore a theoretical analysis of the possibility of 
artificially producing in a binary liquid solution condi­
tions of constant sensitivity of the solution to stratifica­
tion on ions. 

2. FORMATION OF A STATIONARILY SUPER­
SATURATED LAYER IN A LIQUID SOLUTION 

We consider a vertical cylindrical vessel filled with 
a binary liquid solution. If definite temperature and 
concentrations are established in the solution on the 
ends of the vessel, then heat and solute fluxes will be 
produced along the cylinderf9 • 10l, namely: 

II1 = -pDgradC1+PC1C2DTgradT, 

II2 = -A grad T + IT1cpT, 

(1) 

(2) 

where II 2 and II 1 are respectively the per unit fluxes 
of heat and solute, p is the specific gravity of the 
solute, D and DT are the coefficients of diffusion and 
thermal diffusion of the solute, cl and c2 are the 
concentrations of the solute and of the solvent in the 
solution, T is the absolute temperature, X is the coef­
ficient of thermal conductivity of the solution, and cp 
is the per unit specific heat of the solute. 

To solve Eq. (1 ), we take into account the fact that 
for liquid solutions DT « D[9 J and C1C2 < 1. There-



PHYSICAL CONDITIONS OF CONSTANT SENSITIVITY OF LIQUID SOLUTIONS 205 

fore, at not too large values of grad T, the second 
term of (1) is much lower than the first term and can 
be neglected. For stationary diffusion, in the absence 
of stratification in the solution, we have 

div Ilr = div ( pD grad C) = 0, (3) 

where we drop the subscript 1 of C1 • By virtue of the 
weak dependence of p and D on T and C in liquid 
solutionsrs,uJ we can assume that p =canst and 
D = canst. Therefore 

div Ilr = div grad C = Oo (4) 

Let us solve this equation for the one-dimensional 
case, assuming that the diameter of the vessel is com­
parable with its height. We also assume that the Z 
axis of the coordinate system is directed along the 
cylinder axis, and the origin lies in the plane of the 
upper end of the vessel. Then we get from (4) 

a grade o2C 
--oz- = f!Z' = 00 (5) 

A solution of this equation is the linear function 
Co-CL 

C(Z)=Co--L-Z, (6) 

where Co and CL are the concentrations of the solu­
tion at the beginning and the end of the vessel, and L 
is the length of the vessel. It follows from (1) and (6) 
that the flux of the matter in the solution is 

Co-CL 
II1 ~ -pD gradC = pD-L--0 (7) 

To solve Eq. (2), we make the natural assumption 
that in a liquid solution X. and Cp do not depend on T 
or C. Then in the absence of heat sources in the vol­
ume of the solution, div11 2 = 0, or 

o2T ar 
-I. az• + rr,cp az = oo 

An integral of this equation is the function 

(8) 

T(Z)=To- To-TL [t-exp(IltCp z)], (9) 
1- exp(ll1cpLjl.) I. 

where To and TL is the temperature of the solution at 
the beginning and at the end of the cylinder. For a 
linear analysis, it is useful to introduce the notation 

(10) 

It can be shown by numerical calculations that for weak 
liquid solutions the arguments of the exponentials in 
(10) are 

Therefore, if we are interested only in weak solutions, 
then q; 1 and q; 2 can be expanded in a Maclaurin series 
and the first two terms can be retained: 

II,cp IltCp 1 

.p,=1+-~L, "¢z=1+-/.,-zo (10) 

Substitution of (10 1
) in (9) leads in this case to lineari­

zation of the expression for T ( Z): 
To-TL 1 

T(Z)= T0 ---y_;-Zo (9 ) 

The expression for the heat flux (2), when account 
is taken of (9) and (10), becomes 

rr, = rr, (To- To -TL_) Cpo 

1-'lj:! 
(11) 

We now return to Eq. (6 ). It describes the distribu-

tion of the concentration of the solution over the depth 
of the vessel. However, to determine the supersatura­
tion zone it is necessary to have one more equation that 
determines the boundary of the total saturation of the 
solution as a function of the temperature T( Z). It is 
at present impossible to obtain such an equation theo­
retically. We therefore use an empirical rule, from 
which it follows that for weak solutions the boundary 
stratification curve can be described in terms of the 
coordinates C and T by the following equation: 

r:rr =A +BT, (12) 

where A and B are constant coefficients fitted ex­
perimentally to the experimental stratification curve 
of the solution. Combining (9), (10), and (12), we ob­
tain an equation for the boundary saturation curve 

Cb= A +B [To- To- TL (1-ljl2 ) J 0 

10- "'' 

(13) 

The supersaturation zone of the solution can be de­
termined as the difference between the actual concen­
tration of the solution and its saturated value, i.e., as 
the difference between (6) and (13): 

Co-CL 
/',.C={6)-(13)=Co--,-Z-Cno (14) 

It is obvious that positive values of t.C will correspond 
to the supersaturated-solution zone, and negative ones 
to the unsaturated zone. 

3. WIDTH OF THE ZONE SENSITIVE TO STRATIFICA­
TION ON IONS 

We shall agree to define as the upper limit of the 
sensitivity zone that limit which is determined by the 
start of formation of viable stratification nuclei on the 
ions; similarly, the lower limit corresponds to intense 
formation of stratification of centers on concentration 
fluctuations. 

To determine the upper limit of the zone, we use a 
conclusion arrived at in[3 l, from which it follows that 
the critical supersaturation of the solution t>Cc, cor­
responding to the start of the appearance of stable 
nuclei on the ions, can be determined from the equa­
tion 

3 MC b ( 4ncr' ee2 )'h 
L'>Cc=2pRT (~e) 2 ez-8 ' 

(15) 

where M and p are the molecular weight and density 
of the dissolved matter, a is the surface tension on 
the boundary between the nucleus and the solution, ze 
is the charge of the ion in which the drop is produced 
in the solution, and E and E2 are respectively the die­
lectric constants of the solution and of the drop. It is 
obvious that the coordinates Z1, corresponding to the 
upper limit of the sensitivity zone, should be deter­
mined from the condition t.C = t>Cc, where t.C is taken 
from (14) and t>Cc from (15). Solving this equation, we 
obtain 

C0 -Cn 3 ML Cn ( 4no' 882 )'1• (16 ) 
Z,=LC0 -CL-2pRTCo-CL (ze) 2 8z-e 0 

In Eq. (15) T and Cb are functions of Z1 , i.e., this 
is a transcendental equation and can be solved graph­
ically or numerically if the coefficients are specified. 
However, this equation can be greatly simplified by 
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leaving out from the expressions for T and Cb the 
term (To- TL)(l- </! 2 )/(1- <h) and retaining only 
To. Such an approximation is admissible, since To 
~ TL, 1/!1 ~ 1/!2, and consequently To« (To- TL) 
( 1 - 1/!2 )/ ( 1 - 1/!1 ). The inaccuracy of this approxima­
tion can be partially compensated for by introducing 
into (16) in place of To the quantity T = (T0 + TL)/2. 
Taking these simplifications into account, Eq. (16) can 
be written in the form 

z, = 2__!_ ~ + BT ( 4ncr' ____"_"2__ )'I• _Co- A- BT . (17 ) 
2 pRT gradC (ze) 2 e2-e gradC 

To determine the lower limit of the sensitivity zone, 
which is characterized by a large frequency of spon­
taneous generation of stable stratification centers, we 
use the fundamental Beeker-Doring kinetic equationr12l 
for the rate of heterogeneous formation of critical 
nuclei: 

I"= N"S*~ v t..ri>' . 

i2nkT 3n' 
(18) 

In this expression, I* denotes the number of stratifica­
tion nuclei with critical dimensions produced per 
second in cm 3 of supersaturated solution, S* = 41Tr*2 is 
the surface area of the nucleus of radius r*, {3 is the 
number of collisions of the molecules of the dissolved 
substance from a unit surface of the nucleus per 
second, t.<l>* is the maximum change of the thermody­
namic potential of the supersaturated solution when a 
nucleus of critical dimension is produced in it, n* is 
the number of molecules in the nucleus, and N* is the 
average number of nuclei of critical dimension in 
1 cm 3 of the solution, which are in statistical equili­
brium with the number N of solute molecules in the 
same volume. 

The quantity N* can be represented by the well 
known Boltzmann formula 

N*=Nexp(-L'lrD'/kT). (19) 

For a binary solution, t.<l>* is the maximum of the 
following function (see [3 1 ): 

4n p t..C 
.1\rD == - 3 M RT c;;- r" + 4nr"cr. (20) 

We have used here the same notation as in (15). For 
nuclei of critical dimension there should be satisfied 
the extremal condition 

oMl / -- -0 ar r=r•- . 
(21) 

It follows therefore from (20) and (21) that 

( P t..C' )~! 
r' = 2cr M RT ---c;, . (22) 

Substituting now (22) in (20), we obtain the sought ex­
pression for t. <1>*: 

16 ( p t..C' )~2 
t..rD'=-no3 -RT- . 

3 M cb 
(23) 

The quantity n*,, which enters in (18 ), can be deter­
mined by starting from the volume of the nucleus, the 
molecular weight, and the density of the substance in 
the nucleus. Without presenting the simple calculations 
here, we write down 

32n p ( p t..C' )~3 
i/=-No-o3 -RT-

3 M M Cb ' 
(24) 

where N0 is Avogadro's constant. 

It is easy to determine also the q'u.antity N, which 
enters in (19 ): 

N=No..P!:_Cb, (25) 
M2 

where p 2 and M2 are the density and molecular weight 
of the solvent. 

The factor {3 in (18) is still unknown. Its explicit 
form is easiest to establish from the well known law of 
diffusion transport of matter in the solution. It follows 
from it, in particular, that the flux of impurity mole­
cules in the solution through an area t.S normal to a 
given direction, in a time t.t, is 

where u is the average thermal velocity of the im­
purity molecules in the solution. By definition, 
{3 = t.N/ t.St.t, and therefore 

~ = '!6Nu. 

(26) 

(27) 

In turn, from the equation for the diffusion coefficient 
D = ul/3 we get 

u =3D I l, (28) 

where l is the mean free path of the impurity mole­
cules in the solution. For liquid solutions, l can be 
identified with the intermolecular distance o. Substi­
tuting (28) in (27) and putting l = o, we obtain 

f3 = 'hND I b. (29) 

Gathering now Eqs. (18 )- (29) and making simple 
transformations, we obtain a final formula for the 
frequency of the fluctuation generation of stratifica­
tion centers with critical dimensions: 

, _ ( P2M a )2 D v 16rr ( t..C")-'r, I - NoCu-.- - - -
pM2RT b 3 Crr 

Xexp[- 16no3 (_!!_RTt..C'f]. 
3kT M Cn · 

(30) 

As a criterion for the establishment of the lower limit 
of the sensitivity zone we can choose I*= 1 cm-3 Sec-1 • 

For an exact solution of our problem, namely the 
determination of the lower limit of the sensitivity zone, 
it is necessary to solve first Eq. (30) for t. C*, equate 
t. C* to t.C (from (14)), and then solve the resultant 
equation for Z2 • However, such a plan of successive 
transformations cannot be realized, since Eq. (30) is 
transcendental. The problem can be solved only nu­
merically or graphically. This circumstance will be 
illustrated below using as an example the determina­
tion of the width of the sensitivity zone in two liquid 
solutions. 

4. GROWTH RATE OF THE DROPS IN THE SOLUTION 
AND TlfE TIME OF THEIR REMOVAL FROM THE 
SENSITIVITY ZONE 

The transition of the nucleus into a transcritical 
region in a supersaturated solution will be accompanied 
by an unlimited growth of this nucleus as a result of the 
excess matter released from the solution. The rate of 
such a growth can be described by Hazen's approximate 
equation [131 

( Pc- Pn )' '/, r= 2D---t , 
p 

(31) 
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where p is the density of the nucleus (henceforth re­
ferred to as the drop; Pc is the partial density of the 
matter dissolved in the supersaturated solution; Pn is 
the density of the same substance in the saturated solu­
tion; r is the radius of the drop and t is the time of its 
growth. 

Assuming for liquids D equal to 10- 5 cm 2 sec-\ 
Pc = O.lp, and Pn = 0.05p, as is usually the case for 
weak solutions, and using Eq. (31 ), we obtain the time 
necessary for the drops to grow from the critical 
dimension to a visible dimension ~5 x 10- 4 em. Calcu­
lations by means of formula (31) yield t ~ 0.2 sec. 

The drop produced in the solutions will descend 
under the influence of the gravity in accordance with 
the Stokes law (we assume that the specific gravity on 
the drops is larger than the specific gravity of the 
solution): 

2r2g(p- p') (r{ + ll) 14='- -··· ., 
9'1]' (,2'1] 1 + 3'1]) ' 

(32) 

where u is the rate of the descent, g the acceleration 
due to gravity, p and 11 are the density of the viscosity 
of the liquid forming the drop, and p' and 17' are the 
density and viscosity of the solvent. Using in (32) the 
value of r 2 from (31 ), we get 

U=I4D(pc-pn)g(p--:-p')(ll'+ll) t (33) 
9pl]'(2ll'+3ll) . 

Let us now estimate, by way of an example, the 
value of u for drops produced in a solution of methyl 
alcohol in hexane at room temperature. From the 
published handbook data we have p - p' = 0.12 g-em-\ 
11 = 6 x 10- 3 , and 17' = 3 x 10-3 g-cm-1 sec-1• Substituting 
in (33) these data and the data for Pc• Pn, p, and D, 
which we used above in the calculation of t, we get 

u = 3·10-3t (em/sec). (34) 

The path S covered by the descending drops in a time 
t is S = (%) 10- 3 e (em-sec). It follows therefore that 
the natural escape of drops from a sensitivity zone 
several centimeters deep should occur within several 
dozen seconds. In Eq. (31) we did not take into account 
the additional growth of the drop due to its displace­
ment from the depleted layers of the solution to the 
more and more saturated layers. Allowance for this 
circumstance should lead to a stronger dependence of 
the drop growth rate on the time and, consequently, to 
a decrease of their stay in the sensitive zone of the 
solution. 

5. PARTICULAR APPLICATIONS OF THIS THEORY 

As illustrations of the premises developed here 
concerning the width of the sensitivity zone and the 
fluxes of the heat and solute in the solutions, let us 
consider two-component solutions of methyl alcohol 
in hexane and of water in benzene. These solutions 
were chosen because of the availability of more com­
plete information concerning their stratification and 
concerning their pure components. These solutions 
are also of interest in that they consist of components 
with large hydrogen contents. 

a) Methyl alcohol-hexane. We assume the length L 
of the cylinder filled with the solution to be 12 em. Let 
the region of the working temperatures extend from 20 

to 46°C, i.e., we assume for the upper part of the 
cylinder To = 319°K, and for the lower one T = 283°K. 
Inside this temperature range, the solution is charac­
terized by a stratification curvef14 l, We assume also 
that the following weight concentrations on the methyl 
alcohol in the hexane are maintained at the ends of the 
cylinder: Co= 0.19 and CL = 0.07. Then, as follows 
from the stratification curve[14 l, the drops produced in 
the solution will consist of 0.6 molar parts of methyl 
alcohol and 0.4 parts of hexane. The dielectric con­
stants of the solution and of the drops, calculated from 
the partial values of the dielectric constants of the 
pure components, are E = 2.14 and E2 = 12. The surface 
tension a on the boundary between the drops and the 
solution, obtained in accordance with Antonov's rule, 
is 2 dyne-cm-1 • We use also the following tabulated 
data: M = 32 and M2 = 86.18 g-mole-1 , p = 0.82 andp2 
= 0.66 g-cm- 3 , "A= 0.13 W-m-1 deg-\ cp = 0,6 cal-g-1 

deg-\ D = 10- 5 cm 2 sec-\ and 6 = 2.5 x 10- 8 em. 
Substitution of these data into formula (7) yields for 

the solute flux a value ll1 = 8 x 10-8 g-cm-2sec-1 • It follows 
therefore that ll 1cp/"A = 1.5 x 10-4 cm-1 • The smallness 
of this quantity makes it possible to use in subsequent 
calculations the formula (9') in lieu of (9). 

The heat flux obtained from formula (11) is 6.5 
x 10-4 cal-em -2 sec-1 • The results of other calculations 
(the distribution of the temperature and of the concen­
tration in the solution) are plotted in Fig. 1. The 
straight lines 1 and 2, in accordance with formulas (9) 
and (6 ), represent the changes of the temperature and 
of the concentration with depth of the solution. Curve 
3 is the boundary of the saturated solution Cb. This 
curve is based on the experimental data borrowed 
from the paper of Chernova [l4l. The region contained 

1---t---t-~--"'ck---t----t -+-+--+----j--j---j0./6 

f-- +--+-Y~~Id----l--+----+-1---+---+-M/J 
c"'-+--+----+--+--t--/---10 !~ 

u 
""'-t--+---+--1----+----ln tJ cb 

.-+--+--+--1-~L!/! ; 

~t---t---t--Wit § 
'*----1--t---lO!tJ ~ 

" 0"~~><--+-----WOY 8 

zz~~-+_i~~~-+--+-~~~~t=~o.%8 
li0~~-+~~~~J-~~~~~~-~~uo7 

Z,cm 

FIG. I. Distribution of the temperature and of the concentration of 
methyl alcohol in hexane over the depth of the solution. I -Temper­
ature, 2 - concentration, 3 - saturation limit, 4 - admissible supersatur­
ation limit. The sensitivity zone is doubly crossed hatched, and the super­
saturation zone is shaded. 

between the line 2 and the curve 3 is the region of the 
supersaturated solution. The part of this region lying 
between the point Z1 and Z2 is the sensitivity zone of 
the solution. In this zone, the ions are active centers 
of stratification of the solution. 

The upper limit of the sensitivity zone Z1 was ob­
tained by graphically solving the equation 6Cc = C - Cb, 
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FIG. 2. The same as Fig. I, but for a solution of water in benzene. 

where the values for C and Cb were taken from the 
curves of Fig. 1, and ~Cc was calculated from formula 
(15). The position of the lower boundary Z2 was de­
termined with the aid of formula (30), in which I* was 
assumed equal to 1 cm- 3 sec-1 and T =(To+ TL)/2. 
The condition ~C* ~ Cb/ 5 on the boundary position was 
first obtained from formula (30), and then the plots of 
Fig. 1 were used to determine the coordinate Z2 for 
which cb and ~c = c - cb satisfied the given condi­
tion. 

Curve 4 represents the limit of the admissible con­
centration of the solution, and its coordinates were de­
termined from the limiting formula 

C = Cb+ J:..C' = 1,2Cb 

It is seen from the figure that in a solution of methyl 
alcohol in hexane, at the chosen initial conditions, the 
width of the sensitivity zone is about 6 em. It is obvi­
ous that the sensitivity zone can be greatly broadened 
by suitably optimizing the quantities To, TL, C0 , CL, 
and L. 

b) Water-benzene. For this solution we assume 
L = 12 em, To= 350oK, TL = 293°K, Co= 1.5 X 10-3 , 

and CL = 0.6 x 10- 3 • We omit the calculation details, 
since they duplicate the first case. We note only that 
from (15) it follows that ~C* ~Cb/3. 

The results of all the calculations are plotted in 
Fig. 2. The data for the construction of the saturation 
boundary Cb were taken from the paper by Eng lin [151, 
Just as in the preceding case, the straight line 4 limits 
from above the admissible concentration of the solu­
tion. To construct this line, we use the limiting equa­
tion C = Cb + ~C* = 4Cb/3. It is seen from Fig. 2 that 
in a solution of water in benzene the sensitivity zone 
extends over the entire depth of the vessel. 

An examination of these two particular examples 

shows that in the liquid solution it is possible to main­
tain continuously a supersaturated state sufficient for 
the formation of fog on the ions. 

The formulas obtained in the paper lead to the con­
clusion that the operating principle of gas-diffusion 
track chambers can be transferred in its totality to 
liquid chambers filled with binary solutions. The depth 
of the sensitivity layer in such chambers can extend 
over the entire depth of the solution. 

This investigation may serve as the basis for the 
development of liquid track chambers of continuous 
sensitivity. 
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