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The process of establishment of equilibrium in a system consisting of radiation and totally ionized 
plasma is investigated. By solving the kinetic equation it is shown that in the absence of absorption 
the photons undergo Bose condensation. The process depends essentially on the form of the initial 
distribution. For a certain form of the initial spectrum a shock wave occurs in the spectrum in the 
course of its temporal evolution. The process is substantially affected by absorption, in the presence 
of which Bose condensation is replaced by an accumulation with time of the photons in the region of 
low frequencies. 

INTRODUCTION 

V. L. GINZBURG and L. V. Keldysh have posed the 
problem whether it is possible for Bose condensation to 
occur for noninteracting bosons in the case when the 
processes of change of energy and momentum in scat
tering dominates over processes involving change of 
particle numbers in their emission and absorption. 
Below we consider this problem for the concrete exam
ple of a system of photons. 

In the present paper we shall consider the process 
of establishment of equilibrium in a system consisting 
of radiation and a fully ionized plasma. We shall as
sume that at the initial instant of time the whole system 
is in a state of incomplete equilibrium. The photon gas 
is characterized by an arbitrary initial distribution with 
some average energy Eph· This may, in particular, be 
even a Planck distribution with a characteristic tern
perature Tph· The electron gas is considered not to be 
degenerate and is described by a Maxwell distribution 
with the temperature Te, which is maintained at a con
stant value. We assume that as a whole the system is 
spatially homogeneous and closed, which also means 
that no particles leave the system or are added to it 
from the outside. 

The statistical equilibrium between the photons and 
the plasma will establish itself as a result of both scat
tering processes, which do not involve a change of the 
number of photons, and processes involving the emis
sion and absorption of photons. We shall assume that 
the fundamental process leading to the absorption of 
photons are free -free transitions in the field of the 
nuclei. We shall not take into account electron-electron 
scattering with photon emission or absorption, since 
these processes cannot introduce radical modifications 
of the results, and in no case can such processes ex
ceed the contribution from Bremsstrahlung processes on 
nuclei. It should be noted that scattering is proportional 
to the density L of the electrons and does not depend on 
the frequency, whereas absorption is proportional to 
L2 v-3 ln v. Therefore, the lower the density L, the lower 
will be the frequency vlim below which it is no longer 
possible to neglect absorption. 

Usually, in discussions of the establishment of 
equilibrium between radiation and matter, scattering 

processes have not been taken into account at all. The 
first to call attention to the importance of scattering 
processes in the interaction of photons with the electron 
gas was Kompaneets lll, who considered the behavior of 
a system of photons during collisions between the elec
trons. As a result of free-free transitions quanta are 
produced with average energies close to 0.5 kTe· After 
that the photon energy increased to 3kTe owing to colli
sions with electrons. 

Recently the scattering of photons with change in en
ergy was considered by Weyman lZJ in connection with 
cosmological problems1 >. 

We shall consider the opposite situation, when the 
initial photon temperature is substantially higher than 
the electron temperature. The fundamental result of 
this paper consists of the following: the kinetics of the 
relaxation process in the indicated system differs sub
stantially from the kinetics in a system without scatter
ing. The transition to the final equilibrium distribution 
(a Planck distribution with temperatu-re Te) is extremely 
nonuniform across the frequency spectrum. This non
uniformity is an expression of the tendency of a boson 
system to effect a transition into the state with the 
lowest energy (Bose condensation). The character of the 
kinetics of the process of establishment of equilibrium 
turns out to depend strongly on the form of the initial 
distribution of the bosons. In particular, for a given ini
tial distribution of the photons the occurrence of shock 
waves in the energy spectrum becomes possible. Al
though the results were obtained for a concrete system 
of photons, some of the results are not related specific
ally to photons and may be true for other boson systems. 

We consider first of all the time variation of the dis
tribution function in a model system without absorption. 

1. THE ESTABLISHMENT OF EQUILIBRIUM IN A SYS
TEM WITHOUT ABSORPTION IN THE CASE Te > Tph 

We first discuss briefly the physical results derived 
in lll. The analysis carried out by Kompaneets was 
based on considering the kinetic equation for the photon 

1lJn particular some considerations were expressed in /2/ on the pos
sibility of accumulation of photons in the low-energy region under simi
lar conditions. 
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distribution function: 

:: =- ~ dt,S dW[n(1 + n')N(e)- n' (1 + n)N(e + hv- hv')], (1) 

where N(E) is the Maxwellian distribution of the free 
electrons, dW is the differential transition probability 
of photons from one state into another during a collision 
with an electron and dT is the phase space volume ele
ment of the electrons. In this equation emission and 
absorption processes have not been taken into account 
so that the transitions are produced exclusively by ' 
Compton scattering processes. This means that the 
distribution function in the kinetic equation satisfies the 
condition of constancy of the particle number. 

In the sequel it will be convenient to use dimension
less variables related to the constant electron tempera
ture Te: 

me'( l \ hv 
t'=tkr. cJ' X=kr,; 

here t' is the real time, l is the Compton scattering 
mean free path, determined by the total Thomson scat
tering cross section. In terms of these variables the 
condition that the particle number be constant can be 
written in the form 

00 

N = ~ n(x, t)x2dx = const, 
0 

(2) 

where N is the total number of photons, and n(x, t) is 
the number of photons in a phase space cell with energy 
x at timet. 

If the average electron energy or photon energy is 
smaller than the rest energy mc 2 of the electrons, one 
may assume that the energy exchange between electrons 
and photons (frequency variation of the photons) will 
occur in small portions: 

h!J. = h(v'- v) «[,hv. (3) 

Under these conditions it was shown in lll that the equa
tion (1) can be reduced to a differential equation 

iJn 1 iJ [ ( iJn )] -=-- x• -+n'+n . 
i}t x2 iJx iJx 

It is not difficult to see that the right -hand side of 
the equation (4) vanishes not only if one inserts the 
Planck distribution belonging to temperature Te, i.e., 

(4) 

n(x) = [ex- 1]-1, (5) 

but also for a Bose distribution with dimensionless 
chemical potential iJ. = iJ. '/kTe, i.e., the function 

n(x, JL) = [ex-~ -1]-• 

for iJ. < 0. 

(6) 

The distribution (6) corresponds to a total number of 
quanta, N(J.J.), smaller than the one corresponding to a 
total Planck equilibrium distribution with iJ. = 0, i.e., 

N(JL) < N(O). 

In the absence of emission and absorption N = const. 
Consequently the stationary distribution (6) appears in 
the case in which for the initial state such an n(O x) is 
given that ' 

N0 = ) n(O,x)x2dx < N(O). 

Thus, if one defines the initial distribution in the form 

of a Planck distribution with the temperature Tph 
=Tela, a> 1, we find 

No= a-W(O) < N(O). 

Here the chemical potential is iJ. ~ -ln a. A similar 
situation with iJ. slowly approaching zero from the left 
owing to emission of quanta (but with a distorted spec
trum for small values of x) has been considered inl11 , 

2. THE ESTABLISHMENT OF EQUILIBRIUM IN A SYS
TEM WITHOUT ABSORPTION IN THE CASE 
Tph> Te 

It is completely obvious that the preceding reasoning 
cannot be applied to the case Tph > Te (or a < 1). In
deed, if at the initial instant of time we have iJ. = 0 and 
the establishment of equilibrium is accompanied by a 
lowering of the photon temperature, this would imply in 
the Bose distribution a transition to values iJ. > 0, which 
is impossible. Therefore the transition to equilibrium 
in the system must have the characteristic of a Bose 
condensation: in an equilibrium state with fixed number 
of photons their cooling down is possible only by means 
of a transition of the excess into states of zero energy. 
We consider the kinetics of the process of Bose conden
sation in a quantitative way and then take into account 
the modifications required by considering absorption
emission processes. 

Thus, we shall consider that an initial distribution is 
given for the photons with respect to energy: n(O, x), 
such that the total number of particles N0 > N(O) and 
Eph is larger than the average electron energy Ee· 

Starting at time t = 0 the photons are subject to 
Compton scattering on free electrons. We shall only be 
interested in the fo!"m of the distribution function in the 
region of large occupation numbers. We assume that in 
the region of low frequencies the occupation numbers 
are extremely large, so that one may consider that 
n ~ 1. This leads to an essential simplification of the 
kinetic equation. It follows from (4) that 

(7) 

We shall assume that in Eq. (7) the following inequality 
is satisfied: 

n'~ liJnliJxl. (8) 

Below we shall discuss the meaning of this inequality 
and the limits of its applicability. 

In the special case of an initial Planck distribution 
the terms I an/Bxi and n2 are of the same order in x at 
time t = 0, but their ratio is of the order of a < 1. 

Thus the equation for the distribution function n(x, t) 
takes the form 

(9) 

Introducing the new unknown function f = x~ N = jfdx 
' ' we have 

of I at = of' I ax, (10) 

which can be written in terms of characteristics as 
df/dt = 0 along the characteristic dx/dt =f. The general 
solution of the characteristic equation (10) is 

X= F(f) - 2tj, (11) 
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where the form of the function F(f) is determined by 
the initial condition. This solution satisfies, of course, 
the requirement that the area under the curve f(x, t) be 
constant, which corresponds to the condition (2) that the 
particle number be constant. 

We now discuss the meaning of the solution obtained 
in this manner on the example of an initial distribution 
of the form illustrated in Fig. 1. According to Eqs. (10) 
and (11), all points on the initial curve f(x, t = 0) (curve 
1) move along characteristic lines-straight lines paral
lel to the x axis-in the direction of decreasing x (Fig. 
1, curve 2) with a velocity proportional to f. The time 
in which a given point reaches the axis x = 0 is obviously 
determined by the expression 

T = F(f) I 2j. (12) 

The solution (11) is formally valid both for positive and 
for negative values of x. Thus, as time increases 
f(x, t) must take on the form represented by curve 3 
in Fig. 1. It is clear that since a transition to negative 
xis impossible, the particles reaching the f-axis ac
cumulate in the state x = 0, i.e., undergo Bose conden
sation. Formally the shaded area in Fig. 1 determines 
the number of particles in the Bose condensate at each 
instant of time. 

In order to follow in more detail how the process of 
Bose condensation occurs and to explain the meaning of 
the original inequality (8), we consider the special case 
of an initial Planck distribution with Tph > Te in the 
frequency region which corresponds to large occupation 
numbers, i.e., we set 

n(O, x) = [e'""- 1]-1 ~ [ax+ a2x2 I 2]-', ax< 1. (13) 

It will be explained below why second order terms have 
been retained in the expansion (13) of the Planck form
ula. The initial condition yields 

F(f) = aj[1- a2j I 2]-1• (14) 

Whence, substituting (14) into (11) we obtain 
1 { ( a2x \ r ( a2x2 )2 J •;, } f = -;_2i 2ta- a-2} ± L a- 2t + -2- + 2a2tx . (15) 

For x > 0 one has to choose the plus sign in front of the 
square root in (15). We obtain for the duration of the 
Bose condensation 

a 
<= 2(1-a2//Zl. (16) 

The time T = a/2 is the minimal critical time in 
which the state x = 0 starts filling up with particles. To 
each value of f corresponds a specific, always well
defined finite time of Bose condensation. We note that 
if the initial distribution would, in the region x < 1/a., 
have the character of a straight line through the origin: 
f = x/a we would be dealing with a degenerate case for 
which the whole straight line would approach the f -axis 
in the (f, x) plane during the same amount of time 
T = a/2. This is the reason why we have retained in the 
expansion (15) small quantities of second order: even a 
small curvature of the initial distribution has an essen
tial influence on the kinetics of the process. A direct 
calculation shows that the inequality (8) is valid for all 
values of x ~ 0. In particular, fort = T = a/2 and x- 0 
(from the side of positive values of x) an/ax c/J x-512, 

whereas n2 cz:> x-3 • 

f 

FIG. I. 

FIG. 2. 

It is quite clear that the solution of the kinetic equa
tion is meaningful only in the region x ~ 0, f > 0. 

However, the extension of the solution of the simpli
fied equation (9) to the region x < 0 allows one to deter
mine the number of particles which have left the region 
x > 0 and have effected transitions into the Bose con
densate. 

We have already stressed the fact that the character 
of the kinetics depends in many respects on the form of 
the initial distribution n(O, x). Let us consider, in par
ticular, the initial distribution illustrated in Fig. 2. In 
distinction from the distribution in Fig. 1 it has an in
flection point. According to the solution (11), the dis
tribution function will be subject to such a deformation 
with time, that it will take on the form shown in Fig. 2. 
The velocity of approach to the f-axis increases as f 
increases, so that the upper parts of the graph of f(x, t) 
will advance compared to the lower parts. As a result 
the distribution function may bend over so much that the 
curve f(x, t) stops being single -valued, as illustrated 
in Fig. 2. 

There appears a situation completely analogous to 
the formation of shock waves in the one -dimensional 
flow of a nonviscous fluid. In reality the function f(x, t) 
does not become many-valued. As the shock front 
(represented by the heavy line in Fig. 2) is approached, 
the derivative an/ a X tends to infinity. This leads to a 
violation of the condition (8). Consequently, in the same 
manner as for the appearance of shock waves in a vis
cous fluid, the presence of higher derivatives (cf. Eq. 
(7)) insures that the front is not strictly vertical and ex
hibits a certain structure and width. 

3. CONSIDERATION OF PHOTON ABSORPTION 

Above it was assumed that the existence time of the 
photons is large compared to the time of Bose condensa
tion. In a real system one must take into account the 
absorption of photons which increases sharply as the 
frequency decreases. Taking into account absorption 
the kinetic equation takes on the form (for x < 1) 

at at At 2,35 
-= 2/-- ·-ln--, 
at ax x2 x2 

(17) 

where A is a constant. 
We see from (17) that the absorption may be neglec-
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FIG. 3. 

ted if the following inequality holds: 

at A 2,35 
ax ~ xz-ln --.;:2. (18) 

It is clear that since Bf/ax is everywhere finite, the 
inequality determines the limiting frequency Xlim below 
which absorption predominates over scattering from the 
very beginning of the process. In this region, over a 
time smaller than the time of Bose condensation a 
Planck distribution with temperature Te establishes 
itself. Thus, the absorption does not allow the Bose 
condensation to be realized as such. However in the 
region where the inequality (18) holds the character of 
the temporal development of the distribution function 
corresponds to the picture described in the previous 
section. 

Figure 3 illustrates schematically the dependence of 
the ratio n(x, t)/n(x, 0) on x at the time t = 0!/2 for the 
special case of a Planck initial distribution. We see that 
the processes considered above lead to a significant in
crease in the number of particles in the region of suffi
ciently small x, but such that the condition x > xlim is 
still satisfied. It is completely clear that the concrete 
value of the limiting frequency as well as the time dur
ing which scattering processes are essential without an 
essential influence of absorption, depends on the form 
of the initial distribution function. In addition, the quan
tity Xlim is mainly determined by the constant 
A ~ L/T~2• Therefore the described phenomenon is 
extremely clearly expressed in a rarefied hot plasma. 

It is easy to note however that for photon scattering 
in a rarefied plasma the electron temperature will, in 
general, increase. 

One can, of course, imagine a situation for which the 
temperature of the rarefied plasma remains constant, so 
that the situation described above is realized in full. 
Namely, let the initial distribution n(x, 0) be such that 
in the region of small x the number of photons is larger 
than that of an equilibrium Planck distribution, and that 
in the region of large x it is smaller than that of the 
Planck distribution with temperature Te. At the same 
time the total number of photons No is larger than N(O), 
and Eph = Ee· Then in the region x < 1 there will occur 
an accumulation of photons as described above. In the 
region of large photon frequencies, photons which are 

scattered by "hot" electrons a Wien distribution with 
temperature Te will establish itself. The system of 
electrons as a whole remains at constant temperature 
Te· 

Until now we have considered the kinetics in the 
system consisting of photons and free electrons. It is 
important, however to keep in mind that the results 
formulated above have a general character. The method 
of using the kinetic equation can be extended to other 
boson systems, e.g., excitons in solids, or transverse 
plasma oscillations. The principal difference will be a 
different dependence of the cross sections for scattering 
and absorption on the energy. 

It is not excluded that similar phenomena occur in 
astrophysical conditions. In a series of cases hot radia
tion from interior regions passes through "cold" 
layers of plasma. In distinction from the problem con
sidered above, the phenomenon bears a stationary char
acter. But the density distribution of matter is not iso
tropic and homogeneous. Therefore it is impossible to 
carry over directly the preceding results to this case. 
However, it is not excluded that an excess (in compari
son with the Planck equilibrium) number of soft photons 
may appear as a result of processes which are analog
ous to those described above. This question requires 
further study. 

CONCLUSIONS 

1. From the solutions of the kinetic equations it is 
shown that in a system of photons undergoing scattering 
without absorption there occurs Bose condensation. 

2. The time (duration) of Bose condensation has been 
determined. This time is always finite and differs for 
particles with different energies. 

3. Owing to the nonlinearity of the process its evolu
tion depends significantly on the form of the initial 
photon distribution function. In particular, for certain 
forms of the initial distribution the formation of shock 
waves in the spectrum becomes possible. 

4. Taking into account absorption shows that the ten
dency to undergo Bose condensation leads to an accumu
lation of photons in the region in the low-energy region. 
However the absorption process in the very low-fre
quency region occurs faster than the process of Bose 
condensation. 
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