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A general solution is presented of the problem of gas expansion restrained by counterpressure, at 
a specified change of pressure p(t) in the presence of arbitrary energy loss or release. The ob
tained solution is detailed for possible cases of energy loss and release (bremsstrahlung and re
combination radiation, thermal conductivity, Joule heat release) and for different cases of pres
sure variation p( t ). Particular attention is paid to the case of expansion of a plasma fireball 
inside a powerful shock wave (e.g., a light spark or high-temperature energy release). 

INTRODUCTION 

IN this article we present a general solution of the 
problem of restrained expansion of gas in the presence 
of arbitrary loss or release of energy. By restrained 
expansion we mean expansion with counterpressure, in 
which the rate of expansion is small compared with the 
local speed of sound in the gas ( t >> a/ cs ( T ), where 
t is the expansion time, a the dimension of the gas 
volume, cs the speed of sound in the volume; this con
dition is equivalent to neglect of hydrodynamics and 
ensures equalization of pressure in the gas). This con
dition is usually satisfied in a wide range of velocities, 
if the gas is heated to high temperatures, and it is 
precisely in this case when the energy loss can be ap
preciable. A factor restraining the expansion may be 
the external pressure of the surrounding gas, the 
pressure of an external magnetic field, the inertia of 
a heavy piston, etc. This problem is of interest in 
various phenomena in the physics of hot plasma, geo
physics, thermodynamics, a number of applied-physics 
problems, etc. In particular, its solution can be used 
to describe the expansion of a plasma fireball at the 
center of a shock wave due to high-temperature energy 
releasePl, for example in a light spark[ 2 -6J, the ex
pansion of the flare following the action of a laser 
beam on a target in the atmosphere, to describe the 
behavior of atmospheric and astrophysical plasma 
formations, 

In many problems the energy-release act (the heat
ing of the gas) is usually separated in time from the 
more prolonged process of energy loss; in this case 
we take into account only the energy loss and its influ
ence on the expansion of the gas, specifying the results 
of the heat release as initial conditions; it is possible 
also to describe another expansion process in the 
presence of a continuous energy release. In all these 
cases we assume for simplicity that either absorption 
processes or heat-release processes predominate in 
both expansion and compression of the gas. 
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1. GENERAL SOLUTION FOR NONADIABATIC 
EXPANSION OF GAS AT A SPECIFIED CHANGE OF 
THE EXTERNAL PRESSURE 

We assume that the gas expands as a result of a de
crease in the external pressure p( t ), and that the 
state of the gas is specified by its volume V and mean 
temperature T, while its properties are character
ized by the effective adiabatic exponent y. In introduc
ing the mean temperature, we assume that either the 
temperature of the gas inside the body has time to be
come equalized (the expansion time is t >> a 2/ KT, as 
is frequently the case when the temperature conductiv
ity KT of a strongly heated or ionized gas is high, or 
else that it is possible to introduce an effective tem
perature averaged over the volume, which determines 
the pressure of the gas and the loss power. The gas 
pressure is assumed close to the external pressure, 
assuming the pressure drop to be small as a result of 
the smallness of inertial effects in the gas itself 
(restrained expansion, see, e.g.,P' 5 ' 6 l ). We assume 
that the energy loss is specified in a general power
law form dQ/dt R: -AVaT/3, where a and i3 are coef
ficients that vary weakly in the range of volume and 
temperature changes under consideration. Then the 
equation for the energy balance is 

CdT = -pdV- AVaT~dt, 

where C is the specific heat of the gas ( C = Nk/(y- 1)) 
and pV = NkT for a nearly-ideal gas, N is the total 
number of gas particles, which we assume to change 
little. If N( t ) is specified, then it must not be taken 
outside the integral sign. We divide both sides of the 
equation by CT and integrate 

or 
~ dT s dV (y- i)A ~ 
~+(y-1) ~=- var~-1 dt 
T V Nk ' 

t 

TVV-! = ToVov-1 exp{-A, ~ var~-1 dt}, 
to 
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where 

A, =A I c = (y- 1)A I kN. 

We can indicate an effective method of solving this 
equation by using the specified function p(t) = NkT/V. 
This method consists in the following: we multiply and 
divide the integrand by pl, first substituting p as a 
function of t, and then as the ratio NkT/V, and choose 
l such that T and V enter in the combination 
(TVY- 1 )m. Equating the powers of T and V, we can 
determine l and m. Indeed, since 

V<aH\T~-1-l = (TVV-I)m 

when m = {3 - 1 - l and a + l = m(y - 1 ), it follows 
that my = a + {3 - 1 and l y = ( {3 - 1 )( y - 1 ) - a. 
This substitution yields an equation for y = TVY- 1 : 

A t 
Y = Yoexp{- --1 - ~ p1ymat} 

(Nk) 1 ,, ' 

whence, differentiating, we get 

or 

if m ;" 0, and 

__!}!__--~p1 (t)dt 
ym+l - (Nk) 1 ' 

1 ( 1 1 ) A1 r - --·- =--. JP'(t)dt, 
m ym Yom (Nk)• t" 

At 1 

Y = ljoexp{--- I p1(t)dt} 
(Nk) 1 J ' 

t" 

if m = 0 (this particular case will not be considered 
here). 

Thus, by specifying p(t) and y0 , we obtain y(t) 
= Tvr-t, but y = pVY /kN; or else y = (kN)Y- 1 ; there
fore 

{ kNy }•IV 
V(t)= -p- and T(t)= {pv-iyl(kN)v-1}1/v, 

where 

{ A 1my0m ' }-lim 
y =Yo 1 + (kN)' ~ p1 (t)dt ,, 

and 1 1 
m =-(a+~-1) and l=-{(~-1)(y-1)-a}. 

y ~' 

It is easy to see that these solutions describe both the 
case of energy loss and the case of energy release (in 
the latter case the sign of A1 should be reversed). The 
gas can either expand or contract, depending on the 
type of change of p(t) and change of the energy input. 

2. PARTICULAR CASES OF PRESSURE CHANGE 

a( Constant external pressure p( t) = p0 and 

{ mA 1y0m }-lim 
Y =Yo 1 +--- (t- io)Po1 

(kN) 1 

=Yo {1 +A1mV0aTt'1 (t- to)}-t/m 

{ (y-1) m. }-1/m 
=Yo 1+----Q(to)(t-to) 

Nk To 

where Q( to) is the rate of power loss or release at 
the instant t 0 • This case can occur when laser energy 

is released on a target in the atmosphere, during the 
final stages of expansion of a plasma cloud in high
temperature energy release, etc. 

b( Change of pressure in accordance with a power 
law p(t) ~ B/ts. In this case we have 

St 'dt- __ B_' -{--.!___- _1_} 
p - (sl- 1) t't-1 t•t-1 ' 

'" 0 

if sl ;" 1, and 

~ p' dt = B11n (-!--) if sl = 1. 
t, 

For example, in the case of expansion of the plasma 
cloud (the so-called fireball) inside a shock wave of a 
high-temperature explosion, the pressure varies likePl 

p(t) ::>::! ~ ::>::! [£ 0'1. po'l•lt'i•, 

where fio is the energy release and Po is the initial 
density of the medium. In this case s = %. We shall 
discuss this case in greater detail later (see alsors,sJ 
for the case of a light spark). 

3. PARTICULAR CASES OF ENERGY LOSS AND 
RELEASE 

a) Case of constant energy loss or release a = {3 
= 0, which yields m = -1/y and l = -(y- 1 )/y, and 
consequently 

{ 
A 1 v 

y = y0 1--1- (kN)<v-t)!v ~ [p (t)j-IV-1)/V dt} . 
yy~v t, 

b) In the case of energy loss to bremsstrahlung 
(case of optically non-dense medium, when the range 
of the quanta exceeds the dimensions of the volume) 

dQ ::>::! _ N"roe2v,(e) ::>::! -AT'!.IV, 
dt liV 

i.e., a = -1 and {3 = Y2, yielding m = -%y and 
l = (3- y)/2y. 

c) In the case of energy loss to radiation from a 
spherical black body (optically dense medium) 

dQ ::>::! -SaT• ::>::! -A V'I•T', 
dt 

i.e., a = % and {3 = 4, yielding m = 1%y and 
l = (9y - ll)/3y. 

d) In the case of energy loss to recombination radi
ation emerging from the plasma under the condition 
that temperature ionization is subsequently produced 
again (Ne ~ canst at sufficiently high temperatures 
and low diffusion from the outside) we obtain: in the 
case of double recombination dQ/dt ~ A/VT112, i.e., 
a= -1, {3 = -Y2 or m = -'12Y and l = (5- 3y)/2y; in 
triple recombination dQ/dt ~ -A/T9/2V2, i.e., 
a= -2, {3 = -7'2, or m = - 1%y and l = (15- lly)/2y; 
here A~ N~ Z2 x 10-23 erg-deg912/ cm6 (see, e.g. Pl, 
p. 346, and (Bl). 

e) In the case of energy loss through heat conduc
tion, provided the temperature-drop zone is commen
surate with the dimension of the gas region, we have 

!!!_, ::>::! xS dT ~ V'hTx(T). 
dt dx 

If the heat conduction is electronic, then x ~ T 15/ 2, 
yielding a~ Ys, {3 = 'l2 or m = 1'lsr, l = (15y- 17 )/6y. 

In some cases interest attaches to the process of 
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gas expansion in the presence of energy release pro
cesses (e.g., ohmic heating by current, microwave 
heating, recombination heat release, etc.). To describe 
this process it is sufficient to reverse the sign of the 
term describing the energy loss. 

f) In the case of current heating of a cylindrical 
plasma column we have 

dQ I dt ~ VaEo2 ~ VT'hE02, 

i.e., a= 1, (3 = 3.2, yielding m = Yzy and l = (y- 3)/2y. 
In this case the counterpressure p( t ) can be ensured 
by the pressure of an external gas, an external mag
netic field, the magnetic field of the current (pH(t) 
~ H2/87T ~ I 2(t)/a2 ). In the case of plasma heating by a 
penetrating microwave we have 

dQ I dt ~ VnevEo2 I (w2 + v2) ~ A 2neE02v I w", 

if the wave frequency w exceeds the collision fre
quency v = neasve. For Coulomb collisions (as~ 1/T 2) 

we obtain dQ/dt ~v-1T-312, i.e., a= 1 (3 = -% yield-
• 7; ' ' mg m = -12Y and l = (3- y)/2y. 

It is possible to take into account the time variation 
of the field intensity or of other parameters, by intro
ducing A( t ) under the integral sign. 

The results can be used not only to study the change 
of the volume and of the temperature of a heated vol
ume of gas, but also to determine diamagnetic pertur
bations resulting from the change, the lifetime of 
plasma trails, etc. Thus, for example, the diamagnetic 
perturbation due to expansion of a volume of a con
ducting gas (in the case of penetration of a magnetic 
field at t > 47Taa:r c 2 ) produces a diamagnetic 
momentr 2 - 51 

M(t) ~ a(T)R'RHo ~ a(T) ! V";, ~ T'f,V'i'V, 

if the plasma conductivity is a(T) ~ T 3/ 2 • Since 
T :::J pV /kN, we have 

d d(y)I9/IV M(t) ~ p'"- V"l• ~ p'h _ _ 
dl dt p 

where 

(J I y = -A,ymp1 I (kN) 1• 

It is seen from this that the presence of energy loss 
or release can greatly change the form of M( t ). For 
example, whereas in adiabatic expansion (y = 0) the 
zeros of M(t) corresponded to p = 0, now they cor
respond to the condition 

p = -A 1ympl+l 1 (kN)l. 

The obtained solution can be used also for the case 
when the temperature is not uniform over the volume 
but the loss depends only on the local temperature ' 
(e.g., any radiation loss in the case of an optically thin 
volume). In this case all the expressions pertain to a 
small volume of the medium. 
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