SOVIET PHYSICS JETP

VOLUME

28, NUMBER 6 JUNE, 1969

THEORY OF SUPERCONDUCTIVITY OF QUASI ONE-DIMENSIONAL STRUCTURES

I. E. DZYALOSHINSKII and E. I. KATS

Institute for Theoretical Physics, U.S.S.R. Academy of Sciences

Submitted July 1, 1968

Zh. Eksp. Teor. Fiz. 55, 2373—2375 (December, 1968)

The effect of the finite probability of jumps between filaments on the nature of the superconductmg
transition is examined. It is shown that in a broad range of transition temperatures fe, < Te < Bl 8
(B is the jump probability and €, is the Fermi energy) the superconducting state retains characterlstlc

‘“‘one-dimensional’’ properties.™?!

Ina previous paper'! the authors showed that in
quasi one-dimensional (filamentary) structures a tran-
sition to the superconducting state is possible in princi-
ple whose properties coincide with those of the ‘‘one-
dimensional’’ superconducting state considered by
Little, 2] and Bychkov, Gor’kov and one of the authors. |
At the same time only one of the factors preventing the
transition to the superconducting state in the purely one-
dimensional case was taken into account—the electron
density fluctuations. There is, however, another factor
which destroys superconductivity —peculiar fluctuations
of the phase of the wave function of a Cooper pair at
finite temperature. Their existence was first pointed
out by Vaks, Galitskii, and Larkin™’; the effect of these
fluctuations on the superconductivity in the one-dimen-
sional case was first considered by Rice."

The presence of phase fluctuations in filamentary
media necessitates an account of the finite probability
of a jump between filaments 8 (8 < 1). This in turn
leads to the fact that the superconducting transition
temperature turns out to be bounded from above:

T << Bhes. (1)

For T > Bl/seo the transition is in general impossible
on account of the destructive action of the phase fluctua-
tions. For T, < Beo the superconducting state has the
usual three-dimensional character, and finally for

Beo << T <5 Blheo (2)

a transition to the previously considered'?! ““quasi
one-dimensional’’ superconducting state is possible.

Inequality (1) can be derived as follows. In the purely
one-dimensional case Hohenbergm derived the inequal -
ity

Sz‘gdq<oo

where A is the gap. In the quasi one-dimensional case
the inequality is replaced by

T A2
{ E“r%ﬁdq @k < oo, (3)

where k is the momentum of the transverse motion, or
TA2 [ B < oo,

whence (1) follows for A ~ T ~ T,. The appearance of
the quantity g% in the denomlnator of (3) is due to the
fact that the coefficient of k? is according to the method
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of deriving Hohenberg’s inequalities proportional to

([, 01 0 jmn(Pmm — Pan) © jmn?

where j is the transverse current, p is the density, and
the matrix elements are taken over states localized on
different filaments.

If at zero temperature the gap A = Seo, then there
exists a lower limit for the transition temperature

,2 ﬁ&o. (4)

In order to derive this inequality, let us determine the
temperature at which the above-mentioned phase fluc-
tuations begin to affect the size of the gap appreciably.

Vaks, Galitskii, and Larkin 1 have shown in the
three-dimensional case rigorously that the correlation
function of Cooper pairs

P(1,2) = —(Tpstprtpape)

has a peculiar singularity at wp = 0 (wp = 27nT) and

finite T, namely
P(K) o A2/ K2,

K is the three-dimensional momentum. Unfortunately,
one cannot derive an analogous formula rigorously in
the quasi one -dimensional case'™?? because int?! all
considerations are carried out in the logarithmic ap-
proximation. In order to obtain such a formula, one
must proceed to the next approximation which meets
with so far insurmountable difficulties.

We have made the natural assumption that in our

case
A2
N (5)

where q is the longitudinal and k the transverse momen-
tum. Formula (5) can be obtained rigorously if one
neglects the effect of the doubling of the lattice period.’
Then g ~ a/€o where a is the energy of the transverse
motion from'J. We note that (5) is in agreement with
the Hohenberg inequality.

On the same basis one can use for the function 2
connected with the doubling of the period the expression

o (6)
(g == 2po)? +- p2k?

where g is the dielectric gatp.[3

The contribution of fluctuations of P and Z to the ex-
pression for the Green’s functions is given by diagrams
of the type shown in the Figure where the wavy line de-
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notes P and the dashed line—2Z.
The contribution of the first diagram is of the form

dq d2k

2

Tx g q2 + p2k?
In the region T < Beo < A ~ k the important region

of integration is q ~ Bpo. In it one can replace F by 1/A

which gives for the first diagram a contribution TA/Be,.

Hence it follows that

F(p+yq).

T < Beo. (7)

The second diagram imposes a weaker limitation on
T. The same region of integration q ~ Bpo is important
here. Replacing in it F by 1/A and G by T/a?, we find
the contribution of this diagram to be T*/8%e2s whence
it follows that T < (8€oa)Y2 One can convince oneself
that the remaining diagrams do not impose on T a limi-

E. DZYALOSHINSKII and E. I.

KATS

tation which is stronger than (7).
The authors are grateful to A. I. Larkin for impor-
tant remarks.
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