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The problem is considered of radiation by a charged particle in a medium with a density varying 
periodically in a plane perpendicular to the direction of the particle. It is shown that even a weak 
periodicity leads to an appreciable spatial redistribution of the radiation field near the resonance 
frequencies. Formulas are obtained for the electromagnetic field and spectral density of first 
order resonance radiation. The limits of applicability of the results obtained are discussed. 

1. The radiation of sources moving in a medium de
pends not only on the nature of the radiator and its 
motion, but also on the electromagnetic properties of 
the medium. [1,21 In a uniform medium, a fast particle 
produces only Cerenkov radiation. The presence of 
periodically located nonuniformities leads, generally 
speaking, to interference of the radiation arising in (or 
traversing} different portions of the nonuniform 
medium. The problem of the radiation of photons by 
fast particles passing through a medium which changes 
its properties periodically only along the particle tra
jectory (the z axis), remaining uniform in the xy 
plane, was solved by Ter-Mikaelyan. [21 

The present paper is devoted to investigation of the 
radiation of a fast uniformly moving particle in a non
uniform medium which periodically changes its proper
ties only in a plane perpendicular to the direction of 
the particle. 

2. Assuming cylindrical symmetry of the problem, 
we can write Maxwell's equations for the Fourier com
ponent in time of the vector potential A ( w, p ) in the 
form 

_!_~( p iiA,) + q2A, =- ~6(2>(p), 
p ~ ~ c 

1 il ( iiA 0 ) A 0 1 ile 1 il . ro 1 ile 
--, p-- --+q2A0 -----(pA0)=~---A,, 
p ilp \ ilp p2 e ilp p ilp v e ilp 

A~=O, (1) 

where 

( ro2 ro2 )''• 
q= -e(ro.p)--

c2 v2 (2) 

(the charge of the incident particle is e = 1 ) . 
The systems of Eq. (1) and Eq. (2) describe the 

radiation field of the charge in a medium with a die
lectric constant E ( w, p ). At a large distance from the 
source ( qR » 1 ) for the nonzero components of the 
vector potential we have the following expressions: 

i 112 { 1 r r ) A,(ro,R) = -- f- e-int• -=exp i J qdp 
2c nR yq ' 0 

(3) 

.Ol~j il (1) 
A0 (ro,R)= ~- dpG0 (R,p)-il ; - A.(ro,p), 

V 0 p \ E 
(4) 
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where the Green's functions Gz(R, p) and Gp(R, p) 
satisfy the equations 

(12 
ilp2 c. (p, p') + q2G, (p, p') = - 0 (p - p')' 

iJ ( 1 iJ ) q2 
1 ap -;apG0 (p,p') +-8-G0 (p,p')= -6(p-p ). 

(5) 

(5') 

After the Green's functions (5) and (5') have been de
termined, formulas (3) and (4) solve the problem in 
general form. Note that the first term in the righthand 
side of Eq. (3) corresponds to Cerenkov radiation in a 
uniform medium. 

3. It is well known that in a periodic medium when 
certain conditions are fulfilled (the Bragg equation, 
see for example ref. 3) diffracted waves can be propa
gated. We will consider radiation in a medium whose 
dielectric constant is 

2n 
e(ro, p)= eo(ro)+ et(ro)cos-1-p; let(ro) l~leo(w) I (6) 

( l is the period of the medium). Here we will be par
ticularly interested in effects associated with reflected 
waves. Accordingly, the Bragg conditions and the con
dition for production of radiation, Eqs. (1) and (6), in 
our problem have the form 

ro - . n ( [ 21 ]) qo(w)==--;:-l'eosme =zn \ n= 1,2, ... T ; 
(J) - {J) 

-l'eocose = -. 
c v 

(7) 

(The resonance conditions in particular, Eq. (7), de
termine the frequency and angle of the diffracted radi
ation, and the square brackets [] denote the integral 
part of a number.). 

The Green's functions (5) and (5') are constructed in 
the usual way of two linear independent solutions of the 
corresponding homogeneous equations, which for the 
condition A << l and also Eq. (6), reduce to the 
Mathieu equation: 

d2u 
-d-+(a+2atcos2p)u =0, p2 

where we have introduced the designations 

( qol ) 2 2et ( I )2 
a= -- , a•=-:- · lad~1. 

n eo \ A. ' 

(8) 

(9) 

4. Note that for I a 1 I « 1 the criterion of the 
quasiclassical approximation is everywhere satisfied. 
However, the results of the quasiclassical approxima-
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tion are not applicable for determination of the re
flected waves in a periodic medium. A similar prob
lem arises in consideration of the scattering of elec
trons under the action of a strong electromagnetic 
standing wave (see ref. 4 for more detail). It is appro
priate to search for "correct" solutions of Eq. (8) in 
the form[sJ 

00 

u(p) = e•• ~ bne2inP. (10) 

After substitution of (10) into {8) we have a system of 
homogeneous equations 

[a+ (~J. + 2in) 2]bn + at(bn-11 + bnH) = 0, {11) 

and to determine 1J. as a function of the parameters a 
and a1 we obtain Hill's dispersion equation. For small 
values of I a 1 I this equation takes the form 

- nat2 -
ch~J.n=cosnya- sinnl'a+O(a14)o (12) 

4(1- a)ya 

In the region of stability of the Mathieu equation (8), 
when I Ia - n I » I a 1 I, the system of Eqs. (11) is 
solved by the method of successilve approximations, 
which is equivalent to finding the amplitudes of the re
flected waves by means of perturbation theory. [sJ The 
greatest interest is attached to study of the radiation 
of a charge near the characteristic curves which divide 
the (a, a I) plane into regions of stability and instabil
ity. 

5. We will consider for simplicity resonance radia
tion of the first order, a = 1 + a a, I a a I « 1. Taking 
into account Eqs. (11) and (12), we find accordingly for 
the linearly independent solutions (10) 

Ut (p) ~ exp { +l'a02 - a1' p} (eiP- pe-iP), 

Ut(- p)+ jlut(p) 
u,(p) ~ 1 _ ~;, , (13) 

where {3 defines the degree of deviation from the 
resonance condition: 

~ = Ut ----1 

ao + l'ao2 - at2 

(14) 

(in obtaining the solutions (13) we neglected terms of 
order I a1l « 1 ). Using the definition of Green's 
functions and also Eq. (13), we obtain the following 
expressions for the nonzero components of the vector 
potential: 

0 1/_2_ 
A,(w,R) = -2

1 V -oR <1-inl•ut(R), 
c nq 

i v 2 . 1 Ap(w, R) = -· -- e-in/4 ~ sin 28 expo[ i (-l"ao2 - at2 - 1) qoR} 0 

2c nqoR \ 2 
(15) 

It is evident from (14) and (H') that the degree of 
approximation to the condition of first order resonance 
is determined by the ratio of the quantities a 0 and a 1• 

Here the parameter {3 is the "amplitude" of the wave 
reflected from the periodic medi.um. At frequencies 
for which I aa I» I a1l, the radiation field of the 
charge is Cerenkov radiation. 

From the formulas (15) and also taking into account 
the Lorentz conditions, we find for the nonzero com
ponents of the electromagnetic fi.eld .Wt ( w, r ) and 

Hi{w,r) 

l'eo .W, (w, r) = - H0 {sin eemq, + ~cos 28 sin ee-mq,} 

X exp{i: z+ : fao2 -at2 Rqo}, 

l'eo ~ p(W, r) =- Ho {-cos eeiRq,+ ~cos 2e cos ee-iRqo} 

X exp { i ~ z + : fuo2 - at2 Rqo}, 

Hcp(w, r) = H0{eiRq,- ~cos 28e-iRq•}exp {i~z + _i_ l"ao'- at2Rq0 } 
v 2 ' 

(16) 
where we have introduced the designation 

w 1/ Eo 
Ho = - & V 2nqoR- sin Se-'"'4 0 

Let us compare the values of the spectral density of 
radiation per unit length near q0 { w ) ~ 1T /l in the 
radial and longitudinal directions, respectively: 

d21 I d'l ) 
dzdw =\-dzdw 

0 
(1-l~l'cos'20)exp{-Imya02 -ut'Rq0}, 

d2/ ( d'l ) --
-d d = -d d (1 + l~l'cos2 28)exp {- Imya02 - at'Rq0} 

pw PW·o 

(the bar above a quantity indicates averaging in the 
radial direction with the period of the medium l ). 
Here 

( d2/ ) ( d2J ) ( d2/ ) 
-dpdw 0 u dzdw 0 = tgl} -dpa;;; 0 

(17) 

is the corresponding density of Cerenkov radiation in 
the medium Eo( w ) . 

The above discussion shows that the presence of 
even a weak periodicity of the medium, I E.1{ w) I 
« I Eo( w ) I, in a plane perpendicular to the direction 
of the particle leads to a sharp spatial redistribution 
of the radiation near the frequencies given by Eq. (7). 
From (16) it follows that if the resonance conditions 
are accurately satisfied with n = 1 the radiation 
penetrates into the medium a distance -Z/1 a1I1T. 
Here the energy flux in a direction along the z axis is 

d2l ( d'l ' 
dp do-; ~ 2 d p dw ) o 

For the frequency interval of the first order resonance 
radiation we obtain the following estimate ( a 0 ~ a 1 ): 

(18) 

where w* is determined from the equation 

eo(w.) 1 n2 

c2 - -~ zo2 + w.'l;· · 
(19) 

The applicability of the formulas obtained impose 
definite limitations on the collimation t:..J of the inci
dent particle beam and the longitudinal dimension of 
the plate L: 

L\tt "'{So, Go= 8o(w. ), 

l2 I I a1l A"'{ L "'{ 8o2Lrad (E I E,)"o 

(20) 
(21) 

Here Es = 21 MeV, and Lrad is the radiation length. 
Relation (21) leads also to a condition imposed on the 
particle energy E. 

In conclusion we note that for resonance radiation 
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with n > 1 the degree of strictness of the limitations 
on the angular spread of the beam and the energy of 
the particle increases. Here the estimates (20) and 
(21) are preserved if we make the substitution a1 
-a~. 
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