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The question of excitation of first and second sound in He II by light waves is considered. Expressions
are obtained for the growth increments and the phase velocities of the sound waves. It is shown that
the sound-wave velocities in He II are lower in the presence of a light wave than in the absence of the
wave, i.e., the sound waves are focused by the light waves.

As is well known'»?? | weakly damped sound waves,
called first and second sound, can exist in He II. The
excitation of these waves with the aid of various vibrat-
ing bodies was investigated in detail by E. Lifshitz"™’.
In the present paper we consider the phenomenon of
interaction of light waves with coherent sound waves
excited by light in He II. The latter effect is called
stimulated Mandel’shtam -Brillouin scattering™®’.

The stimulated-scattering process can be considered
in the following manner: the light wave with wave vector
kj, and frequency wg, after emitting a sound wave with
wave vector ¢ and frequency Wy is transformed into a
light wave with wave vector kg and frequency wg. The
energy and momentum conservation laws call for the
satisfaction of the relations

0s + 0g = or, ks + q = k;. (1)
Since q < kg, ~ kg, we get from (1)
- 1 o c (2)
cos ¢ = cos(kq) = ETP— <t,

where ny, is the refractive index of the incident light
wave. We note that it follows from (2) that the first and
second sounds are emitted almost perpendicular to the
incident light wave.

To investigate the excited Mandel-shtam-Brillouin
scattering in He II, we write out the linearized hydro-
dynamic equations of a two-component liquid, with
allowance for the terms connected with the viscosity??

[
< Tdivi=0, (3)
afi P _ 7] (avni 01{2&_ 26 0Unl\
o Tr: nar; ary or; 3 i ar )
8
i {E1div(j — pVn) + Ediv va} = f1i, (4)
v, 8 F o )
o o (adiv (i —pva) F Bdivv) = (5)
9(po) . X am_
=g Feodivva— AT =0, (6)

The employed notation is standard. The right sides
of (4) and (5) contain the external forces produced by the
light wave and given by ™!
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The expression for f; is determined from the expres-
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sion for the change of the chemical potential

2 2
du=duo+%d(s—ﬁ|—)= —adT+ide+ipd<i%).
Recognizing that the coefficient of thermal expansion

in He II is anomalously small, we shall henceforth
study the first and second sounds separately.

1. We first consider excitation of first sound by a
light wave. From the system of equations (3)—(6) for
first sound we obtain the following equation for the
change of pressure P”:

5 .
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where uo: = V(8P/dp)g is the propagation velocity of the
first sound in the absence of a light wave. The damping
decrement of the first sound is given by
—p @ (4
dr=Tm- = 2W013\3—n+§2). (10)
The expression for the force f, in (9) with allowance for
the conservation laws is
de
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where E1, and Eg are the amplitudes of the incident and
scattered waves, respectively.

The amplitude Eg of the scattered wave is deter-
mined from Maxwell’s equation with allowance for the
nonlinear polarizability
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Applying the Fourier transformation to Eq. (11) and
introducing the symbol €g = 1 + 47a(0), we obtain for the
scattered wave
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In (9) and (12) we obtain the following dispersion equa-
tion:
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kg, and q; are the proper wave numbers in the absence
of pump energy.

The dispersion relation (13) makes it possible to de-
termine the real and imaginary parts of the wave num-
ber for the first sound. When solving Eq. (13) we as-
sume that there is no difference between the phase
velocities in the z-axis direction, i.e., Ak = kg —k,1,

+ |ag| = 0 and q,, = qy + 7, where 7 satisfies the inequal-
ity |n| < Iq%! . Taking these assumptions into account,
we obtain for 7 a cubic equation in the form

n® + 20>+ Q/ 2k.s = 0,

where Q denotes the right side of (13).
One solution of (14) corresponds to a backward sound
wave and Re n = —ZIq; , while the remaining two roots

(14)

are
N1 = e + &0 — 2[3q,°, N2 = e + &0 — */3q,%, (15)
where
go=—o+iy3/2, u= (—a-t+Va&+ )%,
v=(—a—TVa@ b))%  a=>5ng"+Q/4iks,
b = —*/3q,%.
Let us consider two cases.
A. Let the following inequality be satisfied
Og Pfi__ |EL|?
() G = o 16

We determine both the real and imaginary parts
Re 1 and Im 7 in this limiting case. Calculation of the
increment y; = Im 7 yields for the first sound the follow-
ing expression:

[EL]?

T 8mpc?

(17)
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Expression (17) can be used for gases, in which the
stimulated scattering process is considered. Follow-
ing®!, we can rewrite Eq. (17) for gases in the form

o2 (n—1)2 IELE
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, (18)

where n = Ve is the refractive index.

The solution (15) indicates that the light wave not
only excites and amplifies the sound waves, Im 7 # 0,
but also influences their phase velocities. The influence
is manifest in the fact that the sound-wave propagation
velocity decreases, i.e., the sound wave is focused by
the light wave.

The velocity of first sound in He II in the presence of
a light wave is given by
(19)

3 yitues?
u1=um,<1+ o )
Expression (19) shows, first, that in the presence of a
light wave the sound velocity depends on the sound fre-
quency (frequency dispersion), and, second, that it
makes it possible to determine directly the increment
v1 by measuring the velocity of the sound wave u; in
He II.

B. Let us consider the second limiting case, in which
an inequality inverse to (16) is satisfied. In this case
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the increment and the velocity of the sound wave are

3 2 dg 2 2 7%
w13 0 [2-( %) Iﬂ_} , (20)
2 uy L2ug? dp "1 8mpc? .
Uy == Uoq ,{ 1 1 + ’Yium) (2 1)
V3awq

It is interesting to note that in this case u; depends
on the frequency like w 2/ , unlike the first case, where
the dependence was of t! e form w?. We note also that
strong focusing of the sound waveqtakes place in this
case.

2. We now consider excitation of second sound. In
this sound, P’ = 0 and from the system (3)—(6), with
allowance for the expression for f> (wq = wp, — wg), we

obtain for the change of temperature T’ the following
equation:
[Qz Lo Zeb :] T = e -—E.LES‘

Uz

(22)

where
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is the velocity of second sound in the absence of the
light wave. The damping decrement of the second sound
is given by
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From Maxwell’s equations for the scattering ampli-

tude Eg, with allowance for the nonlinear polarizability,

which in our case is of the form

A qoe
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and using Eq. (22) for the change of T’, we obtain the

following dispersion equation:
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A. The following inequality is satisfied
uo? or? 1 |E|?
c? o, ;;_(GT ) 8n <t (29)

When (24) is satisfied, the solution of the dispersion

equation yields the following expression for the incre-

ment of the second sound:

|Ec|?
8 '

and for the propagation velocity of the second sound in

the presence of a light wave we get

(25)
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B. If an inequality inverse to (24) holds true, we have
_ Y3 ouf vt e 106y |Enl 7
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and the velocity of the second sound in the presence of a

light wave is

14 l2ﬂ_> .
V3 wq

(28)

us =u \

Expressions (26) and (28) show that frequency dis-
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persion exists, and that the second sound is focused by
the light waves.

From the foregoing expressions for the increments
it follows that if the increment exceeds the damping
decrement (8 =y — 6), i.e., 8 > 0, then the amplitudes
of the sound waves increase along the z axis, i.e., the
wave is amplified. In this case He Il can serve as a
parametric sound generator with light as the pump. In
the opposite case, when g < 0, the wave is damped. The
condition 8 = 0 makes it possible to determine the thres-
hold energy of the light beam.

Let us estimate the threshold light-wave power
necessary to excite second sound for the following
parameters: T = 1.8°K, o = 0.3 cal /g-deg, p = 0.15,

Uoz = 2.3 x 10° cm/sec, wy = 10°~10° Hz, and wy, & 5
x 10'®. For these parameters, the threshold power is

W= c|EL|/ 8 ~ 10~ — 102 W/cm?

We note that when a light wave passes through He II,
it produces a temperature change defined by the ex-
pression'®?

AT = L( :?i) AE:]2
cp \OT/, 8n
At light-wave powers necessary to excite second sound
under the indicated parameters, there is practically no
change of temperature.
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