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The question of excitation of first and second sound in He II by light waves is considered. Expressions 
are obtained for the growth increments and the phase velocities of the sound waves. It is shown that 
the sound-wave velocities in He II are lower in the presence of a light wave than in the absence of the 
wave, i.e., the sound waves are focused by the light waves. 

AS is well known [1' 21 , weakly damped sound waves, 
called first and second sound, can exist in He II. The 
excitation of these waves with the aid of various vibrat
ing bodies was investigated in detail by E. Lifshitz [31 . 
In the present paper we consider the phenomenon of 
interaction of light waves with coherent sound waves 
excited by light in He II. The latter effect is called 
stimulated Mandel'shtam-Brillouin scatteringl4 ' 51 • 

The stimulated-scattering process can be considered 
in the following manner: the light wave with wave vector 
kL and frequency wL, after emitting a sound wave with 
wave vector q and frequency wq, is transformed into a 
light wave with wave vector ks and frequency w8 . The 
energy and momentum conservation laws call for the 
satisfaction of the relations 

ws+ Wq = wr., 

Since q « kL :::e kg, we get from (1) 

1 Wq C 
COSCf = COS(kLq)= --~-<1, 

2nL WL U 

( 1) 

(2) 

where nL is the refractive index of the incident light 
wave. We note that it follows from (2) that the first and 
second sounds are emitted almost perpendicular to the 
incident light wave. 

To investigate the excited Mandel-shtam -Brillouin 
scattering in He II, we write out the linearized hydro
dynamic equations of a two -component liquid, with 
allowance for the terms connected with the viscosityl21 
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The employed notation is standard. The right sides 
of (4) and (5) contain the external forces produced by the 
light wave and given byl6- 81 

p r ( oa \ 1 
f, =-v L IE 12 \ --

8Jt iJp f T J 

1 ( eiEI 2 ') 
f2=-V~--. 

p \ 8Jt . 

(7) 
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The expression for f2 is determined from the expres-
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sion for the change of the chemical potential 

d11 = d11o +..!..a(~)=- adT + ..!..ap + _1-_d \( ~). 
p 8n p p 8:t • 

Recognizing that the coefficient of thermal expansion 
in He II is anomalously small, we shall henceforth 
study the first and second sounds separately. 

1. We first consider excitation of first sound by a 
light wave. From the system of equations (3) -(6) for 
first sound we obtain the following equation for the 
change of pressure P': 

( w2 i2w6,) , ' q2- _____ p = -iqf,, 
\ u,,z Uo! ' 

(9) 

where uo1 = vi(aP/Bp)s is the propagation velocity of the 
first sound in the absence of a light wave. The damping 
decrement of the first sound is given by 

(10) 

The expression for the force f1 in (9) with allowance for 
the conservation laws is 

where EL and Es are the amplitudes of the incident and 
scattered waves, respectively. 

The amplitude Es of the scattered wave is deter
mined from Maxwell's equation with allowance for the 
nonlinear polarizability 

1 iJ2Es 4Jt iJ2 
!J.E8 - & iJt2 = 7 (ii2 (pi +pn'). 

f 8a ) P' p=a(P')E=a(O)E+ 1 - -E=pi+pnl 
\ iJp T Uo!2 

(11) 

Applying the Fourier transformation to Eq. (11) and 
introducing the symbol ES = 1 + 4JTO!(O), we obtain for the 
scattered wave 

(12) 

In (9) and (12) we obtain the following dispersion equa
tion: 

(13) 

where 
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JtSz and q~ are the proper wave numbers in the absence 
of pump energy. 

The dispersion relation (13) makes it possible to de
termine the real and imaginary parts of the wave num
ber for the first sound. When solving Eq. (13) we as
sume that there is no difference between the phase 
velocities in the z-axis direction, i.e., ~k = k~s - kzL 
+ jq~l = 0 and qz = q~ + TJ, where TJ satisfies the inequal

ity 1171 « jq~j. Taking these assumptions into account, 
we obtain for TJ a cubic equation in the form 

fj3 + 2q,0fj2 + Q /2kzs = 0, (14) 

where Q denotes the right side of (13). 
One solution of (14) corresponds to a backward sound 

wave andRe 7J = -2lq~l, while the remaining two roots 
are 

the increment and the velocity of the sound wave are 

(20) 

fl YtUo•) 
U1 = Uo! I I 1 + --=-- . 

1 \ l'3wq 
(21) 

It is interesting to note that in this case u1 depends 
on the frequency like w~t. unlike the first case, where 
the dependence was of tlie form w2 • We note also that 
strong focusing of the sound wave CJtakes place in this 
case. 

2. We now consider excitation of second sound. In 
this sound, P' = 0 and from the system (3) -(6), with 
allowance for the expression for f2 (wq = WL - ws), we 

obtain for the change of temperature T' the following 
equation: 

(22) 

(15) where 

where 

8t,2 = - 1/z ± ifS/2, 
v = (-a -l'a' + b2) .,,,- a= 8/-nq,03 + Q / 4k,s0, 

b = - 4/sq,02• 

Let us consider two cases. 
A. Let the following inequality be satisfied 

( Wq )' pc2 jEL I' 
WL (pasjap),":2 ~g;-- • (16) 

We determine both the real and imaginary parts 
Re 7J and Im 7J in this limiting case. Calculation of the 
increment ')11 = Im TJ yields for the first sound the follow
ing expression: 

(17) 

Expression (17) can be used for gases, in which the 
stimulated scattering process is considered. Follow
ing l6 l, we can rewrite Eq. (17) for gases in the form 

WL2 (n- 1)2 jEL I' 
Vt2 =-- , 

c2 pu012 8:rt 
(18) 

where n = f€ is the refractive index. 
The solution (15) indicates that the light wave not 

only excites and amplifies the sound waves, Im 7J f 0, 
but also influences their phase velocities. The influence 
is manifest in the fact that the sound-wave propagation 
velocity decreases, i.e., the sound wave is focused by 
the light wave. 

The velocity of first sound in He II in the presence of 
a light wave is given by 

(19) 

Expression (19) shows, first, that in the presence of a 
light wave the sound velocity depends on the sound fre
quency (frequency dispersion), and, second, that it 
makes it possible to determine directly the increment 
y 1 by measuring the velocity of the sound wave u1 in 
He II. 

B. Let us consider the second limiting case, in which 
an inequality inverse to (16) is satisfied. In this case 

-vp,--;;z-
U02 = Pn (aajaT) 

is the velocity of second sound in the absence of the 
light wave. The damping decrement of the second sound 
is given by 

w w' Ps { 4 Pn x aT '\ 
llz= Im-=--- -YJ +(sz+p'£:,-2p£•)+--~-f. 

u,~ 2pu,3 p, 3 p, T aa 

From Maxwell's equations for the scattering ampli
tude Es, with allowance for the nonlinear polarizability, 
which in our case is of the form 

nl- - 1-/ ~) T'* E 
P - 4:t \ aT v L, 

and using Eq. (22) for the change of T ', we obtain the 
following dispersion equation: 

(k 2 _k02)( 2 _ OZ)- WL2 W." _1_( !!___) jELj 2 ( 23) 
zS zS q, q, - c2u022 pa \ iJT p 8:rt • 

A. The following inequality is satisfied 

'="':_ !JlL 2 ~ ( _'!!:____) ~-=f.~ 1. 
c2 wi pcr ar 8:rt 

(24) 

When (24) is satisfied, the solution of the dispersion 
equation yields the following expression for the incre
ment of the second sound: 

vz' = _!._ WLz _1_/ !.!!__) jEL I' 
4 c2 pcr \ ar p 8n ' 

(2 5) 

and for the propagation velocity of the second sound in 
the presence of a light wave we get 

(26) 

B. If an inequality inverse to (24) holds true, we have 

Yz= y3 ~[-~oz2 WL2 ·~(!!___) jELI 2 r (27) 
2 Uo:: c2 Wq2 pcr aT p 8:t " 

and the velocity of the second sound in the presence of a 
light wave is 

I I YzU02 ) 
Uz = U02f \1 + -::;:- · 

Y3 Wq 

(28) 

Expressions (26) and (28) show that frequency dis-
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persion exists, and that the second sound is focused by 
the light waves. 

From the foregoing expressions for the increments 
it follows that if the increment exceeds the damping 
decrement ({3 =y-o), i.e., {3 > 0, then the amplitudes 
of the sound waves increase along the z axis, i.e., the 
wave is amplified. In this case He II can serve as a 
parametric sound generator with light as the pump. In 
the opposite case, when {3 < 0, the wave is damped. The 
condition {3 = 0 makes it possible to determine the thres
hold energy of the light beam. 

Let us estimate the threshold light-wave power 
necessary to excite second sound for the following 
parameters: T = 1.8°K, a= 0.3 cal/g-deg, p = 0.15, 
uo2 = 2.3 x 103 em/sec, Wq = 105 -106 Hz, and wL R: 5 
x 1015• For these parameters, the threshold power is 

W = cjELI' I 8n ~ to--1 -10-2 W/cm2. 

We note that when a light wave passes through He II, 
it produces a temperature change defined by the ex
pression [6 1 

!J.T = __!__( !!__) IEL I' 
Cp oT p 8n 

At light-wave powers necessary to excite second sound 
under the indicated parameters, there is practically no 
change of temperature. 

In conclusion, the author takes the opportunity to 
express sincere gratitude to Academician E. L. 
Andronikashvili, who called his attention to the given 
problem, for a discussion of the results of the work, and 
to I. M. Khalatnikov for a discussion. 
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