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It is shown that in a two-dimensional system the equations of nonlinear electrodynamics allow solu­
tions which describe a wave that travels in a circle. Under these conditions the pressure associated 
with the wave field in the plasma leads to the formation of a self-sustaining circular waveguide. The 
possibility of localized magnetic oscillations in a toroidal configuration in three-dimensional space is 
also discussed. 

J. A number of investigators have studied waves that 
propagate in rectilinear fashion in a self-sustaining 
waveguide (self-focusing)Y-41 In the present work we 
consider the two -dimensional case and show that the 
equations of nonlinear electrodynamics allow solutions 
that describe a wave that propagates in a circle. Under 
these conditions the pressure associated with the wave 
field in a plasma leads to the formation of a circular 
waveguide. We also discuss the possibility of localized 
electromagnetic oscillations in a three-dimensional 
space. 

2. The analysis will be carried out for the case of a 
fully ionized plasma under the assumption that the fre­
quency of the oscillations of the electromagnetic field is 
much greater than the collision frequency (w >> v). 
When the energy associated with the oscillations of an 
electron in the high-frequency field becomes compara­
ble with the kinetic energy of the electron the nonlinear 
properties of the plasma become important. The spatial 
distribution of electron density can then be given by the 
following relation: cs,sJ 

N(r) = Nexp (-E"(r) I c%' 2), (1) 

where N is the electron density in the region in which 
there is no field, E(r) is the amplitude at the electric 
field and /f: 2 = 8mKTw2/e2 • We note that the ion density 
is distributed in space in the same way as the electron 
density by virtue of the Coulomb interaction between the 
electrons and ions. 

The relation in (1) applies when the amplitude of the 
field does not vary significantly over the distance corre­
sponding to the electron excursion in one period of the 
oscillation: 

(2) 

where lie = ../2 KT/m is the electron thermal velocity 
and ~r is the characteristic distance over which there 
is a significant variation in the field amplitude. 

The dielectric constant can be written in the form 

4nNe2 

a= mw2. (3) 

The electric field of a monochromatic wave is then des­
cribed by the equation 

rot rotE= ~: [ 1- a exp (- ::) J E. (4) 

The solution of this equation will be written in a cylin-

drical coordinate system (r, cp, z) using a form in which 
all quantities are proportional to exp (in cp - i wt) under 
the assumption that the electric field is directed along 
the z axis. Equation (4) then becomes 

_!_ __ d_ (r-~!!._ L !'!_E =- w~ [1- a exp (-~ l]E. (5) 
r dr dr J r' c2 It 2 ; 

Equation ( 5) describes the dependence of the ampli­
tude of the electric field on the distance from the z axis. 
We shall be interested in solutions of this equation which 
describe a field that diminishes when r- oo and r- 0. 
We note that the necessary condition on the behavior of 
the field at infinity (the localization condition) is the 
inequality E(r- 00) < 0. 

3. Before considering the spatial distribution of the 
field and plasma density we wish to find the conditions 
for which the plasma pressure is equilibrated by the 
field forces. We denote by r 0 the point at which the field 
E(r) reaches its maximum value. The analysis will be 
limited to cases in which the effective width of th«~ self­
sustaining waveguide, the distance ~r, in which the field 
differs from zero by a significant amount, is appreciably 
smaller than r 0 • In this case the quantity ro character­
izes the radius of curvature of the self -sustaining wave 
guide, which plays the role of a potential barrier, divid­
ing the system into two regions: r < ro and r > ro. 
Assuming that the potential barrier is large enough 
(E2(r = r 0 ) » ~ 2 ) we will also assume that these reg­
ions are generally characterized by different tempera­
tures and unperturbed densities, these quantities being 
denoted by T1(~~) and No(ao) when r < ro and by Tz(~~) 
and N00 (0! 00 ) when r > ro. We shall also assume that the 
pressures in these regions are the same at the point 
ro, i.e., 

(6) 

Under these conditions there is no macroscopic plasma 
transfer through the potential barrier. 

Multiplying the left and right sides of Eq. (5) by the 
quantity dE/ dr and integrating with respect to r from 0 
to infinity, we have 

1 c2 f 1 [ n2 ( dE \ 21 N~xTz- NoxT, = -- J- -E2 - -- 1 dr. 
16:rr w2 r r2 dr , J 

0 

(7) 

The expression on the right side of Eq. (7) character­
izes the pressure and field forces which equilibrate the 
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pressure differential of the plasma between the regions 
r << ro and r >> ro. 

It is interesting to note that Eq. (7) can also be ob­
tained by starting with the momentum conservation re­
lation 

i) 
--(Pa~ + Ta~)= 0, 
ox~ 

where P a{3 is the pressure tensor in the mediu~ and 
T a{3 is the field force tensor as averaged over time. In 
this case however it is also necessary to take account 
of the Co~lomb for~es that arise by virtue of charge 
separation. 

4. We shall first investigate the case in which the 
plasma density is small in the inner region ao << 1. 
Under these conditions, Eq. (5) indicates that in the 
region r < r 0 the field can be described by Bessel func­
tions of order n. Consequently, the amplitude of the 
electric field reaches a maximum value at values of r 
corresponding to the first maximum in the Bessel func­
tion. When n >> 1 we have 

r0 ,::::; !__(n + 0,8 n'h). 
(J) 

(8) 

The electric field in the region r > ro is also charac­
terized by Bessel functions up to values of r for which 
the inequality 

( E') (nc)' a,exp -- <1- - . 
(£ zz r(t) 

is violated. Hence, the effective width of the waveguide 
can be estimated from the Bessel functions. When 
n ::?> 1 we find 

Llr ~ (c / w) n'!•. (9) 

Now, using Eq. (7) and making use of Eqs. (8) and (9) 
we can find the maximum field amplitude. This is found 
to be 

(10) 

In Fig. 1 we show the amplitude of the electric field 
as a function of coordinates in the case for which 
n = 1000 and Cl!oo = 4. When r < ro this functional depen­
dence is proportional to Jn(wr/c). In the region r > ro 
the solution of Eq. (5) can be found by means of a com­
puter. It is found that Emax ~ 12.5 /Cz for the conditions 
considered here. Other solutions of Eq. (5), which are 
shown by dashed lines in Fig. 1, describe nonlocalized 
standing electromagnetic waves. 

Finally, we find the conditions for which it is possi­
ble to neglect the effect of particles that penetrate the 
potential barrier. Per unit time there will penetrate 

into the inner region a number of particles of order 

2nroN .,vi exp (- E;,.ax/ IS z2), 

where Vi is the ion thermal velocity. If we neglect the 
leakage of particles from the region r < ro the plasma 
density in this region is given by 

Our analysis holds so long as the condition a « 1 is 
satisfied in the region r < ro. We find 

If this condition is violated, the change in plasma den­
sity due to particle leakage through the potential barrier 
can lead to an important modification of the spatial dis­
tribution of the wave field. 

5. Now we consider the case in which the plasma 
pressure in the region r << ro is approximately the 
same as the plasma pressure in the region r >> ro: 

No'XTt ~ N,%Tz == P. 

This is the case when 

ro - en I w ~ /lr. 

Under these conditions the following equation holds in 
the waveguide region, that is to say, near the point ro: 

d2E n 2 
----E 

dr2 ro2 

2 [ E 2 
)] = - (l)c' 1 -a exp( - $ 2 E. (11) 

We note that a similar equation has been treated in CJJ 

in which rectilinear propagation of a wave was consid­
ered in the two-dimensional case. Equation (11) yields 
the following dependence of field amplitude on coordin­
ates: 

Emax 2 J . [ ( E' )]}- 1
/2 

r- r0 = ± ...':... ~ dE {[ ( __::::) - 1 E2 + 32ni' 1- exp\ - it' · 
w E wro (12) 

Thus we have 

E!.,, ~ 32nP[1- (nc/row) 2]-1, 

M ~ (c I w) (1- (nc I row) 2]-'h. 

(13) 

(14) 

Using the relations in (6) and (7) we can determine 
the connection between the values of the density at r = 0 
and far from the system. We have 

No-N,~2Noc- 1-2 -- 1- -- . c [ ( nc )'Jf ( nc )']-''' 
row row L ro<o 

It follows from this equation that the plasma density is 
larger in the inner region of the system than in the reg­
ion r ::?> ro if 

FIG. 2 
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n < z-'hrooo I c. (15) 

We note that these results apply for a time 

----"' 2ro E !ax lfmax 
t ~-;;-Y, exp {i2. 

(16) 

6. Localized electromagnetic oscillations in a three­
dimensional space 11 can be represented in the form of a 
wave that propagates in a self -sustaining wave guide of 
toroidal shape, the propagation occurring along the 
minor circle of the torus (cf. Fig. 2, where the wave­
guide region is shown by cross-hatching). If the major 
radius of the torus is significantly greater than the 
minor radius R0 :~ r 0 the description of this wave can 
be given in terms of the solution obtained above for the 
two-dimensional case. 

We note that this system is subject to the field forces 
which try to reduce the major radius of the torus. The 
results obtained here are valid for times that are ap­
preciably smaller than the characteristic time in which 
Ro is reduced. We find 

{ 16nR02roNoM }'h 
t ~ ·- -=--+=-:--.,--..,--:....,.c,...:..._,..-,---c 

ArE;',.JZ- (nc/roOJ) 2 - (c/ooM)ZJ · 

It is probable that these field forces can be balanced by 
the centrifugal forces in a torus that rotates around its 
principle axis. 

The damping time for these localized oscillations 
can be estimated from the relation T ~ W/Q where W is 
the total field energy and Q is the energy evolved in the 
plasma per unit time by virtue of the dissipation of the 
field energy. [71 Estimates indicate a rather large value 
of T since the damping is important only in the weak 
field region where E ;S; IS. For example, with 
T ~ 107 degrees, N ~ 1010 cm-3 and ro ~ 10 em we find 
that Tis of the order of a second. However, this esti­
mate should be viewed with some criticism since the 
stability of the system has not been studied. Questions 
of stability require additional analysis such as in the 
cases studied in u-41 • 

V(E) 

E 

dEjdr 

II 

E 

FIG. 3 

!)The author has learned that localized fields in the shape of spheri­
cal configurations were discussed by L. V. Keldysh (report to the Session 
on General and Applied Physics, U.S.S.R. Acad. of Sciences, 1956) in 
an explanation of the nature of "ball lightning". Unfortunately, there­
sults of this work were: not published. 

The author is indebted to V. P. Silin for critical re­
marks and to B. I. Zaslavski'i for discussion. 

Note added in proof (June 12, 1968). In conclusion we 
show that Eq. (5) has more than one solution correspond­
ing to a localized field. 

In the qualitative investigation of the solutions of Eq. 
(5) we have used a method which was applied in lB·lOJ; in 
particular, by E and dE/ dr we are to understand the 
coordinate and velocity of some ficticious particle which 
we will treat as though this particle were moving in a 
potential well. In this case the quantity r plays the role 
of the time. 

First we consider Eq. (5) without the terms r- 1dE/dr 
and (n2 /r 2 )E in which case the analysis corresponds to 
that of a conservative system. The first integral of the 
motion 

dZE = - 002 r 1 - a exp ( - .!!:_) J E 
dr2 c2 L rgz 

(17) 

is of the form 

• cz (dE \ 2 ( EZ \ 
K= w': dr~ +V(E), V(E) =E2+a&2exp -[gel'). 

(18) 

The quantity K represents the total energy of the fie­
ticious particle. In Fig. 3 we show schematically the 
functional dependence V(E) which characterizes the po­
tential well; we also show the pattern of the integral 
curves in the phase plane corresponding to different 
values of K. When K = et. & 2 Eq. ( 17) has a unique 
periodic solution. 

Now, returning to Eq. (5) we write it in the form 

~ dK =-~(dE ) 2 +!!_E dE 
c2 dr r dr r" dr' 

where K as determined by (18) plays the role of the 
energy of a ficticious particle. 

The total variation of K is given by 

(19) 

(20) 

The solutions of interest here must start and stop on 
the phase plane at the point E = 0, dE/dr = 0. Under 
these conditions the ficticious particle can execute some 
number of oscillations in the potential well. 

Thus, in the cross section z = const. the pattem of 
the spatial distribution of the amplitude of the electric 
field is in the form of concentric rings. If the ma.ximum 
values of the field amplitude are large (IEmaxl ~> E) 
we can assume that the regions of space lying between 
the wave guide channels are fairly isolated and charac­
terized by their own values of temperature and UJlper­
turbed plasma density. Under these conditions the spa­
tial distribution in the field will be given by dependence 
similar to that shown in Fig. 4. 

t 
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