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The third theorem of Melman and its corollary are presented and used to establish a number of new 
restrictions on the high-energy behavior of the scattering amplitude f ( s) on a certain sequence S 
of physical points s extending to infinity. Rather weak conditions on possible oscillations of the 
amplitude are established which ensure that these restrictions are satisfied for all sufficiently 
large physical s. One of these restrictions is equivalent to the result of Khuri and Kinoshita, but 
is valid under weaker conditions on the possible oscillations of the amplitude. The results can be 
extended to arbitrary binary reactions. The advantages of introducing asymptotic amplitudes 
f 00 ( s) are pointed out. 

1. INTRODUCTION 

RECENTLY, Martin[1 l succeeded in obtaining a rigor­
ous upper limit for the forward scattering amplitude 
within the framework of axiomatic theory: 

lf(s) I.;:;; O(sln2 s). (1) 

On the basis of this result, Khuri and Kinoshita[2 J and 
afterwards, Vernov[3 l showed that this limit can be 
lowered to some extent if one makes certain additional 
assumptions on the behavior of the function 

H (s) = Im j(s) IRe f(s) (2) 

for large physical s. 
Below we use the third theorem of Melman (the 

first and second theorems of Me1man were used in [zJ) 
to establish new restrictions on the high-energy be­
havior of f ( s ). One of these restrictions is equivalent 
to the result of[zJ but is valid under much weaker con­
ditions on the possible oscillations of the amplitude. 
The importance of weakening the assumptions on the 
possible oscillations of the amplitude follows from the 
fact that up to now it has not been possible[ 4 ' 5 l to find 
restrictions on these oscillations starting from the 
standard postulates of quantum field theory. 

2. A NEW RESTRICTION ON THE AMPLITUDE 

Let us first formulate the general restrictions on 
the amplitude f ( s ) = f ( s, t = 0 ) for the elastic scat­
tering of a truly neutral spinless particle, which we 
shall need in the following. 

1. The amplitude f ( s) is holomorphic in the upper 
s plane (possibly with some finite part cut out) and 
bounded there by an arbitrary linear exponential. 1 , 

This condition follows from the locality principle of 
Me!man[sJ as well as from the principle of micro­
causality in the formulation of Lomsadze and 
Krivski1. [7' 81 

1lThis condition of boundedness by an arbitrary linear exponential 
can be replaced by the even weaker condition (7 .I) of [6]. 
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2. The amplitude f ( s ) is continuous in the region 
of holomorphism and on its boundary (i.e., on a suf­
ficiently distant part of the real axis). This condition, 
together with condition 1, allows one to apply the 
generalized maximum principle of Phragmen­
LindeHif-Nevanlinna to the auxiliary functions which 
will be constructed below on the basis of the amplitude 
f ( s ) . This maximum principle guarantees that the 
conditions of the third theorem of Me'lman are satis­
fied by the auxiliary functions (for finer details con­
nected with the applicability of this principle to high­
energy physics, see[ 9l). 

3. The amplitude f ( s) satisfies crossing symmetry 
in the form 

f'(-s') = f(s). 

In order to obtain a new restriction on the high­
energy behavior of f ( s), we need the following 
theorem. 

(3) 

Third Melman Theorem.[ 10J Assume that the func­
tion G ( s ) a) is holomorphic in the upper s plane 
(possibly with a finite part cut out), continuous in this 
region and on its boundary (i.e., on a sufficiently dis­
tant part of the real axis), bounded in this region by 
an arbitrary linear exponential (cf. footnote 1,) and 
tends to zero for s - ± oo along the real axis; and 
b) satisfies crossing symmetry in the form 

G'(-s') = G(s). 

Then for physical s - oo 

b(s) I a< (n3 14) In-1 (s I s0), 

where a = sup IRe G ( s) I in the upper half-ring (cf. 
Fig. 1) bounded by the half-circles with sufficiently 
large radii So and s > So, and b (s) = inf lln G(s) I 
on the line [so, s ]. 

It follows from Me1man's third theorem that how­
ever slowly the function G ( s ) goes to zero, 

(4) 

(5) 

1m G ( s)- 0 more rapidly than ln-1s on a certain 
sequence of points. This theorem and its corollary 
have been used by N. N. Me!man for a new proof of the 
Pomeranchuk theorem under the condition that the 
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FIG. I 

amplitude f ( s ) increases more slowly than s ln s 
(private communication from N. N. Meiman). We show 
now that the third Meiman theorem and its corollary 
allow one to obtain a new restriction on the high­
energy behavior of the scattering amplitude f ( s ). 

We assume that we know (for example, from some 
general considerations or from experiment) that for 
large physical s 

lf(s) [ < O(<p(s)) (6) 

and that there exists a function cl>- 1 ( s) satisfying con­
ditions a) and b) of Melman's third theorem so that for 
large physical s 

I<D(s)l ~<p(s). (7) 

Assume that the amplitude f ( s) possesses the 
general analytic properties 1 to 3. Then the auxiliary 
function 

G (s) = f(.,) <D- 1 (s) 

will satisfy all conditions of the third theorem of 
1\!J.c!man, and hence the following theorem is true: 

Theorem 1. On a certain sequence S of physical 

(8) 

points s extending to infinity (9) 

llmf(s)Re<D(s) -·Ref(s)Im<l>(s)l <O(I<t>(s)I 2 In- 1 s), sES. 

This inequality evidently has a real meaning when 
rp ( s ) approximates I f ( s ) I for physical s - oo up to 
a factor which increases more slowly than ln s. 

3. A FEW CONSEQUENCES 

We obtain a number of important consequences from 
theorem 1 by imposing on the amplitude f ( s) certain 
requirements which can be directly verified by experi­
ment. 

If the amplitude f ( s ) satisfies the general analytic 
conditions 1 to 3 and if 

Q(,:p(s) In- 1 s) ~ lf(s) I< O(<p(s)), 

where rp ( s) = sa lnbs, then for physical s - oo 

H(s) -+tg (na/2), sES. 

(10) 

(11) 

If the amplitude f ( s) satisfies the general analytic 
requirements 1 to 3 and has the upper limit 

lf(s)l <O(s"]nbs), aofoO, 1 (12) 

and if H ( s ) - tan ( 1Ta/2 ) but not very rapidly so that 

IH(s) -tg (na/ 2) I> O(ln-'Hs), (13) 

where 6 > 0 can be chosen arbitrarily small, then 

lf(s) I < 0 (s" In-M s), s E S (14) 

with arbitrarily large M > 0. 
Let us prove this assertion. It follows from the 

inequality (9) and the upper limit (12) that 

IRef(s) IIH(s) -tg (na/2) I< O(s"Jnb-l+es), sES, (15) 

and 

1Im/(s)IIH-1 (s) -ctg(na/2)I<Q(s"!nb-1+es), sES, 
(16) 

where we have chosen E = 6/2 on the right-hand side, 
With (13) this yields 

lf(s) I < O(s" Jnb-012 s), s E S. (17) 

Repeating this iteration process an infinite number 
of times, we obtain the desired result (14). 

The other consequences of theorem 1 refer to the 
cases where a = 1 or a = 0. 

Let the amplitude f ( s ) satisfy the general require­
ments 1 to 3 and have the upper limit 

lf(s) I< O(s Jnb s). (18) 

Then 
IRef(s)l <0(sJnb-1 s), sES. (19) 

In order to show this we ghoose for rp ( s) the follow­
ing function: rp ( s) = s ln s. Then 

<t>(s) = seio/2 (Ins- in/ 2)b. (20) 

The inequality (9) yields in this case 

I-Re f(s) + 0 (Imf(s)ln-1 s) I < O(s ln"- 1 s), s E S, (21) 

from which we obtain at once the required result (19). 
If the amplitude f ( s ) satisfies the general require­

ments 1 to 3 and has the upper limit 

lf(s) 1 < O(ln" s). 
(22) 

then 

IImf(s)l <O(In"-'s), sES. (23) 

This assertion is proved in analogy to the previous 
case. We note that the inequalities (19) and (22) hold 
without any assumptions on the behavior of H ( s ). In 
particular, it follows from (22), with account of the 
upper limit of Martin ( 1), that 

IRef(s)I<O(slns). (24) 

If the general requirements 1 to 3 and the upper limit 
(18) are satisfied and if, moreover, 

IH(s)l <0(ln1-0s), 

where 6 > 0 is arbitrarily small, then 

lf(s)l <O(sin-Ms), sES 

with arbitrarily large M > 0. 
If the upper limit (22) holds and if 

IH(s) I > O(In-1H s), 

where 6 > 0 is arbitrarily small, then 

lf(s) I< O(In-M s), s E S 

with arbitrarily large M > 0. 

s(s) 

FIG. 2 

(25) 

(26) 

(27) 

(28) 
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4. ACCOUNT OF THE CONDITIONS ON THE OSCILLA­
TIONS OF THE AMPLITUDE 

We note that all the results obtained above are true 
for physical s E S. In order to extend these results 
to all sufficiently large physical s, one must introduce 
a restriction., on the possible oscillations of f ( s ). We 
assume (cf. Fig. 2) that no matter how rapidly the 
function I Im G ( s) I oscillates, one can find a point 
s' ( s) which goes to infinity no more rapidly than 
some finite power of s for s ~ oo: 

s'(s) ~ O(sa), 

such that for all physical s" :=: s', the value of the 
function does not exceed b ( s ) : 

ITmG(s") I~ b(s), s" ~ s'. 

(29) 

(30} 

It is clear that our assumption is rather weak. If it 
is satisfied, it can easily be shown that (5) yields for 
all sufficiently large physical s 

I Im G(s) I < O(ln-1 s). (31} 

The meaning of this assertion is that however slowly 
the function G ( s ) decreases, Im G ( s ) must fall off 
more rapidly than ln- 1s. 

If I Im G ( s) I oscillates so strongly that the in­
equality (30} can not be satisfied with condition (29), 
but can be guaranteed by the condition 

s'(s) ~ O(exp (Bs")), 

then (5) yields the less restrictive inequality 

lim G(s) I < O(ln- 1 lns). 

(32} 

(33) 

However, we exclude the possibility of such a patho­
logical behavior of the function G ( s ). Then theorem 
1 and all its consequences will hold for all sufficiently 
large physical s. Combining in this case the inequality 
(25) with theorem 2 of Khuri and Kinoshita, [2 J we con­
clude that the limit (26) holds for all physical s under 
very weak conditions on the possible oscillations of the 
amplitude. 

5. CONCLUDING REMARKS 

We note that the assumption of the neutrality of one 
of the scattering particles is inessential, and instead 
of the crossing symmetry (3} one could use the cross­
ing symmetry in the form (cf., for example,( 11 J) 

jl'(-s') = fi(s), (34) 

where the indices I and II refer to the reaction and the 
crossed reaction reaction, respectively. In this case 
one would have to introduce the symmetric and anti­
symmetric amplitudes 

f+(s) = 2-'h[jl(s) + Jll(s)], f-(s) = 2-'hi[jl(s) -jii(s)], 
(35) 

each of which will also satisfy the general require­
ments 1 to 3 and, in particular, the crossing symmetry 
in the form (3). 

The extension of these results to the case of scat-

tering of particles with spin presents no difficulties 
either if one works with invariant amplitudes. Con­
sider, for example, the case of JTN scattering where 
there exist four (with account of the isotopic spin vari­
ables) invariant amplitudes A± ( s) and s± ( s ) , which 
satisfy the crossing relations[ 12) 

A±(s) = +A±·(-s·), B±(s) = ±B±•(-s•). (36} 

The results obtained above are applicable to each 
of the four functions iA • ( s ) , K ( s ) , B' ( s ) , and 
m- ( s }, which satisfy crossing symmetry in there­
quired form (3}. 

Finally, we note that in our entire consideration, 
the exact amplitude f ( s) could be replaced by the 
asymptotic amplitude f 00 ( s ) introduced by Meiman. [61 

However, in this case one would have to require[ 9' 11 l 
that a 1 < 0 ( s ) . Besides the known advantages [6 ' 81 the 
introduction of asymptotic amplitudes has the important 
feature[ 9 J that its analyticity does not depend on the 
neglect of the electromagnetic interaction, which be­
comes especially important for large energies. More­
over, the introduction of asymptotic amplitudes allows 
one to extend all our results to the case of arbitrary 
nonbinary reactions. 

The authors are deeply grateful to Prof. V. Ya. 
Falnberg for a very fruitful discussion and to Prof. 
N. N. Meiman for kindly communicating to us the 
theorem proved by him, which has been called the 
third theorem of Melman in the paper. 
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