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Two problems are considered. 1. The problem of calculating the critical field of surface superconduc
tivity Hc3 for pure superconductors is solved within the framework of the microscopic superconductiv
ity theory. It is shown that Hc3 /Hc2 2: 1.99 at T = 0 for specular reflection of the electrons at the 
metal surface and 2: 2.09 for diffuse reflection (the numerical calculation was performed by a varia
tional method). 2. The structure of a superconducting surface layer in an inclined magnetic field is 
investigated in the region of applicability of the Ginzburg-Landau equations (T - T c). It is shown that 
for an angle of inclination 6 * 0 the surface super conducting layer possesses a vortex structure simi
lar to the Abrikosov vortex lattice. For small inclination angles the period of the structure is 
a "' ~I -19 » ~(T), where ~(T) is the temperature -dependent coherence length. 

INTRODUCTION 

AN investigation of the character of the onset of su
perconductivity near the surface of a metal in a strong 
magnetic field has been recently the subject of many 
papers, both theoretical and experimental. The task of 
the theory consists, first, of calculating the critical fidl 
field of the surface conductivity (Hc3) as a function of 
temperature, concentration of impurities introduced in
to the superconductors, and other parameters, and sec
ond, of an investigation of the structure of the super
conducting surface layer in a field H < Hc3 • 

The problem of the theoretical calculation of the 
field Hc3 , as well as the problem of calculating the crit
ical field of the volume superconductivity He/ 1 • 21 re
duces to a solution of the linearized Gor 'kov equation [ 31 

~'(r)= IAIT ~ ~ dr'G..,(r,r')G-ro(r,r')~'(r'), (1.1) 

where ~* (r') is the parameter of superconducting or
dering, Gw(r, r') are the thermodynamic Green's func
tions of the normal metal in a constant magnetic field 
H. w = (2n + 1)JTT are discrete frequencies, and ;\. is 
the Cooper interaction constant. In the calculation of the 
upper critical field Hc2 , the quantity G w in (1.1) should 
be taken to mean the Green's function in an infinite 
metal, whereas in the case of calculation of the field 
Hc3 of the surface superconductivity Gw(r, r') should 
denote the Green's function for the half-space. 

If the temperature is close to a critical temperature 
of the super conducting transition T c• the integral equa
tion (1.1) reduces to a differential Ginzburg-Landau 
equation[ 4 ' 51 with corresponding boundary conditions 
on the surface.[sJ In this case, as shown by Saint
James and de Gennes/ 71 the critical field is Hc3 

= 1.69 Hc2 , and the superconducting surface layer, un
like the superconducting state below the field Hc2 , is 
not vortical but is characterized by the existence of two 
super conducting currents of equal magnitude but oppo
site direction flowing along the surface of the metal. 
The described situation pertains to the case of a strict-
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ly parallel orientation of the magnetic field relative 
to the surface of the superconductor. In the case of in
clined orientation, the critical field Hc3 becomes a 
function of the angle of inclination 6: Hc3 = Hc3 (6), the 
function Hc3 (6) changing from 1.69 Hc2 at 6 = 0 to a 
value Hc3 = Hc2 at 6 = 1T /2.[ 81 

The task of the present investigation is, first, to 
study the temperature dependence of the critical field 
of the surface superconductivity Hc3 in the case of 
parallel orientation (6 = 0) outside the region of appli
cability of the Ginzburg-Landau equations (in particu
lar, at T = 0), and second, a study of the structure of 
the super conducting surface layer in the case of in
clined orientation of the magnetic field (6 * 0). 

As will be shown in Sec. 2, the ratio y(T) = Hc3 (T)/ 
Hc2 (T), in the case of pure superconductors, reveals a 
noticeable temperature dependence. Thus, the magni
tude of this ratio at T = 0 amounts to y(O) 2: 1.99 in 
specular reflection of the electrons from the surface of 
the metal and y(O) 2: 2.09 in diffuse reflection, which 
must be compared with the value y = 1.69 at T = T c 
(which does not depend on the character of the reflec
tion). Such a behavior of y with changing temperature 
differs from the corresponding behavior of y(T) in al
loys. As noted by de Gennes, [gJ for extremely contam
inated alloys (l « ~0) the ratio Hc3 /Hc2 does not depend 
on the temperature and equals 1. 7 at all values of T. 
We note that attempts to calculate the temperature de
pendence of y in pure superconductors near T ~ were 
made by Ebneth and Tewordt[ 101 and by Luders 111 us
ing modified Ginzburg-Landau equations containing 
spatial derivatives of the ordering parameters of order 
higher than the second. The method employed by us to 
calculate the field Hc3 is similar to that employed by 
Abrikosov[ 61 and is based on a solution of an equation 
of the type (1.1), except that we are using a more exact 
expression for the Green's function Gw in the pres
ence of a magnetic field (in addition, we consider the 
case of not only specular but also diffuse reflection of 
the electrons from the surface of the metal). Unlike 
[sl, we use in the calculation of (1.1) the method of 
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quasiclassical trajectories of Shapoval and de Gennes [ 9 ' 

12 • 131 (the superior bar in formula (1.1) is introduced in 
the case of diffuse reflection of the electrons from the 
surface or in the presence of impurities in the volume, 
and denotes averaging over the statistical elements of 
the trajectory. 

In Sec. 3 we investigate the structure of the super
conducting surface layer in the case of a magnetic-field 
orientation that is inclined with respect to the surface 
of the superconductor (e * 0). For simplicity, we con
fine ourselves here to the case T -- T C• but the qualita
tive picture of the investigated effect is not connected 
with this assumption. It is shown that in the case of in
clined orientation of the magnetic field a superconduct
ing surface layer has a vortical structure, similar to 
the vortex lattice of Abrikosov[ 141 below the field Hc2, 

but the period of the corresponding structure is in this 
case an essential function of the angle of inclination e, 
increasing with decreasing e like 1/N. 

2. TEMPERATURE DEPENDENCE OF THE FIELD 
Hcs 

In the present section we consider the question of 
calculating the temperature dependence of the field Hc3 

in parallel orientation (e = 0). Assuming the supercon
ductor to occupy the region of half-space z > 0 and the 
magnetic field to be oriented along the y axis, we chose 
the vector potential with a gauge 

Ax = Hz, A. = 0. Az = 0. (2.1) 

1. The standard method for calculating the critical 
fields of the superconductors is the Shapoval-de Gennes 
quasiclassical-trajectory method.[ 9 ' 121 In order for 
th:is method to be applicable it is necessary that the 
distance between the Landau levels WH = eH/mc be 
small compared with the Fermi energy 11-, and the ra
dius of the electron orbit in the magnetic field rH 
= cp0 /eH be large compared with the correlation length 
~ .~ v0 /t:;.. These conditions are always satisfied in 
fields that are of interest for the theory of supercon
ductivity. 

Writing the Gor'kov equation (1.1) in the form (ti = 1) 

~·(r)=jt..jT~ ~ dr'K.,(r,r'W(r'), (2.2) 

"' 
we obtain in the quasiclassical approximation the fol
lowing expression for the kernel Kw (r, r')[ 121 

1 ... 
K.,(r,r')= (2n)• ~dte-21<»'< ~dpb(ep-1!) 

x(li(r'-p(t))exp[ 2;e ~ A(p}dp]), (2.3) 
r 

where p(t) is the equation of the classical trajectory of 
the particle emerging at the instant of time t = 0 from 
the point p(O) = r and having at this point a velocity 
J}{O) = v = p/m. In formula (2.3) we take the sum (inte
gral with respect to dp) over all possible electron tra
jectories on the Fermi surface. The integration in the 
argument of the exponential in (2.3) is along the classi
cal trajectory of the electron, directed from the point r 
to r', and the angle brackets denote averaging over all 
possible trajectories. 

a b 

FIG. I 

The type of classical trajectories, in the case of 
surface superconductivity, can be readily classified 
(Fig. 1). Trajectories are possible, going directly from 
the point r into r', as well as trajectories correspond
ing to reflection from the surface at a certain point R. 
If the vector potential is chosen in the form (2.1), the 
phase in the argument of the exponential in (2.3) is pro
portional to the area covered by the classical trajec
tory of the electron in the (x, z) plane (Fig. 1): 

2e ( 2eH , 
- JA(p)dp=-S(r,r). 
c c 

r' 

(2.4) 

We shall henceforth consider specular and diffuse 
laws of reflection of electrons from the surface of the 
metal. In the case of specular reflection, the trajectory 
is specified uniquely by the value of the initial electron 
velocity at the point r, and therefore the angle brackets 
in (2.3) can be left out in this case. In the case of dif
fuse scattering, the reflection can occur at any point R. 
It is then necessary to average over the angles of emis
sion of the particle after reflection from the surface. 

In accordance with the foregoing, the kernel Kw (r, r') 
can be represented in the form of a sum K<~ + K<t.J, 
where K~> corresponds to trajectories of type 1, shown 
in Fig. la, and K<&,> corresponds to trajectories of 
type 2, shown in Fig. lb. Proceeding to the calculation 
of the corresponding contributions, we note that 
K<l](r, r') does not depend on the character of there
flection and is determined in accordance with (2.3) uy 
the formula 

K~l)spec(r, r')= K~ldiff (r,r') = ~ ~ dt e-21wlt f ~ dv,dvu 
(2n) 2 0 -= 

X r dv.b(~v•_l!)b(r'-r-vt)exp[ 2~e S(r,r')], (2.5) 
-zit 

where 

S(r, r') = '/2(z +z') (x- x'). 

The condition Vz > -z/t separates here the trajecto
ries that do not experience collisions with the plane 
z = 0 at the instant of time t. 

The quantity K~>(r, r'), corresponding to the trajec
tories that collide with the surface, is defined in the 
case of specular reflection in analogy with (2.5) as 

3 ... 

K(2)spec (r r') =--.!!:._} dt e-•lwl' i s dv dv 
"' ' (2n)' o }= x " 

-zjt 

i ( mv2 
) [ 2ie J X Jdv6 - 2--11 .S(r'-p(t))exp -c-S(r,r') , (2.6) 

and in this case 
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1 z• + z'• 
S(r,r')=--- (x-x'). 

2 z+ z' 

The point R has coordinates 

X = X+ Vxr, Y = y + Vy't, Z = 0, 

(2. 7) 

where T = -z/vz is the instant of encounter of the tra
jectory with the surface, and v corresponds to replace
ment of Vz by -vz: v = (vx, vy, -vz). In the case of 
diffuse reflection, the kernel K<2 l is obtained by aver
aging over all trajectories corresponding to the instant 
t > T, with weight 1T - 1 COS li, where li is the angle 
characterizing the direction of particle emission after 
reflection at the point R. We get 

3 oo -z/t 2 
K(Z)diff (r r') =~I dte-2lc.>lt II dv dv I dv 6( mv-") 

"' ' (2n)" ~ ~J x "__:~ ' 2 "" 

1~ z..S [2ie '] ·- ~ cos a sin ada d<p 6 (r'- pi(t)) exp - S, (r, r ) , 
;t 1l 0 c 

(2.8) 

where P1(t) = R + nv(t- T), and n = (sin e cos cp, sin e 
X sin cp, COS B)-unit vector in the direction of particle 
emission. 

The remaining calculations are trivial. For exam
ple, in the specular case we obtain on the basis of (2.5) 
and (2.6), after integration with respect to vx, vy, and 
vz: 

s ec ( m )' [ ieH , , J K.,P (r, r') = 2nR e-ZicoiR/vo exp -c- (z + z) (x- x) 

( m )' - [ ieH z' + z'Z J + ----= e-ZicoiR/vo exp ~-- (x- x') , 
2nR c z+z' 

(2.9) 

where R = lr'- r I, R = lr'- rl' and r is the point 
specularly reflected with respect to the point r. We 
note that this expression can be obtained also by the 
Abrikosov method, [ 61 if we choose the G-functions in 
(1.1) in the form (in the quasiclassical approximation) 

G..,(r,r') = G.,0 (r- r')exp [ i:) A(s)ds J 
(I) 

-G.,0 (r-r')exp[i:) A(s)ds], 
(2) 

(2.10) 

where in the first term the integral is taken along the 
path 1 (Fig. 1a), and in the second along the path 2 (Fig. 
1b). Substituting (2.10) in (1.1) and recognizing[ 51 that 
crossing terms of the type G~ (r - r')G~(r - r') give a 
negligibly small contribution to the integral, we arrive 
at formulas (2.2) and (2.9). 

2. We proceed to solve the equation for the ordering 
parameter. According to [ 6 • 71 , ~*(r) should be sought 
in the form 

(2.11) 

where ~(z) is real, and k determines the position of 
the "center" of the super conducting layer relative to 
the surface of the metal. The parameter k should then 
be determined from the condition of maximum field 
H(k) (Hc3 = max H(k)). 

The integral over space in Eq. (2.2) diverges at 
small distances. It must be recognized, however, that 
summation over the frequencies should be terminated 
at the Debye frequency WD· This eliminates the di
vergence, leading to the appearance of the "large" 
quantity ln wn, which is cancelled out by the small pa-

rameter ,\ in (2.2). As a result, Eq. (2.2) can be trans
formed into (see [ 1• 6 1 ): 

"" .. 
N(O)~(z)ln~= T ~ Caz'~(z')) S dx'dy'K.,(r,r')e-ik(x-x'l, 

neT,cr ~ 
" • -~ (2.12) 

where N(O) = mp0 /21T 2 is the density of states on the 
Fermi surface, and the stroke through the integral sign 
denotes that the region I z - z' I < a should be excluded, 
where a is an infinitesimally small number (a- + 0). 
In the final answer, a drops out, since the terms ln a 
cancel each other in both parts of (2.12). 

In the specular case, the equation for ~ (z) reduces 
to the form 

00 co 

v0 nT 8 1 fl.dfl. 
~(z)ln--=- dz'~(z')J-1 + • 

neT,a Vo fl. 
• 0 0 

X { J0 ([eHc-1 (z+z')- k](z-z') fl.) 

sh [2nTv0-'l z- z' ll'i.-1- fl.'] 
J0 ([eHc-'(z2 + z'•)/ (z+z') -k](z + z') fl.)} + , 

sh [2nTv0- 1 l z + z' ll'1 + fl.2] 

(2.13) 

where J 0 is a Bessel function. When T = 0 this equa
tion can be greatly simplified, since the integrals with 
respect to IJ. can be obtained explicitly in this case. 
Changing over to dimensionless coordinates expressed 
in units of the characteristic magnetic radius Po 
= (Jic/eH)112 , we obtain1l 

v0 (eH/c) '/, 1 C { exp [-jz(z- a)- z' (z'- a) ll 
.!l(z)ln--1'- = 2' ~ dz'~(z') I 'I ne ccJ U z- z 

exp[-lz(z- a)+z'(z' -a) ll} 
+ z+z' ' 

(2.14) 

where a = kp0 • The value of a should be obtained from 
the condition that the field H = Hc3 be maximal. Thus, 
the problem reduces to finding the largest eigenvalue of 
Eq. (2.14). 

In the diffuse case, the equation for the ordering pa
rameter is obtained from (2.13) by replacing the second 
term in the curly brackets by the amount 

2nT 
~ ~l!>..,(z)ll>co(z'), 

Vo "' 

where 

l!>.,(z)=r £d~ , lo(sz(eHz-k))exp{-~zl'1+s'}. 
J (1 + ~2) /o C Vo 
0 (2.15) 

Thus, in the diffuse case part of the kernel Kw (z, z'), 
corresponding to reflection from the surface, factors 
out. In conclusion, we present the form of the integral 
equation at T = 0 in the diffuse case. Introducing di
mensionless variables, just as in Eq. (2.14), we get 

v0 (eH/c)'l• 1 .. 8 , , exp[-lz(z-a)-z'(z'-a)IJ 
~(z)ln T = -2 dz ~(z) I 'I ne cO' . z- z 

0 

Sco r xdx f ydy lo(xz(z-a))lo(Yz'(z'-a)) + dz'~(z') J J 
0 0 (1,+x")'1• 0 (1+y')'/, zl'1+x2 +z'l"1+y' 

(2.16) 

l)In the numberator of the expression under the logarithm sign, e 
denotes the charge of the electron, and in the denominator it denotes 
the base of the natural logarithms, but this cannot lead to a misunder
standing, since the electron charge always enters in combination with 
the magnetic field ( eH/ c). 
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3. The obtained expressions are too complicated to 
admit of an analytic investigation. We therefore present 
here a numerical calculation, confining ourselves to the 
case T = 0. 

Excluding the infinitesimally small number a from 
Eqs. (2.14) and (2.16), and introducing the notation 

neTc 
f,=ln , , 

v0 (el!/c) h 

we rewrite these equations in the form 

with 

f.Specl'l (z) = L (z) l'l(z)+ 1 K 1 (z, z') ~(tl= :~z') dz' 

"" "' ( ') ~ K 2 (z, z') ··-z-, dz', 
z+z 

"" 
- ~K3 (z,z')L'l(z')dz', 

K 1 (z, z') =' 1/ 2 exp [-[z(z-a) -z'(z' -a)[], 

K2 (z, z') =o 1/, exp [ -lz(z- a)+ z' (z'- a) I], 

"" 
lc3 (z,z')= ~ Cllv(z)QJv(z')d\', 

'f xdx --
<Dv(z) = J (i + .r') "l0(xz(z- a) )e-vziHx', 

u 

~ 8 
l,(z)= -K,(z,O)inz+ ~ sign(z'-z)ln[z'-z[ o;;'K1 (z,z')dz'. 

0 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

Multiplying both sides of (2.18) and (2.19) by 6-(z) 
and integrating 'Yl~h respect to z, we obtain ,\spec 
= )l1 - A2 and ,\dlH = A1 - A3 , where Ai are the following 
integrals: 

"" 1 "" "" [l'l(z - L'l(z')]2 

),1 = ~L(z)i'l'(z)dz+ 2 ~ ~ K 1 (z,z') ~~-z'l dzdz', (2.25) 
" u u 

(2.26) 

1.3 = r F2 (s)ds, 
0 

r s"" xdx -F(s)= J dz1(z) l 0 (xz(z-a))e-"il+x' 
0 ,; (1 +x')'h · 

(2.27) 

Here 6. (z) is assumed to be normalized in accordance 
with the condition .. 

~ 1'1 2 (z)dz= 1. (2.28) 

Since we are interested in the smallest value of ,\ 

(A= ,\spec and ,\ = ,\diff), we can calculate it by using a 
variational method, evaluating the integrals (2.25)
(2.27) for several trial functions 6-(z). Generally speak
ing·, we obtain here overestimated values of A, i.e., 
somewhat underestimated values of the field Hcp· 

As was noted by Abrikosov, [aJ when T - T c a simi
lar variational method of solving the Schrodinger equa
tion (the linearized Ginzburg-Landau equation) with 
trial functions of the type exp (- kz 2 ) yields instead of 

the exact value of the ratio (Hc3 /Hc2)T = T c = 1.69, ob

tained with the aid of rather complicated Weber func
tions,[7J the value (1- 2/tr)-1 12 = 1.66, which differs by 
only 2% from the exact value. 2 > In analogy with this, in 
our case we choose the trial functions at T = 0 in the 
form 

(2.29) 

and obtain C from the normalization condition (2.28). 
The integrals (2.25)-(2.27) with this trial function 

were calculated with the M-20 electronic computer 
(speed 20 000 operations per second). 3 > By running 
through a number of values of the parameters a, {3, and 
y it was found that the minimum value of ,\spec is 
reached near the point a = 1.0, {3 = 0.6, and y = 0, and 
equals 0.289. The calculation of each point lasts about 
two minutes. The calculation of ,\3 turned out to be 
somewhat more complicated. At large values of s, the 
function F(s) in (2.27) has in asymptotic form F(s) 

00 

""6.(0)/2s, i.e., the integral J F 2 (s)ds converges 
0 

quite slowly. Calculation of this integral was carried 
out to such a value of s = smax• at which the function 
F(s) differed from its asymptotic form not more than 
10%, after which the remaining part of the integral 
(from smax to infinity) was calculated with the aid of 
the asymptotic formula presented above. 

The results of the calculations of ,\spec and ,\ diff 
at certain points are listed in the table. A surprising 

fact is that the minimum of ,\ diff is reached at ap

proximately the same point as the minimum of ,\spec 

(a = 1.0; {3 = 0.6; y ""0), and amounts to ,\diff = 0.265. 
It is seen from the table that the deviation of y from 
zero corresponds to somewhat larger values of A. As 
follows from [ 10 • uJ, at z = 0 the derivative d6. /dz is 
in general different from zero if T * T c· It is possible 
that in our case the exact value of y also differs from 
zero, but, as seen from the table, this is immaterial 
for the calculation of Hc3, since the corresponding val
ue of ,\ depends little on y. 

Knowing the value of A, we can readily find the criti
cal field of the surface superconductivity Hc3 (0) in ac
cordance with Eq. (2.17). It is more convenient to rep
resent the final result in the form of the ratio Hc3 /Hc2 

at T = 0. According to Helfand and Werthamer, [ 2 J the 
critical field Hc2 at T = 0, obtained by Gor'kov[ 1 J by a 
variational method, is actually exact. The quantity 
Hc2 (0), according to [ 1 • 2 J, for impurity-free supercon
ductors, amounts to 

e 1, (neT, )' -H,2 (0)=-2- -- , 
c y Vo 

In y = C = 0,577. (2. 30) 

Comparing (2.17) with (2.30) and using the value of,\ 
from the table, we obtain 

spec diff 
H,,~= 1.99, H,, (O) = 209. (2.31) 

H,,(O) Ifa(O) ' 

We note that the value of H~pec(O) is close to 

2l A similar remark is contained also in the book by de Gennes [9). 

3l All the numerical calculations were performed by A. A. Motor
nay a. 
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. I ~ y I hspec I ,cliff 

0,9 

I 

0.6 0 

I 

0.:121, 

I 

0,31fi 
1,0 0.5 0 0,291 0.272 
1.0 0,6 0 0,289 0,265 
1.0 0,7 0 0,296 0.271 

(2.32) 

Thus, the magnitude of the ratio Hc3(T)/Hc2(T), as 
well as of Hc3(T)/Hc(t) (He-thermodynamic critical 
field) turns out to be temperature dependent, increasing 
with decreasing T. In the case of specular reflection of 
the electrons from the surface, this increase from the 
point T = Tc to the point T = 0 is approximately 20%, 
and in the case of diffuse reflection it is of the order of 
25%. In diffuse reflection, the field Hc3(0) is approxi
mately 5% higher than the corresponding critical field 
in specular reflection. This conclusion agrees with the 
usually encountered situation, when the character of the 
scattering of the electrons from the surface changes the 
macroscopic characteristics of the metal only insignif
icantly. 

3. SINGULARITIES OF THE SURF ACE SUPER CON
DUCTIVITY IN AN OBLIQUE FIELD 

The purpose of the present section is to investigate 
the structure of the solution of the equation for the or
dering parameter ~(r) in the case of oblique orienta
tion of the magnetic field (e = 0). Considering for sim
plicity the case T - T c• we can go over from the inte
gral equation (1.1) to the Ginzburg-Landau differential 
equation. r41 Placing the magnetic field in the yz plane 
at an angle to the surface of the superconductor (z = 0) 
and setting the vector potential equal to 

Ax=H(zcos6-ysin8), Ay=O, A,=O, (3.1) 

we obtain in the linear approximation 

1 [ a 2eH J' 1 ( a• a• ) - i-+-(zcose-ysin8) Ll- 2- -a ,+-a, Ll=all, 
2m ax c m y • 

( :~) ,~o = 0, (3.2) 

where a ~ (Tc - T). The point at which the nonzero 
solution of this equation arises first determines the 
field of the surface superconductivity Hc3 = Hc3 (8). Un
like the case considered in Sec. 2, we should seek ~ in 
the form[ 8 • 151 

fl(r) =' eik""'Po(y,z), (arpo/az),~o = 0, (3,3) 

where cp0 is obtained from the equation 

1 [ 2eH ]' 1 ( fJ2 fJ' ) 
2m k0 - -c- (z cos 8 -- y sin 8) Qlo-2m fJy' + "8z2 <po = (XQlo. 

(3.4) 
It is clear, at the same time, that Eq. (3.2) is satis

fied also by the function 

( k'p 2 ) 
fl' (r) = ei(ko+k'l•rp0 y + 2 si: 8 , z , ( c )''• po=- ' ell 

(3.5) 

with arbitrary k'. Thus, we encounter here the case of 
degeneracy characteristic of a superconductor of the 
second kind below the field Hc2.r 141 Because of that, in 

II 

II 

. I ~ I y I >.spec ,cliff 

1.1 

I 

0,6 

I +z, I 
0.365 0.330 

1.0 0.6 0.290 0.269 
1,0 0.6 -0.1 0.294 0.267 

an oblique magnetic field (8 * 0), unlike the case of par
allel orientation (8 = 0), the superconducting surface 
layer will have a vortical structure, similar to the 
Abrikosov vortical lattice. If the angle of inclination of 
the magnetic field tends to zero, the period of the cor
responding vortical lattice greatly exceeds the period 
of the Abrikosov structure in the field Hc2 •4 > 

In the general case we should seek the solution for 
the ordering parameter in the form of a superposition 
of solutions of the type (3.5) 

Ll(r)= n~:nexp{i( ko+ 2:n )x }rpo(Y+nb,z), (3.6) 

where the quantities a and b, which play the role of 
periods of the vortical structure along the axis x and y, 
are connected by virtue of (3.5) by the relation (cl>0 

= tic/2e-magnetic-flux quantum) 

ab sin 8 = npo2 = <l>o I H, 

which expresses the condition of quantization of the 
magnetic flux per cell. 

(3.7) 

According to Abrikosov, r 141 the coefficients Cn 
should satisfy the periodic condition Cnw = Cn, where 
11 is a certain integer. The value of 11 determines 
whether the vortex lattice is quadratic or rectangular 
( 11 = 1), triangular ( 11 = 2), etc. As is well known, in 
the case of volume superconductivity, the minimum free 
energy corresponds to a triangular lattice, but the dif
ference in the energy between the quadratic and the tri
angular lattices is very small (see r 91). For this rea
son, intending only to estimate the magnitude of the pe
riod, we shall consider the case 11 = 1, corresponding 
to a rectangular lattice. The ratio of the periods alb 
should then be obtained by minimizing the free energy 
as a function of this ratio. 

When v = 1 all the coefficients Cn are equal: Cn 
=C. To determine C it is necessary to take into ac
count the nonlinear term {31 ~ 12 ~ in the Ginzburg
Landau equation (3.2). Writing ~ in the form ~ = C~0 
+ ~ 11 where ~1 -- 0 as H-- Hc3 and ~0 is given by 

flo(r) = n~:xp{i ( k0 + 2:n )x }rpo(Y + nb, z), (3.8) 

we obtain the following equation for ~1: 

___!_. [i !__ -1- 2eHo (z cos 8 - y sin 8) J' Ll1 - __!_ ( 0°2 + 0°2 
) Ll1- all1 

2m fJx c 2m y' z' 
2eHo 

= -f1C3 I floi 2Llo + eC me (z cos 8- Y sin 8) 

[ fJ 2eHo J X i--+--(zcos8-ysin8) flo. 
fJx c 

(3.9) 

4) After this article was written, we learned that similar ideas are 
contained also in the paper by V. R. Karasik and A. I. Rusinov [16]. 

Their method, however, does not make it possible to find the period 
of the corresponding vorticallattice. We take the opportunity to thank 
V. R. Karasik for reporting his results prior to publication. 
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Here H0 = Hc3 (8) is the critical field, H is the ex
ternal field (H- Ho), which we shall represent in the 
form H = (1- E)H0 with E- 0. Equation (3.9) is valid 
when K » 1 (K-Ginzburg-Landau parameter), when the 
variation of the field due to the superconducting cur
rents can be disregarded compared with the monotonic 
shift of the field H0 - H (see [ 171 ) (we note, however, 
that qualitatively all the obtained results remain valid 
also when K ~ 1; on the other hand, the case K « 1 is 
of no interest for the theory of surface superconductiv
ity). 

Writing down the condition for the orthogonality of 
the right side of (3.9) to the solution of the correspond
ing homogeneous equation, we obtain the following ex
pression for C: 

e s I [i ~ + 2eHo (z cos e- y sin (j)] tl.ol 2 dr cz= _a_x ____ c _________________ __ (3.10) 
m~~ lllol'dr 

In the derivation of (3.10) we have used the relation 

S • [ {) 2eH0 J do i--+-(zcos(J-ysin9) Llodr=O, 
ox c 

(3.11) 

which expresses the conditions for the vanishing of the 
total current in the surface layer at H = H0 • This rela
tion can be obtained by a method which is perfectly 
analogous to that used in l 171 in the derivation of (11). 

Let us proceed to calculate the free energy. At a 
given value of the external field H, the quantity 

G=F-HBV 
4n 

(B = H -induction) should be a minimum, with F given 
by [4] 

F =) dr{ -alill'++~llll'+2~ I( iV + Zce A) Ll 12 + H~;r)}, 
(3.12) 

from which we obtain, with allowance for the Ginzburg
Landau equation 

S { 1. 1 H'} G = dr --~~llll'+-- (H(r)-H) 2 --- • 
? 8n 8n 

(3.13) 

When K » 1, the condition for minimization of this 
quantity can be represented in the form 

where 

l1 = S I [i~~ + Ze~o (z cos 9- y sin 8) J tl.o I' dr, 

1, = S lllol'dr. 

(3.14) 

(3.15) 

(3.16) 

Calculating 11 and I2 with the aid of the expansion 
(3.8) we get 

1 00 000000 

l,=bLxLy ~ ~ SauS dzcpo(Y,z)cp0 (y+mb,z) 
m=-oo n=-oo -co 0 

X <po(Y + nb, z)cpo(Y.+ (n- m)b, z), (3.18) 

where Lx and Ly are the dimensions of the sample in 

the directions of x and y. The first quantity (I1) de
pends on b only like 1 lb, and the integral in (3 .17) is 
a certain constant. The dependence of I2 (b) is some
what more complicated. To calculate the integral I2 , 

we need the exact functions cp0 (y, z), the determination 
of which is not a simple problem even when ()- 0 (see 
l 8 • 151 ) • However, in estimating the quantity b, it is 
sufficient to know only certain general properties of the 
functions cp0 (y, z), which can be established without dif
ficulty on the basis of an analysis of Eq. (3.4). As seen 
from this equation, cp0 (y, z) tends to zero as y, z- oo, 
and the characteristic interval in which these functions 
are essentially different from zero amounts to 

Llz ~ ~ Lly ~ Po , (3.19) 
1cos 0 ' 1sin U 

with cp0 (y, z) decreasing exponentially outside this in
terval. 

Returning to the calculation of the function I2 (b), we 
see that when b « 6.y the number of terms which must 
be taken into account in the sum (3.18) is of the order of 
tJ..m ~ 6.y lb, 6.n ~ y lb, and the sum itself has an order 
of magnitude (6.y /b)2 ( cp0 is assumed to be normalized 
to unity). In this case the ratio I2 (b) /l~(b) behaves like 
1/b. If, to the contrary, b » 6.y, then only one term 
m = n = 0 remains out of the entire sum, as a result of 
which we get I2 (b)/l~(b) ~b. Thus, the ratio I2 /l~ in
crease both with decreasing and with increasing b 
(b « 6.y and b » 6.y). It is therefore clear that it should 
have a minimum (and the quantity (3.14) a maximum) at 
a certain value b = b0 ~ 6.y ~ p0 / ..J sin e . From this we 
conclude on the basis of (3. 7) that a is also of the order 
of p0 /..Jsin (). Thus, when ()- 0 we get an Abrikosov 
structure with a period that increases asymptotically 
like 

a~ b ~ P.."._~ s(T~. 
18 1B 

(3.20) 

To illustrate the foregoing, let us consider a very 
simple example, when it is possible to calculate (ap
proximately) the function cp0 (y, z). To this end we use 
the already mentioned remark of Abrikosov (see Sec. 2), 
and seek the solution of (3.4) by a variational method, 
choosing the trial functions in the form (compare with 
[B, 151): 

(3.21) 

Minimizing the "energy" 0! relative to ko, Y0 , z0 , 

we arrive at the following values of these parameters: 

ko = _!_ ( 2y cos 9 )"', 
Po n 

Po 
Yo = ----=:::::=: , 

12 sine 
( v )''' zo =Po -- , (3.22) 
2cos 0 

which is in agreement with (3.19); y is the ratio 
Hc3 (() = 0)/Hc2 , and in the considered approximation 
y = (1-2/7r)-1 12 = 1.66. In the same approximation, the 
value of the derivative {3 = Hc3(dHc3 /dB)e=o turns out to 
be {3 = -y = -1.66. For comparison we indicate that an 
exact value of these quantities amounts to y 0 = 1.69[ 71 

and {30 = -1.35.l 81 

Calculating the integral I2 with the functions (3.21) 
and substituting in (3.14), we arrive at the condition 

xf(x) =min, x = b I Yo, (3.23) 
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j(x) = ~ e-n'x'/2, (3.24) 

which coincide with that obtained by Abrikosov for su
perconductors of the second kind. [ 14 l The minimum of 
(3.23) is reached at the point x = ili, from which we 
get, with allowance for (3. 7), 

a= b = Po(n/ sin 8) •:,, (3.25) 

i.e., in the approximation under consideration the lat
tice is quadratic, which is not surprising, since the 
trial functions cp0 employed by us coincide with the ex
act solutions of the Ginzburg-Landau equation at 
H ~ Hc2·[ 14l 

The character of the vortical state in the surface 
layer can be clarified by investigating the distribution 
of the superconducting current near the surface. Sub
stituting the functions (3.21) in formula (3.8) and calcu
lating the current j, we obtain (compare with [ 14 J ): 

[ 2e ( 2z cos 8 ) e {) J 
j x = const · - ko - ~~ I "-o I' - -- - I "-o I' , 

m po2 m oy 

(3.26) 

In view of the relation (3.11) (or formulas (3.22)), 
the first term in the expression for jx vanishes in the 
integration with respect to z. From this we get that 
"in the mean" the distribution of the current has the 
same form as in the Abrikosov lattice. [ 14 J Since the 
periods of the structure (3.8) are much larger than the 
thickness of the superconducting layer when 8 --. 0 (oz 
~ p0 ~ 0, such an average distribution characterizes to 
some degree also the distribution of the current as a 
whole. 

Thus, as shown by the foregoing investigation, an 
Abrikosov structure with a large period: a ~b ~ U/8 
» Ht) is produced at small inclination angles (8--. 0) 
(see Fig. 2). Unlike the usual Abrikosov lattice, the ori
entation of which in space (in the plane perpendicular to 
the applied field) is not distinguished in any way, in this 
case the directions of the axis are fixed by the projec
tion of the external field Hy· 

The existence of a periodic structure of a supercon
ducting surface layer in an inclined field leads to a 
large number of qualitative effects, one of which can be 
the possibility of observing the so-called "resistive" 
effects under conditions of surface superconductivity 
(Hc2 < H < Hc3 (8)), connected with the dissipative mo
tion of the vortices under the influence of the current 
flowing parallel to the surface, analogous to the resis
tive effects in the mixed states of superconductors of 
the second kind. [ 18' 19 J 

In conclusion let us stop to discuss the singularities 
of the vortical state of a superconducting surface layer 
in thin films. As shown in the author's earlier paper[ 17 J 

(see also the analogous paper[ 20 J ), in this case, even in 
the case of parallel orientation of the magnetic field 
(8 = 0), in not too thin films (d :G 0, the interference of 
the superconducting currents near two film surfaces 
leads to the occurrence of a one-dimensional structure 
of the field in a film with a period (along the x axis) of 
the order of ~x1 ~ ~. If we now incline the magnetic 
field relative to the surface of the film then, as shown 
earlier, periodicity appears with a period ~x2 ~ V 18. 

FIG. 2 

The multiplicity of the degeneracy of the solution in the 
case of the film doubles compared with (3.8), so that 
now ~ has the form (here z is reckoned from the cen
ter of the film): 

L\(r) = c,.<';(,c, lj, z) + C,!'..(x, -y, --z), (3.27) 

and considerations analogous to those given in [ 17 J show 
that I C11 = I C21. It is clear that in this case a "compe
tition" will occur between the two periods ~x1 and ~x2 , 

and inasmuch as ~x1 does not depend on 8, while ~~ 
is an essential function of the angle 8, there occur val
ues of the angle at which ~x2 is a multiple of ~xl" As 
a result, different characteristics of the films (for ex
ample, their magnetic moments) will oscillate with var
iation of the angle at small values of the angle. A de
tailed calculation of this effect, as well as a detailed 
study of the vortical lattices in the superconducting lay
er, is beyond the scope of the present article and will 
be published later. 

In conclusion, I take the opportunity to thank A. A. 
Abrikosov for a discussion of the given work and a num
ber of useful remarks. I am also grateful to A. A. Mo
tornaya for the numerical calculations connected with 
the first part of the work. 
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