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We consider the rate of nuclear-spin relaxation for superconductors having dimensions l << ~ 0 , where 
~ o is the correlation parameter. We show that the deviation from the expression for a bulky supercon
ductor occurs only when the spin-orbit interaction of the electrons with the lattice inhomogeneities is 
taken into account; in spite of the weakness of this interaction, it can strongly change the relaxation 
rate in the case of sufficiently small l, so that the ratio of the relaxation rate for the superconductor 
and of the normal metal goes over into the corresponding expression for the ultrasonic-wave absorp
tion. 

Q NE of the first experiments confirming the coher
ence of the electronic states in superconductors, as pre
dicted by the theory of Bardeen, Cooper, and Schrieffer, 
was the measurement by Hebel and Slichter(ll of the 
nuclear-spin relaxation. Using the concept of quasipar
ticle states, they have shown that the theory leads to a 
qualitative agreement with experiment. On the other 
hand, the quantitative discrepancies were subsequently 
attributed to the real anisotropy of metals. 

It would be of interest, however, to see how the re
sult is affected by the smallness of the samples used in 
the experiments, since the damping of the excitations 
becomes larger than the excitation energy when the 
dimensions are smaller than ~o- v/Tc- 10-4 em, and 
the notion of quasiparticle particle states becomes 
meaningless. As will be shown below the result changes 
only when account is taken of the spin-orbit interaction 
with the inhomogeneities of the lattice. However, in spite 
of the weakness of this interaction, allowance for it can 
greatly alter the relaxation time in the case of suffi
ciently small samples. 

We shall calculate the probability of nuclear-spin 
transition as a result of interaction with the electronic 
system, described by the Hamiltonian 

8n ~ 
H = aY•Yn1(1Jl+(O)o'¢(0) ). 

For simplicity we consider here one nuclear spin situa
ted at the origin of the coordinate system; Yn• I, Ye, a
respectively the gyromagnetic coefficient and the spin 
operators of the nucleus and of the electron. The total 
nuclear-spin transition probabilities obtained by sum
ming the square of the modulus of the matrix of the 
Hamiltonian of the interaction between the initial (a) and 
final (b) states of the nucleus and the electronic system 
over all the final states and averaged in the sense of 
Gibbs over all the initial states of the electronic sys
tem, with allowance of the conservation of the energy in 
the transition. 

We have 

ub 

(1) 
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xo-change of nuclear-spin energy in the transition. 
It can be shown (see, for example,£2 J, p. 205) that to 

calculate the probability of the transition (1) it is suffi
cient to know the two-particle Matsubara Green's func
tion for pairwise-coinciding "temporal" arguments. 
This connection is given by 

Im .JC"(Xo) 
W=-----

e--Xn:T_f ' 
(2) 

where .YcR-analytic continuation of the function 

from the discrete point ix = i · 27TnT from the upper half 
plane to the real axis; Kr~ (p+, p_; w+, w_)-Fourier 
component of the function 

Ki~ (x- y, y- z) = <T {ljl>.(x) (.p+(y)ci.p (Y) ).p.(z) }). 

In the absence of lattice inhomogeneities, K11 > can be 
readily determined by expanding the T-product in ac
cordance with the weak theorem for superconductors: 

K[~ = tn" {!S~~(P+)®~(p:..)+ F!:'!(P+),7!,"!_(P-)}. 

Allowance for the lattice inhomogeneities leads to 
the need for solving the integral equations obtained by 
using the technique of averaging over the inhomogeneity 
positions, developed by Abrikosov and Gor'kov£2 l. These 
equations were derived in£3 J and have the following form 

L("(P+, P-) = (2.~)" ~ dp{(p, p') {[!S(p+')!S(p-')+ F (P+') .7 (p-')] 

X [.;+ L(1l(p+', P-1 ) l +[IS (P+') F (p-') 

+ .f'(p/)®(p-')]IP>(p+', P-')} J(p',p), 

- ®(P+')®(p-')]L(2l(p+'• P---')} j"(p', p). 

k k I 1 k I k 
P+ = p + 2' P- = p-2, P+ = p + 2, P- = p- 2. 

Here £(i)(p+, p_) are defined by the relations 
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where :K<2 >(p,, p_) are the Fourier components of the 
function 

K,~~~ (x- y, y -- z) = (T {~l>.(x) {'<jJ+(y)~lj>(y)} (IJ>(z)I)r,}), 

Here & and .'Tare the Green's function of the supercon
ducting alloy, and s(p, p') is the amplitude of scattering 
by the lattice inhomogeneities with allowance for the 
spin-orbit interaction: 

/a(1 (p, p') = a(p, p') Oa~ -1- ib (p, p') ([pp'] Ua~) -~. 
Po 

The quantity of interest, K< 1 >(p,, p_), is connected 
with L< 1 > and L<2 > as follows: 

K1"(P+• P-) = [®(p+)&(p-) -1- J(P+)ff'(p_)}[.;,-1-fP>(p+, P-)J (5) 
-1- [®(p+).f'(p_) -1- .F(p+)®(p_)]L<21(p+, P-). 

We are interested in the solution of (4) for the case 
l <K ~a, lso >> ~a, where Zso-mean free path due only to 
the spin-orbit interaction. Representing f.(i) in the form 

A ' A _ A 1 
L(il = L,I'Ja -1- L )'i (pa) p-

[Jo2 

and substituting in (4), we obtain, under our assumptions 
concerning l and ls 0 , a system of linear equations for 
L (i) and L(i); their solution is of the form 

0 p 

L~0 = L~:b + L~~{, 

L~:~ = 2To(fw+' + 12 ~ l<<>-2 + 1') ( 1 + :;;;;;-/~~'~:~~-+~2 J 
L,<~~ = _ ___ i(w+ + W-) _ _ ___ _ 

' 2To(iw+2 -I-L'12 -j-y',,,__z+i1')Yw+'+t1'y'w_'-j-L'1' ' 
(i) 4 (i) ------

L,_, =- -.-La,o (y'w+' + 1'1' + y'w_2 -1- [12)-1 
.iT! 

' 1,i) To (i) T,-1= T 1- T-o 1 /~ p =:: ~ (-;~- rrr,(), 

_ nmpo \ .., , -1 nmpo \ . 
To 1 =- Ia I" dQ, To = ------ Ia I' sm2 e dQ 

(2n)' · 2(2rr)' · 

The obtained expressions for L (i) must now be substitu
ted in (5), after which, with the aid of (3) and a subse
quent analytic continuation using (2), we obtain the 
quantity of interest to us. 

Let us consider first the contribution made to (3) by 
the term 

f®(,o+J&(p_) + 9-"(p+).'T(p-JJa. 

It is obvious that this expression does not depend on 
effects that are characteristic of alloys, for following 
integration over the momenta it contains Green's func
tions with coinciding spatial arguments, and therefore[2 J 

they are equal to the corresponding functions of the 
pure superconductor. For this reason, expression (6) 
yields, after performance of the indicated program, the 
transition probability in the pure superconductor, equal 
to [lJ 

w"'' = R_aa (Pofrl)_'_ r ~<u_!w ( w -1- Xo) -1- 1'1 2] rp ( w)[1 - rp ( w + Xo)]_ 

ot3 ' l 1w2 - L'l'Y(w + Xo) 2 - 1'12 ' 
~ (7) 

rp(<•') = (e'"T-j-1)-1. 

Let us calculate now the contribution made to the 
transition probability by the quantities L(i) . Integrating 

a,1 
over the momenta, we obtain for the corresponding con-

tribution to (3) 

where 

1'1' -- "'+ (w+- X)+ v~ V-(w.- X)'- 1'1' 

( V (w+-x)' + 1'1' + V "'+'+ 1'1')' V "'+' -+- 1'1' V (w+-:___ X)'' ;\' 

After algebraic transformation, this equation can be re
written in the form 

R(w+, x) = x-'[ -1 + ""' + "'+("'+- x) --- l 
Yw+' + ""'l'(w+- xJZ + ""'J 

For analytic continuation with respect to the variable 
X 1 >, it is convenient to change from summation to inte
gration by means of the formula 

2T ~R(w+,X)= _i_ I R(w,x)tg~dw. (8) 
2n J 2T 

w+ c+ +c-

(The contours C' and c-are shown in the figure.) By 
making the substitution w - x = -u we can verify that 
the integrals over the contours c•<ZJ and c-<ZJ are 
respectively equal to the integrals over the contours 
c-(1 ) and C'( 1 )' i.e.' 

T~R(w+,x)=~ ~ R(w,x)tg_(!)_duJ. (9) 
2n • 2T w+ c+(i)+C-(1) 

In (7) we can already go over to Xo = ix and, taking into 
account the signs of the imaginary parts of the roots, 
we obtain for the imaginary part of the analytic continua
tion 

X [ th _(!)__ - th "' + X_'_'_ J dw 
2T 2T . 

Substituting (10) in (2) we get 

wl11 = :~aa (pom ) 2 r [w ( w -1- Xo)- 1'12] rp ( w )[1 - rp( w -1- Xo)] dw (11) 

3ot'roT1)(o2 " Yw 2 - L'12 T(w + Xo) 2 - 1'1 2 

Repeat.ing a similar procedure, we can verify that L(i)o 
and L(1) make no contribution to the probability of ufe' 

p 

c•<O I c•<zJ 

11., 

Integration contours for (8). The choice of the 
signs of the imaginary parts of the roots v' ~ 2 -w2 

and v' ~ 2 -(w-ix)2 on the cuts is indicated. 

l) More details concerning the analytic continuation of similar 
quantities are given in [ 2 ], p. 412. 
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transition, since after the analytic continuation the 
imaginary part of ;'/C~,o and .1i'~ turn out to be equal to 
zero. Thus, the total transition probability is equal to 

w = w<0) + w('). (12) 

Going over to a consideration of the obtained results 
we note, first that owing to the smallness of Xo (Zeema~ 
energy) w< 0 > and w< 1 > actually diverge, the former like 
ln Xo and the latter like xa2 • It is obvious that this diver
gence can be eliminated by taking into account the real 
anisotropy of the metals. However, since the metal be
comes isotropic with decreasing mean free path, we can 
expect for sufficiently small samples of sufficiently 
heavy metals (in which the spin-orbit interaction is not 
vanishingly small) that the second term in (12) will pre
vail over the first, and we obtain for the ratio of the 
transition probabilities in the superconductor and in the 
normal metal 

wV) 2 
w<n) = eA/T + 1 ' (13) 

which agrees with the corresponding expression for the 
damping of the ultrasonic waves in the superconductors. 
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