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We use the kinetic equation (1) to consider the relaxation of a quantum harmonic oscillator to the 
thermodynamic equilibrium state. We use the method of generating functions to solve this equation. 
We consider a number of exact solutions for different boundary conditions. For large quantum numbers 
Eq. (1) is transformed into the Fokker-Planck equation and the Green function for that equation is found. 
We show how to apply the results to the problem of the statistics of photocounts. We generalize the 
kinetic equation (1) to the case when the oscillator is acted upon by an external classical force f(t) 
which is an arbitrary function of the time. We briefly consider ways to describe the evolution of the 
oscillator (characteristic functions, quasi-probability distributions in the a-plane) which are applicable 
when the force f(t) is present and we obtain the equation of motion for the relevant quantities. The par­
tial solutions for the density matrix p obtained in the present paper are given in a table. We discuss 
the so-called "harmonic oscillator paradox." 

1. INTRODUCTION 

THERE is at the moment going on an intense discussion 
of the problems of the quantum theory of a laser[1- 41 

and of the photostatistics of laser light. [S-BJ In most 
papers one uses a single-mode model of a laser leading 
to a consideration of a quantum oscillator interacting 
with an active medium. Owing to the complexity of the 
equations occurring in the theory their solution is found 
for a limited number of cases, mainly stationary 
cases. [11 It is therefore of interest to analyze the sim­
ple linear problem of the evolution of a quantum oscilla­
tor interacting with a dissipative medium. This problem 
is also of independent interest since it is the simplest 
model describing the statistical properties of coherent 
light propagating in a weakly absorbing medium 
(see[10-- 131 in this connection). The problem considered 
is important also because it belongs to the very small 
number of problems in non-equilibrium quantum statis­
tical mechanics which can be solved exactly. Some re­
sults about the Brownian motion of a quantum oscillator 
were obtained by Schwinger. [l4J 

The present paper is devoted to describing the re­
laxation of a quantum oscillator using the following 
equation fo1· its density matrix p: 

dp I dt = --'i,,v[ (Y + 1) (a+ap -2apa+ + pa+a) 
+ v(aa+p- 2a+pa +:paa+)]. 

(1) 

Here y is the damping constant of the oscillator (see (7) 
and (9) below), v the average number of quanta for the 
oscillator when it is in a state of thermodynamic 
equilibrium: 

"=;I (I - s) = (e~w/hT- 1)-1, ~ = e-~6>/kT (2) 

(in optics v « 1), and a and a+ the usual annihilation 
and creation operators for the vibrational quanta. The 
kinetic equation (1) is essentially already contained in 
Landau's well known paper[151 (for the case v = 0) and 
can also be obtained from the general theory of the re­
laxation of quantum systems. [12 ' 161 This equation was 
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written down in its clearest form in the paper by 
Shen [131 for a field oscillator interacting with a two­
level system of atoms. A simple derivation of Eq. (1) 
with the advantage of an obvious transition to the classi­
cal limit is given in[171 • It is important that the opera­
tors in (1) refer only to the oscillator; the interaction 
with the thermostat is taken into account phenomeno­
logically using the constants y and v. We note also that 
Eq. (1) can describe not only damping but also the linear 
build-up of the vibrations of the oscillator (in a medium 
with a negative temperature). For this it is necessary 
to change the sign of y and to assume that v < -1. 

To solve the kinetic equation (1) we use in the pres­
ent paper the method of generating functions (Sec. 2). 
Several concrete examples are discussed in Sees. 3, 4, 
6, and 7. In particular, we give in Sec. 8 a solution of 
the well-known harmonic oscillator paradox. [1B-22 l We 
note also that the results obtained here have a direct 
relevance to problems of the statistics of photocounts 
(see Sec. 5). 

2. METHOD OF GENERATING FUNCTIONS 

Changing in (1) to the occupation number representa­
tion and introducing the variable T = yt, we get 

dpmn I dr: = (v + 1)l' (m + 1) (n + i)Pm+t, n+t 
-- [ (m -j- n) (v + 1/d + v]Pmn + vl'mnpm-1, n-1. 

(3) 

We shall call the set of elements Pmn with a fixed value 
of the difference m- n = k the "k-th diagonal" of the 
matrix p (for k = 0 we get the level populations 
Wn = Pnn)· It is clear from (3) that the elements of the 
different diagonals evolve independently without mixing. 
This property is characteristic for a harmonic oscilla­
tor when there is no exter~al field f(t) and is connected 
with the fact that Pmn"' e1(m-n)wt. To solve Eqs. (3) 
we apply the method of generating functions. 

Let, for instance, k> 0. We form the function 

"" [ (n+k)! ]''• Gk(z,r:)= ~ ~- Pn+k,n(r:)zn, (4) 
n=O' • • 
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where z is an auxiliary variable. Multiplying (3) by zn 
and summing over n from 0 to oo we get an equation for 
~(z, T): 

ac. { ac. } k -=(1-z) (1+v(1-z))--v(k+1)Gk --G". 
~ ~ 2 

(5) 

It is important that (5) is a first-order equation and we 
can thus solve it in the general form: 

G,(z, -r)= pk/2(1 + qv~)-k-IJ.(1--p-~-). (6) 
1 + qv~ 

Here fk(z) = ~(z, 0) is a function determined by the 
boundary conditions; {; = 1- z and we have introduced 
the notation 

p = e-•, q = 1 - e-< (7) 

Finding the matrix elements Pmn(T) leads in accord­
ance with (4) to expanding (6) in a Taylor series. This 
will be illustrated in Sec. 3 by a number of examples. 
Here we consider some general properties of the evolu­
tion of Pmn(T) following from (6). 

1) When z = 1 we have from (6) 

((a+)'ar+k), = Sp {p(-r) (a+)rar+k} = -yk! arG.(z, -r) I 
azr Z=i 

(8) 

In particular, we have for r = 0 

(9) 

(independent of the temperature of the thermostat). 
2) We can express the average value n and the dis­

persion .:ln2 in terms of the generating function G0 (z, T): 

_ ii(-r) = Go'I,~I = iiop + vq (iio = n(O)), (lOa) 
11n2 ('r) =Go"- (Go')2 + Go'I,~I =~L1nc2P2 + (2v + 1) (ii - v)pq 

-t- v(v + 1) (1- P2). (lOb) 

We emphasize that Eqs. (10) are true for any initial 
distribution Wn(O). The peculiar point about an oscilla­
tor is that the evolution of n(T) and .:ln2 (T) to the values 
corresponding to the thermal distribution (v and v2 + v, 
respectively) are completely determined by no and .:ln~ 
and are independent of the higher-order moments of the 
initial distribution. Weberl231 had earlier obtained Eq. 
(lOa) for n(T) (see alsol12- 14l ). 

3) Putting z = 0 in (6) we get the following simple 
formula for the occupation of the ground state level: 

Wo(-r)=--1-to( (1+v)q \. 
1 + qv 1 + qv / 

(11) 

As T-oo wo(T) approaches asymptotically the value 
Wo(00 ) = (1 + vr1 corresponding to the Planck distribution. 

4) Expanding (6) when p - 0 we get equations des­
cribing the approach of the occupations Wn to the 
thermal distribution: 

Wn('t) = (1- s)£"{1 + anp + bnp2 + ... }, 't-+ oo, (12) 

where 
an= (n-v)(iio-v)/v(v+ 1), 

bn = [(n -v) (n- 3v-1)-v(v + 1)][~no2 -v(v + 1) (13) 
+ (iio-v)(ii0 -3v-1)] [4v'(v+1)']-'. 

If no..= v the difference On= lwn(T)- wn(oo)l decreases 
as p = e- 7 ; when no = v, but~..= v(v + 1) we will have 
On ~ e-27, and so on. The larger the number of the 
early moments of the initial distribution wn(O), which 

are the same as the corresponding moments of the 
Planck distribution, the faster the oscillator approaches 
equilibrium. It can be seen from (6) that the off­
diagonal elements Pmn are damped like 
~exp{-%1m- niT}. 

Equation (12) does not refer to the case of zero tem­
perature of the medium (v = 0). In that case 

(14) 

where the n!kJ are the so-called factorial momentsl6l of 
the initial distribution: 

lkl ~ n! 
no = L.J Wn (0) = (a+kah) I •~o. (14a) 

n~h(n-k)! 

3. SOLUTIONS FOR PARTICULAR CASES 

We now turn to concrete examples. 
1. When T = 0 the oscillator is in a state of thermo­

dynamic equilibrium with a temperature To different 
from the temperature of the thermostat T: 

Pmn(O) = {1-soHo"6mn, so=exp(-liw/kTo). (15) 

We note that for the Planck distribution we have 
00 1 s j0 (z)=~w,.z"=~~ (v=--, ~=1-z). (16) 

n~o 1 + v~ 1- S 

Using (6) we find Go(z, T) = (1 + (pvo + qv) sr1 and hence 
it follows that the distribution Wn(T) at any time remains 
a Planck distribution but the temperature of the oscilla­
tor changes from To toT in accordance with Eq. (lOa): 
n( T) = pvo + qv. This result was obtained by 
Schwinger. l141 

2. The initial state is the coherent state Ia): 

p(O)= Ia) (al, lu) = cxp( _J.<1:_) ~ ~In), (17) 
2 n~o )In! 

where a is some complex number (seel5- 71 for details 
of the properties of the state I a)). We first consider the 
evolution of the populations wn(T). When k = 0 Eq. (6) 
gives 

1 ( pial'~ ) Go(z,-r)=---exp - . 
1 + qvl;, 1 + qv~ (18) 

Using the expression for the generating function for the 
Laguerre polynomials (see Eq. (8.975.1) inl241 ) we find 

Wn(-r)=~-1 -f~IJ-"_)"exp(-~\L (- plul' ) (19) 
1+qv\1+qv 1+qv / n qv(1+qv) . 

This equation simplifies for v = 0: 

(pI a I') n (20) 
Wn(-r; v = 0) = exp(-p lal 2) • 

n! 

When v > 0 the distribution of the populations Wn is no 
longer a Poisson one (fort> 0). We note that Eq. (19) 
refers also to the case when the initial state is a super­
position of coherent states Ia) with random phases: 

1 r lal'" p(O) =- J d<pllalei~) (lalei~l, Pmn(O)= e-lai'-·-.Smn· (21) 
2n 0 n! 

3. Let the oscillator at T = 0 be in anN-quantum 
state: Pmn(O) = omnONn· We have then 

fo(z) = zN, G (z -r) = 11 +;(qv- pg]N • = 1- z. (22) 
o, (1+qv1;)N+1, s 
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Hence we find 

(23) 

where P.\ n is a polynomial defined from the following 
equation:' 

(1-t+zt)' ~·= 
· = P, (z)tn 
(1-t)'+l n~o ,n . 

(24) 

One can prove that[l7 J 

min(N,n) 

PN,n (z) = F ( -N, -n, 1; z) = ~ CNkC,,"zk, (24a) 
k=O 

where C~ = n!/k!(n- k)! are the binomial coefficients. 
We can appreciably simplify Eq. (23) for the Wn at the 
time To when p = v/(v + 1) i.e., yt0 = :liw/kT (this is 
valid also when y· < 0, T < 0): 

This is the so-called Pascal distributionY5 J At that 
instant (yto = :liw/kT) the distribution of the quasi­
probabilities P(a) on the a-plane becomes a purely 
positive one from an alternating one (see Sec. 7). 

(25) 

We first consider the case v = 0. From (22) we find 

Go(z, 't) = (pz + q)N, Wn('t) = C:vnpnqN-n, (26) 

i.e., wn is a binomial distribution. This distribution 
arises also in the problem of the radioactive decay of 
N atoms each of which decays independently of the others 
with a lifetime y-1• The role of the atoms is here played 
by the different excitation quanta :li w and the indepen­
dEmce of their decay is connected with the linearity of 
the damping. 

In the most interesting case N » 1, Eq. (26) becomes 
inconvenient. We can easily obtain for that case approxi­
mate formulae describing the change in wn(T) over the 
whole interval (0 :s T < oo): 

,_,(T) =e-NT(N,;)k/k! when0~,;~1. k=N-n=0,1,2, ... ; 

(27a) 

w,(T) = ~~ - 1--exp{ _l"_=Np)'} when _i_~T~ InN; (27b) 
Y2rc\"pq '2,,\"pq ,\" 

u,('t) =e-'.1'(1\"p)"/n! when .YpS::I. (27c) 

We note that (27b) leads to the Poisson distribution 
characteristic for a coherent state only when1 > p = e-Yt 
«:. 1; this approach is thus not uniform. In particular, 
the correlations Ll.m observed in experiments about 
photon counts (cf. Sec. 5) are not at all time-dependent 
(we are considering here a field oscillator of the light 
propagated in a linearly absorbing medium). If the ini­
tial state of the oscillator is anN-quantum one, we have 
(for v = 0) 

'l,,=~(a+)mam)-_(a+a)m =-1 + 1\'(~_-=-_1) ... (1Y-m+1) (2B) 
(a+a)"' ;ym 

(for all t). We note that in this case the sign of Ll.m is 
the opposite of what is obtained in the classical theory. 

1lThe dispersion for the distribution (27b) is equal toy'(Npq) rather 
than toy'(Np). 

4. Similarly we can study the more complicated 
case when the matrix Pmn(O) is not diagonal. Without 
giving the details of the calculations we present a few 
final formulae. 

By virtue of the linearity of Eq. (1) we can write the 
solution for an arbitrary initial condition in the form 

Ptm(<)= ~ G(l,m;l',m'l,;)p,.,,.(O), (29) 

where G is the analogue of the Green function for the 
discrete case: 

., , , 1 ( N! N'!)';, p"i2 

IJ(l,m; l ,mIT)= bt-m,l'-m'k"!\ ~ n'! (1 + qv)h+l 

( qv \n(q(1 + v) )"' (kl ( p ) . T+·q~-/ '. 1+qv Pn,n' q2v(v+1)- · (30) 

We have used here the notation 

k== 11-ml = 11'-m'l ;:;.0; n=miu(l,m), 
N=max(l,m), n'=min(l,m'), N'=max(l',m'). (31) 

The polynomial p(k), (z) is defined by the formula 
n,n 

mln{n, n') 

Pn~~-(z) == F(- n, -n', k +1; z) = ~ n! n'! k! _, 
-:1.,--! (-~~--~~ )-! (-,.:'.., --~-:-/-,) ,-( k-,· +---:-1-:) ! " • 

f=O 

(32) 

(fork= 0 these formulae go over into (23) and (24)). In 
principle, Eqs. (29) and (30) give us the possibility to 
find the time evolution of any density matrix Pmn(O). 
We note that Eq. (30) for the Green function is apprec­
iably simplified in the case v = 0: 

1 [ (m+s)l(n+s)l J'h G(m,n;m+s,n+sl't)=- · · p/nd-nl/2q', 
s! m! n! 

(30a) 

where s 2:: 0. 
As a particular case we consider the evolution of the 

coherent state Ia): 

Pn+k, n{'t) = Rn+k, n (ayP, qv) (k;:;. 0), 

where we have denoted the function 

(33) 

(34) 

by Rn+k n· These formulae take an especially simple 
form in the zero-temperature case (v = 0): 

, • ~m~•n 
Pmn('t)=e-~l·--=-, ~=~('t)=ae-T 2, (35) 

ym! n! 

i.e., the oscillator relaxes, remaining in a coherent 
state (cf. r13 J ). One can show (see the Appendix) that this 
is the only case when the state of the oscillator remains 
all the time a pure one during the relaxation process. 

When v "' 0 the interaction with the thermostat leads 
to the fact that the oscillator state ceases to be coherent 
fort> 0. For the case IIW » 1 we can obtain from 
(34a) the approximate formula (with avp = Reirp = {3, 11 
= qv « R2): 
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1 { [(m+n)/2-R']Z 
Pmn (1:) = ----~ exp i(m- n)QJ- '-'-----'---'-'----::-.. 

l'2rrN(1+2!l) 2N(1+2!l) 

_ (m- n);~1 + 2!1)}. (36) 

4. TRANSITION TO THE FOKKER-PLANCK EQUATION 

The exact formulae for Pmn(T) obtained earlier be­
come very unclear when m, n>> 1. Moreover, this is 
just the case of particular interest when the initial ex­
citation of the oscillator is large. We can then go over 
from the discrete set of equations to the differential 

· Fokker-Planck equation. When m = n, (3) becomes2 > 

dwn/ rJr: = (v + 1)[ (n + 1)wn+t- nwn]- v[ (n + 1)wn- nwn_,J, 

(37) 

We shall assume that n >> 1 and that Wn is a smooth 
function of n. We then get from (37) 
ow 1 o2 0 
-;;::- = --(Bw)-- (Aw); A= v- n, B = v + (2v + 1)n. (38) 
Vt 2 On2 On 

This equation has the form of a diffusion equation and 
describes the relaxation process with good accuracy, as 
can be seen from the following: evaluating in the usual 
way[26 l n(T) and ~n2(T), we find for them from (38) ex­
pressions which are the same as the exact Eqs. (10). 
However, the n-dependence of the coefficients A and B 
makes it difficult to find its solution. 3 > We shall there­
fore simplify further. 

Changing variables 

.'!:=in, V(x) = 2ynwn (V(x)dx = w(n)dn), (39) 

we change from the discrete Eq. (37) to the equation 

~=~ ozv -l-_!.__~(xV) (40) 
o,; 8 o:z:2 2 ox ' 

which is the same as the Fokker-Planck equation for the 
Brownian motion of a classical oscillator. [261 The 
Green function for (40) has the form 

1 { (:z:-p'/•:z:o)2} 
G(:z:,:z:o;'t)= exp - . 

l'rr(v + 1/z)q (v + 1/z)q 
(41) 

We note that (41) is a Gaussian distribution in lil rather 
than in n. The expressions for n and ~n2 following from 
(41) are the same as (10) only when nop » 1 + 211. We 
shall also restrict ourselves to that case. 

From (39) and (41) we are led to a formula for wn(T), 
which describes the relaxation of anN-quantum state 
(cf. (23)): 

1 { 2(y;:-yNp)2) 
w(n,N;'t')=· exp - f• 

"/2rrnq(1 + 2v) q(i + 2v) 
limw(n,N;'t')= 6(n-N). (42) 
t-+0 

The populations Wn(T) have a maximum at n = Np, near 
which Eq. (42) can be simplified: 

1 { (n-Np)2 } 
.w(n,N;,;)=· exp - . 

l'2nNpq(1+2v) 2Npq.(1+2v) 
(43) 

Let now 

2)Qne can consider the general case m * n by the same method. 
3lOne can solve Eq. (58) for 11 = 0 but even in that case the solution 

has a rather complicated form.[ 17] 

Wn(0)=--1 ---- ·exp{- (n-N)Z} (44) 
l'2rr1Va0" 2N ao2 ' 

where N » 1 + 211 and CJo ~ 1. From (44) and (43) it fol­
lows that the distribution wn(T) remains Gaussian also 
forT> 0: 

Wn.('t) = 1 ·exp{- (n- Np) 2
} Ot2 = p2ao2 + pq(1 + 2v). 

"/2rrNa12 2Nat2 

(44a) 
Figure 1 shows the time-dependence of at. This curve 
has a maximum when CJo < .../(11 + %). When CJo = 0, Eq. 
(44a) changes to (43). The coherent state Ia) (or the 
state (21)) corresponds toN= lal 2 , CJo = 1; then at 
= p(1 + 2q11). 

These formulae are valid under the conditions n( T) 
= Np » N112at » 1, which lead to the inequalities 

Np ~ 1 + 2v_, N[a02 + (1 + 2v),;) ~ 1. 

For anN-quantum state CJo = 0 and this gives t » t1 
= [Ny(1 + 211)]-1. The quantity t1 is the "mixing time" 
necessary to change the initial o -function distribution 
into a wide distribution to which the Fokker- Planck 
equation can be applied. The mixing time decreases 
with increasing excitation N and increasing temperature 
of the medium. 

5. APPLICATION TO THE STATISTICS OF PHOTO­
COUNTS 

The results obtained above can be used in problems 
in the statistics of photocounts in optical receivers. We 
consider the process of the detection of light that is co­
herent in first order. 4> The state of the field can then be 
considered to be one excited mode. [271 The relaxation 
of this mode when light passes through an absorbing 
medium situated in front of the detector or in it, is des­
cribed by Eq. (1). The probability for the emission of 
k photoelectrons is equal to (see[81 , Sec. 6.2): 

Wk = ~ Cnkl]k(f- lJ) n-kPnn, (45) 
n=k 

where 7) is the quantum efficiency (0 < 7J < 1) and Pnn 

FIG. l. Change in the quantity 
Ot =y(P + ~) <P (T, s) for the distribu­
tion ( 44) during relaxation. The 
dependence of <P(T, s) on p = e-T is 
given for the following values of 
the parameters= o0 /y(P + ~): 
Curve I: s = 0, curve 2: s = l/2, 
curve 3: s= 1, curve 4: s= 2. 

4)Coherence of first order means (according to Glauber[6 ]) that the 
correlation function <E(-)(r1 , t 1 )E(+)(r2 , t 2 ) >,which corresponds to 
the usual setup of photostatistical experiments (for instance, when one 
registers photoelectrons emitted over a time smaller than the coherence 
time of the field and with a cross-section less than the coherence cross­
section; for details see [ 9 ]), can be factorized. 
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is the diagonal element of the density matrix for the 
photon oscillator. This formula connects the quantities 
Pnn with the probabilities Wn which are directly meas­
ured experimentally. 

The transformation (45) can formally be considered 
to be an additional relaxation of the oscillator in a zero­
temperature medium. It follows from Eqs. (45) and (26) 
that wk = Pkk(t + to) where t is the moment the field ar­
rives at the photocathode, to follows from the condition 

1J = e-Yto and v changes discontinuously 

(. , -{"· O~t'~t v t )= 
0, t ~ t' ~ t + t0 · 

(46) 

We note in this connection that all results of Sees. 3 and 
4 remain valid also in the case where y and v vary in 
time, provided we make the change 

t 

p-~p(r)=e-', t= .\v(t')dt', 
0 

T 

q(v +c)-+ \ e--<r-r'lv(t')dt' + c(1- p) (47) 

(c is an arbitrary constant). This enables us to evaluate 
the probabilities wk directly, using the technique devel­
oped in Sec. 3. In particular, the passage of light through 
a linear absorbing medium at zero temperature does not 
change its coherence properties. If we form the factor­
ial moments of the photo counts [SJ 

nl"l=(n(n--1) ... (n-k+1)>=<(a+)kak) (48) 

the quantities ~k which are independent of the light in­
tensity: 

(49) 

then the absorption of the light will not influence the 
quantities ~k• as follows from the solution of the equa­
tions for the n[k] (cf. Eq. (28)). 

6. RELAXATION OF THE F-DIMENSIONAL OSCILLA­
TOR 

The Hamiltonian of an f-dimensional oscillator pos­
sesses a "latent'' symmetry (group SU(f)), which mani­
fests itself in the strong degeneracy of the excited 
levels. The energy and degree of degeneracy of the n-th 
level are equal to 

E ( f) • DUJ- S!!_±J-1)! (50) 
n=, n+z nw, n- n!(f- 1)! , 

Equation (1) for the evolution of the density matrix can 
be generalized in an obvious way: 

dp y { I . dt =- 2 ( v + 1) ~ (a('a;p- 2a;pa;+ + pa;+a;) 
i=i 

f 

+ v ~ (a;a;+p- 2a;+pa; + pa;a;+)}. (51) 
i=i 

We can define generating functions in analogy with (4). 
Restricting ourselves for the sake of simplicity to diag­
onal elements, we have 

G(z!, ... ,ZJ,I)•= ~ p"•···n1 ,n, ... n 1(t)ztn' ... zln;. (52) 
n11 ••• ,n1=o 

The equation for G(z1, ... , Zf, t) is analogous to (5). Its 
solution has the form 

I 

G(z~o ... ,z1;t)={TI (1+qv\;;)-1} /(\;!', ... ,\;/), 
'i=i 

where 

\;/ = p\;; I (1 + qv\;;) (\;; = 1- z;), 

/(\,~, ... , ~t) =G(i-\;~o ... , 1-\;t;O). 

The population Wn of the n-th level is equal to 

Wn = ~ Pn 1 ••• n f n 1 ... ~ .. • 

n 1+ ... +n1=n 

(53) 

(54) 

Writing down the generating function Gf for the popula­
tions, we have from (52) and (54): 

G1(z,t)= ~ Wn(t)zn=G(z, ... z;t), 
n=O 

and by virtue of this we get from (53) 

G1(z,t)=(1+qv(;)-tg(-P_s_>;, 
1 + qv'(, 

where 

n=O 

(55) 

(56) 

To determine the evolution of the populations it is thus 
sufficient to know merely their initial distribution; one 
requires no more detailed information about the diag-
onal elements Pn n.., n n . 1 •.. --1' 1 . . • f 

For the particular case when wn(O) = onN we get 

whence 

[1+(qv-pg]", 
Gt(z,t)=-[i+qv\;]""+! --1, 

(f) 1 / __'l_"_)n (-q + qv )NPn(f,-Nl) ( p J Wn(t)=• Dn --,---c- - · 
(1+qv)l \1+qv 1+qv- q2v(i+v). 

(57) 

(the polynomials p~fNl) are defined in (32)). As T-oo, 

Eq. (57) changes to the Planck distribution for the 
f-dimensional oscillator: 

W =D(fl(1-t)ltn~ (n+/-1)! 1 It (58) 
n n s s n!(f- 1)! ( -~),n(n=0,1,2, ... ). 

Equations (10) for n(T) and ~n2 (T) change as follows: 

ii("t) = iiop + fqv, 

L\n'(-r) == L\no'P' + (2v + 1) (iio- fv)pq + fv (v + 1) (1 - p2 ). (59) 

7. OTHER WAYS OF DESCRIBING THE RELAXATION 

The interaction of the oscillator with the thermostat 
and radiation friction, which leads to spontaneous emis­
sion, has the nature of a random force. One easily gen­
eralizes (1) to the case when a classical (well-deter­
mined) force f(t), which arbitrarily depends on the time, 
is also acting upon the oscillator. The equation for p 
then takes the form 

iJp = -i[V, p]- .!._ {(v + 1) (a+ap- 2apa+ + pa+a) at 2 

+ v (aa+p- 2a+pa + paa+) }, (60) 
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where 

r = -f(t)x = -(2w)-'"{f'(t)e-irota + j(t)ei00 1a+}. 

Introducing into the discussion the quantity u(t) = (a) we 
find from (60) 

u(t) = u(O)e-Y1i2 + v(t), 

v(t)= i ~ j(t')exp[ _ _!_(t-t')+iwt'\dt'. 
l'2w 0 2 -

(61a) 

(61b) 

For the average values of the operators x and p we have 
hence the same expressions as for a classical oscillator 
with damping: 

(;(t)) = l'2 /w Re (u(t)e-i"'t), (p(t)) = l'2co Im (u(t)e-i"'1), 

which is a generalization of the Ehrenfest theorem for 
the case of a quantum system with dissipation. 

The term -i[V, p] in (60) leads to a mixing of the 
different diagonals in the matrix Pmn and as a result 
the generating function method is no longer applicable. 
We turn therefore to other representations for p. 

The density matrix p can be given not only through 
the matrix elements Pmn (occupation number represen­
tation) but also through characteristic functions and 
quasi-probability distributions. These representations 
for p turn out to be convenient for a number of prob­
lems. [4-6' 281 We give some formulae referring to this 
case. 

1. The characteristic functions (normal XN, ordinary 
xo, and antinormal XA) are determined as follows :r28 ' 29 l 

Then 

)(N('r]) = Sp(pe~•+e-~··). xo('r]) = Sp(pe~•+-~··). 

)(A('IJ) = Sp(pe-~··e~•+). 

f
o forK= N 

XK('r])=exp(-OK\'IJ\2)XN('IJ), OK= 1/ 2 forK=O 
_1 forK= A. 

(62) 

(63) 

The equation (60) for the functions XK has the same 
form, differing only in the values of the parameter aK: 

8XK·=-v[~'IJ; 8XK+(v+crK)\'IJ\"xK]- 2i XKRe[f(t)ei"1TJ'l (64) 
{}t 2 8'1]; l'2w 

(j = 1 ,2; 11 = 1/1 + i172). Its general solution has the form 

)(n('r], -r) = exp{'IJ~ •- 'l]•v- (v + crK) \'rJ \2q}xK(p'l"r], 0) (65) 

(v = v(t) is defined in (61b)). Louisell r31 already ob­
tained Eq. (65) for Xo but not from Eqs. (60) and (64), 
using instead a model of an oscillator with dampingr101 
through an approximate integration of the Heisenberg 
equations of motion for a(t). From this it follows that 
this model is equivalent to the kinetic Eq. (60). 

2. The quasi-probability distributions WK(O!) are 
connected with the characteristic functions XK(TI) through 
a Fourier transformation: 

WK(a)=~r X.K('IJ)exp{'IJ*a-'r]a•}d"'IJ. (66) 
n• .l 

Then WN(O!) is the same as the weight functions in the 
P-representation for the density matrix: 

p=~P(a)\a)(a\d"a, WN(a)==P(al,. (67) 

Furthermore, Wo(O!) = W(O!) is the Wigner function£3°1 
("density" in phase space) and, finally, WA(O!) = 7T-1Q(O!) 
where Q(O!) = (0! lp\0!) (seer61 for a similar discussion 
of the physical meaning of the functions W, P, and Q). 

The quasi-probability distributions WK(O!) satisfy the 
Fokker-Planck equation: 

8WK 8 1 {}2 
--= --(A;WK)+ (B;;WK); 

8t 8a; 2 8a; 8a; (68) 
A;= - 1f2ya; + h;, B;; = 1/2y(v + O"K)Il;;, 

a= a1 + ia, h = h1 + ihz = i(2w)-'''/(t)e'"'1. (68a) 

The solution of Eq. (68) has the form (cf. r41 ) 

WK(a,-r)= ~ d"a'WK(a',0)--1-exp{- \a- a'p'"- v(t) 12 } 

• nq(v+aK) q(v + crK) 
(69) 

We have given the solutions of Eqs. (60), (64), and 
(68) for various initial conditions. 

We make some remarks about the time evolution of 
the quasi-probabilities WK(Cl!, T). 

1) The complex amplitude in the 0!-plane undergoes 
damping proportional to p 112 and is shifted under the ac­
tion of the external field f(t) by the vector v(t) defined in 
(61b). This shift is equivalent to a unitary transforma­
tion on the density matrix p (seer171 ). Moreover, when 
v "'- 0 fluctuations increase when one takes the interac­
tion with the thermostat into account. 

2) As T - oo we have independently of the initial dis­
tribution 

_ 1 { \a-v(-r)\ 2 } 
WK(a,-r)=-(-~exp - . 

n v+ <JK) v +aK 
(70) 

3) For any distribution WK(Cl!, 0) the average (O!i) and 
the dispersion Dij = ((Cl!i- (O!i))(Cl!j- (O!j))) change as 
follows: 

(a;(-r)) = p'h(a;(O)) + v(1:), 

D;;(T) = pD;;(O) + 1/zq(v + crK)Il;;. 
(71) 

Here (0!1 + i0!2) is the same for all K and equal to 
Tr(pa) while the dispersions Dij are connected for dif­
ferent K through the relation 

If the initial distribution WK(Cl!, 0) is Gaussian it remains 
so during the relaxation and it is completely determined 
by Eqs. (71). For an isotropic Gaussian distribution 
(Dij co o ij) the matrix elements Pmn are determined by 
Eq. (34a). 

4) The N-quantum state is one of the most anti­
classical ones: in the P- and W- planes we have corre­
sponding to it an alternating distribution (the function 
Q(O!) is, of course, positive). The argument of the 
Laguerre polynomials LN(x) describing the relaxation 
of the N-quantum state is equal to (see under A in the 
table) 

(the form of the function FK(v, T) is given in Fig. 2). 
The function FN(T) has a minimum for p =-I[ (T = %To) 
and becomes infinite for p = ~ (T = To= nw/kT) (cf. with 
(25)). It is well known that all roots of the Laguerre 
polynomials LN(x) lie in the region 0 < x S ·N, and for 
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Pn+k,n (t), k? o 

A.N.-quantum state 

Cf (23) 

B. Superposition of Planck and coherent states 

Rn+k.n Cf (34 a) 

C. Superposition of a Planck distribution with a phase-averaged coherent one. 

I ( 2p'1• I x~u I ) 
,1 

1" 1-'+°K rxp{-I~I'+P_Iaol'} 
BuRn+k·n (P '·~u. !-') :t (!-'+OK) 11 + vK 

Note: The superposition of two states is determined following Glauber (see[6 ), p. 181). 
The expressions given here refer to the case f(t) = 0. It is clear from (69) that the functions 
WK(a, t) can be obtained when there is a force f(t) present from those given here by chang­
ing the argument a to a- v(t) and the value of On+ k n(t) under B is obtained by re­
placing p'na0 by p'na0 + v(t). We note that the equati~ns under B describe at v0 = 0 the 
relaxation of the coherent state la0 > and at a0 = 0 the relaxation of the Planck distribu­
tion (15). 

-co< x < 0 the polynomials LN(x) > 0. From this it fol­
lows that for 0 < T < ~To the circles on which P(a) = 0 
are widened; when ~To< T < To they contract to a zero 
radius while for r > To the functions P(a) remain always 
positive. The circles for the function Wo(a, T) on which 
Wo(a) = 0 contract monotonically to a point and when 
T > T~ the distribution Wo(a) becomes positive, 

, ( , 1 ) To 1 ( · 1 \ 
To == !n 1 -t- --~- < - = ~In 1 + ~I . 

2v + 1 2 2 , vI 

We note that as T- 0 the function P(a) for the N-quan­
tum state is strongly singular: 

Nl e" ( a )2" P(a,-r=O)=--·---- b(r), r=JaJ 
(2N)! 2nr or 

(73) 

(see[71 ) and the quasi-probabilities Wo(a) and Q(a) have 
no singularities whatever. 

8. THE HARMONIC OSCILLATOR PARADOX 

In conclusion we dwell upon the so-called harmonic 
oscillator paradox. 

According to the quantum theory of radiation the line 
width rab arising when there is a transition from the 
level a to the level b is under normal conditions equal 
to rab = y a + Yb where y a and Yb are the widths of 

r, VU: 
I 
I 
I 

/ '. I 
: i I 

..-;: •..-,a 1..-, "'" 
0 .+-· . _;. ~ 

./1 /''I~ I I I I 
I I I I 

i 1/ I! 1/ I 
I 

FIG. 2. The functions FK(v, r) for 
K = N (solid curve), K = 0 (dashed 
curve), and K =A (dash-dotted curve). 

these levels.[18 ' 191 For the harmonic oscillator (x)n n- 1 

~ Vn and therefore in the dipole approximation Yn =' ny, 
rn n- 1 = (2n- 1)y, where y is the line width according 
to 'classical electrodynamics which is equal to 
y = 2 e2w~/3mc3 • In the region n » 1 where the transi­
tion to the classical theory must take place the disagree­
ment with it apparently increases. This is the well­
known harmonic oscillator paradox discussed in [20 ' 2 1] 

(see alsoP91 , p. 70, and[221 p. 112). 
Weisskopf and Wigner[201 have shown from the exam­

ple of n = 2 that taking the fact that the oscillator levels 
are equidistant into account leads to the fact that the 
factor (2n- 1) in r n n _ 1 disappears and this leads to 
agreement with the classical theory. However, 
Weisskopf and Wigner's method requires the considera­
tion of the whole wave function of the system (oscillator 
plus radiation field) and is therefore extremely unwieldy 
for n /..> 1. By virtue of this Weisskopf and Wigner[20 l 

restricted themselves to the simplest case n = 2. We 
show how this paradox can be resolved on the basis of 
the kinetic Eq. (1) in the general case for any initial 
state. The spectrum of the quanta emitted by the os­
cillator during its relaxation is given by the formula 

00 00 

= 2 Re ~ dt ~ d-reiw<(a+(t + <)a(t)). (74) 
0 

The correlation function (a•(t + T)a(t)) is determined by 
the kinetic Eq. (1). Following the usual method (see, 
e.g., Sec. 10 in[121 ), we get 

(a+(t + <)a(t)) = eiwo< .:3 flkk(O) .:3 m'hG(m, m; k, kJt) 

X~ n'I•G(n -1, n; m -1, mJ-r) = n(O)exp{- ( iwo + !.-) t} 
·~ . 2 

X exP{(iwo- ;) (t+-r)} (75) 

(for calculations we used the explicit Eq. (30a) for the 
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Green function G for 11 = 0). Substituting (75) into (74) 
gives the Lorentz form of the line with the classical 
width y which is independent of the initial excitation: 

dE y {76) 
dro = i'i(O) 2n[(ro- roo) 2 + y2/4']" 

The fact. that the spectrum of the oscillator is equidis­
tant leads to the fact that the off-diagonal elements p 
are not simply damped as ~exp(-(m+n)yt/2) but als~ 
change into one another along the diagonal m- n = const. 
The correlation time is therefore of the order y-1 ra­
ther than (Nrr\ i.e., the narrowing of the line to the 
classical limit {76) occurs thanks to the interference of 
quanta emitted during transitions between different 
levels. 

In conclusion the authors wish to express their deep 
gratitude to Ya. B. Zel'dovich for drawing our attention 
to the harmonic oscillator paradox, for his interest in 
this work, and for discussions of the results, and also 
to A. L. Golger who took part in the initial stages of this 
work. 

We are grateful to L. V. Kel'dysh, S. M. Rytov, and 
I. I. Sobel' man for discussions of the results of this 
paper. 

APPENDIX 

We elucidate under what conditions the oscillator re­
mains during relaxation all the time in a pure state. 
For a pure state p 2 = p, Tr p 2 = 1; conversely, the con­
dition Tr p 2 is a criterion for the purity of a state. The 
difference of Tr p 2 from unity can serve as a measure 
for the deviation of a given state from a pure one. De­
noting Tr p2 by P2 we have from (1): 

dP2 dt = -2y{SpA + vSp(BB+)}=-2y {v Sp p2 +(2v + 1)SpA},(A.1) 

where A= a+ap2- apa+p, B = [p, A]. Let the oscillator 
initially be in the pure state p(O) = 11/J)( 1/J 1. From (A.1) 
we find 

dP2 dt (0)= -2cy, c = v+ (2v+ 1){(rpJ<p) -i(¢Jrp)! 2} ~ v, (A.2) 

where I (/1) = a 11/J), ( 1/J 11/J) = 1. For sufficiently small ~t 
the quantity P2{~t) = 1- 2cy~t + ... < 1, i.e., the state 
changes from a pure one to a mixed one. 

Examples show (see below) that the change in time 
of P2(t) is not always monotonic. However, the oscilla­
tor can not return to a pure state (in a finite time inter­
val). Indeed, if P2(to) = 1, P2(t) will have a maximum in 
that point and dP2/dt (to) = 0 which contradicts (A.2) 
(provided c > 0). As t-oo the state of the oscillator 
becomes pure, if 11 = 0. 

We must still consider the case c = 0. The equation 
c = 0 is attained only when the condition 

(A.3) 

is satisfied (a is an arbitrary complex number), i.e., 
the initial state 11/J) must be coherent. On the other hand, 
it was shown in Sec. 3 that a coherent state during re­
laxation remains all the time coherent when 11 = 0. Thus, 
the relaxation of a coherent state at zero temperature 
of the thermostat is the only case when the state of a 
quantum system remains pure, dissipation notwithstand-

FIG. 3. The function 1/l{x) = e-XJ0 (x). 

0 J 10 
.r 

ing. In all other cases the oscillator changes to a mixed 
state at once. 

We consider a few examples. The quantity P2 is for 
the distribution (21) equal to 

00 

"" I a J4n p 2 = e-2lal' ..W ·-- = ¢(2JaJ2) {A.4) 
n==O (n!)' ' 

where 1/J(x) = e-xlo(x) (see Fig. 3). The time-dependence 
of P2 for 11 = 0 has the form 

(A.5) 

i.e., P2(T) increases monotonically with time. One can 
show[17 l that for the binomial distribution (26) when 
N»1 

P2(-r) :::::< '1'(2Npq), (A.6) 

i.e., P2(T) initially decreases from unity to a magnitude 
of the order of (7TNr112 when T = ln 2, and then again in­
creases to unity. 
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