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We consider the indirect exchange of magnetic ions through conduction electrons with separated Fermi 
spheres (a paramagnet or a ferromagnet in a magnetic field). We find new oscillations in the spin den
sity of the conduction electrons with two periods depending on the magnitude of the magnetic induction 
or on the concentration of the magnetic impurities (in the case of an impurity ferromagnet). These os
cillations may lead to long-wave magnetic structures in a system of localized spins. 

1. INTRODUCTION 

IT is well known that magnetic ions lead by virtue of the 
exchange interaction 

l(r- Rn) (Sna(r)) 

to a shift in phase in the spatial distribution of electrons 
with different spin directions and lead thereby to a spin 
polarization of the system of conduction electrons. This 
polarization in turn affects the magnetic ions leading to 
an effective static interaction between them which is 
usually called an indirect exchange. Since the distribu
tion of the conduction electrons has a discontinuity at 
p =Po (pa: the Fermi wave vector) the polarization os
cillates with a period which is the reciprocal of the 
diameter of the Fermi sphere. [lJ 

We consider here the indirect exchange between 
magnetic ions for the case when the conduction elec
trons with different spin directions have different radii 
of their Fermi spheres. This can occur in the case when 
the metal is in a magnetic field when the ions are ferro
magnetically ordered1 > or when both conditions occur. 
We write the energy of an electron in the general case 
in the form 

E,(pa)=£(p)+aA--£o, so=p02 /2m, a=(±), A=const.(1) 

In connection with the occurrence of a preferred 
direction (the moment of the sample) the exchange will 
be anisotropic. Moreover, in the exchange picture we 
must find reflected two peculiar features of the system 
under consideration: 1) the limiting momenta of elec
trons with different directions differ by 

Po--- Po+= PoLl/ so== 2x,; 

2) in spin-flip processes electrons (with spin z-com
ponent (-)) filling a sphere with radius p determined 
from the relation 

p' _ (2xz)2 . ( 2A )'h 
c-- = 2.1. = --, 2xz = Po -
'2m 2m ' so 

(i.e., K~ = K1Po) do not take part. 
Finally, as was predicted by de Gennes[2 J and shown 

experimentally in [3J, if the magnetic ions are randomly 
distributed or if there are impurities or if both situa-

1lThe anisotropy of the exchange in this case originates in a natural 
way not through the exchange interaction but through the magnetic 
forces fixing the magnetic moment of the sample. 
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tions occur together, the pattern of a spin polarization 
generated by localized spins will "decay" according to 
the radioactive decay law 

a(r) = ao(r)exp (-r/l), 

where l = vT is the mean free path. We shall take this 
fact into account also in what follows. 

2. COORDINATE REPRESENTATION 

We write down the Hamiltonian of the problem in the 
coordinate representation: 

H=Ho+Ht. 

Ho = ~ ~ ¢,.+(x)T(x, a)¢ .. (x)dx, 

" 
H,= ~ ~¢,.+(x)l(x-Rn)(Sna,.a.•)¢a.•(x)dx, (2) 

naa' 

T is the operator of the energy (1). We perform a uni
tary transformation of the operator H in order to elimin
ate terms of first order in Sn: 

H=ei8 He-i8 =Ho+1-;-[S,Ht]- ~ [S,[S,Ht]J+ ... , (3) 

where we have imposed the condition 

i[Ho, S] = H,. (4) 

Thus 

ll=Ho+H2+ ... , 

where 
l 

Hz= 2 [S,Ht]. 

We choose the transformation operator in the form 

S = ~ ~ K~~·(Y,Rm) (Sma~~·)¢~+(y)¢~·(Y)dy. (6) 
rnBB' 

Using (4) we find 

Kw(y, Rm) = il(y- Rm) {T(y, II)- T(y, 11')}-'. (7) 

Using then (5) we find 

H2 =- _!__ ~ ~ ~ dxdy(Sma~~·) (Snaa.a.·) ·{I (x- Rn)Kw(Y, Rm) 
2 nm a.a.'t3W 

- l(y- Rm)K:,..(x, Rn) }¢~+ {Y)¢~·{Y)¢a.+(x)'IJa.•(x). (8) 

We take the average of (8) over the eigenstates of the 
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operator H. The average of the product of four Fermi 
operators is then written out as follows: 
(1jlp+(y)1jlp•(Y)'i'<>+(x)1jl,.,(x)) ~ (1jlp+(y)'i'P (y}>(1jl .. +(x)¢ .. (x)>6p.pll,..,. 

+ ('!lp+(y}1jlp(x) )(1Jla(Y)'i'a+(x) )1\,..pllp•a. (9) 

The terms which are off-diagonal (in the spin indices) 
on the right-hand side of (9) vanish if the quantization 
axis is chosen along the moment of the sample, as we 
shall do. Moreover, the first term gives zero when 
substituted into (8). As is shown int41 each average can 
then be replaced here by an average over the eigen
states of the operator Ho multiplying by exp(-lx- y l/2l). 
We can then rewrite the right-hand side of {9) as 

(1jlp+(y)'!lp(x))o(1jl,.(y)¢,.+(x) )oll,.•pl>p•a exp(-lx- Yl / l). 

Changing to the momentum representation we get as 
a result 

(1jlp+(y)1jlp(x}>o = S ~nppoeiP<r-x> 
(2:rt)3 ' 

1~~ ( IRn-Rml) 
Herr= N' LJ LJ (Sno-,.~) (SmO'pa)exp - l 

nm ap (10) 

X S dpdp' ll(p'- p) I" n~·P( 1 - n~a) exp[- i(p'- P) (Rn- Rm)] 
(2:rt) 6 s(P'~)- s(Pa) 

We rewrite (10) in a form convenient for calculations: 

]2 ~ ( Rnn') s dpdp' 1 ] (11) Heff = N" LJ exp --1- (2:rt)" exp[-i(p -p)Rnn• 
1l1l'ct 

X { S •S ,.no(!; .. )-no(s',.) +(S •S .•+S vS .v) no(s,.)-no(s~ .. )} 
n n ~; .. - s'" n n n n £~ - s:..,. 

where (we consider in the following the zero-tempera
ture case) 

0 - { 1, £,.< 0 
no(!; .. )- 0, S<> > 0 sa'""' £(p', a), 

and we assume that II(p' - p) I = I = const, Rnn' 
= Rn- Rn'· 

Expressions such as (11) have often been evaluated 
(see, e.g.,£51 ). We give therefore at once the final re
sult: 

:rt 12p2 (0Ho ~ exp(-Rnn•/ll {(!IJ+ + <1>-)Sn'Sn•' 
Herr =- 2 N 2 ,,. Po'R~n' (12) 

+ 2!1> (Sn•Sn,x + Sn•Sn,Y}}, 

where 

p (O} = mpo / 2n2, R = Rnn•, 

!IJ± = sin (2p0~} - 2p~ cos (2Po±R), 
(13) 

<1> = sin (2poR)- 2poR cos (2poR) 

+ 8 'R' [ sin(2p0R) _j_ cos(2poR) + Si(Zp R) J 
Xz (2poR) 2 ' 2poR 0 

--{sin(2xzR)-2xzRcos(2xzR) 

+ 8 'R'[ sin(2x2R) ..L cos(2xzR) +Si(ZxzR)l) 
Xz (2xzR) 2 ' 2xzR j• 

(14) 

Si is the sine integral. 
Assuming that always ~~~ o << 1 we rewrite the ex

pression for ~+ + ~- in the form 

tl)+ + !1>- ~ 2[sin (2poR) -- 2poRcos(2poR)] cos(2x,R) 

+ 2(2xtR)sin (2x1R)sin (2poR). 

Let us discuss the results. 

(15) 

1. Equation (15) shows that the Ruderman-Kittel
Kasuya- Yosida (RKKY)l 11 oscillations of the spin den-

sity of the conduction electrons are modulated in our 
case by long-wave oscillations with period 1/2K1. These 
"beats" of the spin density can lead to a corresponding 
magnetic structure in the system of localized spins. We 
estimate the temperature Tc1 of such a magnetic transi
tion (see also the interesting paper by Liu eel). Let the 
RKKY interaction lead to ferromagnetism with a Curie 
point Tc. Tc1 will then be of the order 

x,• ( so 1 ) ( /',. )a T., ,., Tc-exp --- ~ Tc - . 
Po3 /',. pol so 

We see that for an impurity ferromagnet (a= c(S~)I, 
c is the concentration of the magnetic impurities) 
Tc1 = 10-6 Tc. If Tc ~ 102 oK, Tc1 ~ 10-4 °K. In the case 
of a strong ferromagnet (from the iron group) Tc1 
~ 10-3 o K. In these estimates we took the ratio of the 
Fermi energy to the sd-exchange integral to be equal to 
100. In the case of a metal with magnetic impurity ions 
in achievable magnetic fields (a = ~B, ~ = Bohr magne
ton, B =magnetic induction) Tc 1 -;;, 10-7 °K. 

2. Equation (14) shows the occurrence of additional 
oscillations with a period 1/2 K 2 in the transverse part 
of the exchange. Such a structure can be observed in the 
absorption of electromagnetic waves with wavelengths 
1/2K2 at temperatures below Tc2 : 

i.e., Tc2 is larger than Tc 1 by a factor ~o/a. For in
stance, in the case of a ferromagnet Tc2 ~ 10-1°K. 

The predicted magnetic structures in a system of 
localized spins lie thus in general in an achievable range 
of temperatures. We note the characteristic dependence 
of the periods of the structures on the concentration of 
magnetic impurities in the case of an impurity ferro
magnet (see also [?J). 

3. MOMENTUM REPRESENTATION 

We calculate now the spin susceptibility as function 
of the momentum transfer p' - p = q. To do this it is 
necessary to stop halfway in the transition from Eq. (11) 
to (12). For the longitudinal part of the exchange we get 

(I) 1 s dq 
Heff = -2 (2n)"ll(q) I'[S'(q)]'[!lll,_(q)+!lJll+(q)], (16) 

where we have written as usual 

As l - oo, (17) changes to 

1 ~ . 
IS'(q) 12, S•(q) = N LJ Sn•e•qR•, (18) 

n 

For the transverse part of the exchange we find 

H~~f =-+-s (::).II (q) I'([S•(q)fl + [S•(q)]2)[!11lz_(q) + !lllz+(q)], 

(19) 
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Equations (18) and (20) generalize the Yosida formula 
(see also the interesting paperC8 J by Anderson and Suhl) 
to the case of exchange through electrons with separa
ted Fermi spheres. 

Let us discuss these results. 
1) For small q 

1 m (1 1) 
!Dl,_+!ll!t+,:;:;; z-1P-(O)+iP+(0)]-12(2n)' Po-+ Po+ q2. (21) 

The minimum momentum transfer connected with a con
duction electron spin flip is equal to q = Po- - Po+ = 2 K 1· 

For this minimum value of q a maximum is reached in 
the effective exchange integral, as can be seen from 
(21); this can, as we showed above, lead to a magnetic 
structure with a period 1/2 K 1 in a system of localized 
spins. 

2) The part IDI2+ of the transverse susceptibility 
causing absorption of electromagnetic waves vanishes 
for q = 2 K2 and increases on the positive side when 
q> 2K2. Then (d[ll2+/dq)q= 2 K2 -oo as 1/2K2 as 2K 2 

- 0, i.e., the absorption has a resonance character. We 
must thus expect resonance absorption of electromag
netic waves with wavelength 1/2K2 as was noted earlier. 

4 .. CONCLUSION 

1. In principle one can observe oscillations of the 
conduction electron spin density with period 1/2 K 1 at 
room temperatures in paramagnets in a magnetic field, 
using the Knight shift. Oscillations of the conduction 
electron spin density with period 1/2K2 can also be ob
served in paramagnetics in a magnetic field at normal 
temperatures and in ferromagnets in (very weak) ab
sorption of electromagnetic waves. 

2. lt is necessary to generalize the results obtained 
for the case of non- spherical Fermi surfaces, 
unquenched orbital angular momenta, and so on. There 
may then appear interesting details (especially in the 
case of the rare earths). The calculations must take 
into account quantum orbits for the case of very pure 
metals. 

In conclusion I thank M. S. Svirskit and the coworkers 
of the theoretical division of the Institute for the Physics 
of Metals (Sverdlovsk) for a discussion of provisional 
results and 0. V. Troshin for hospitality. 
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