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The behavior of the propagator of the V8 bound state in the Lee model is investigated with the aid of 
a known exact solution. It is shown that a unique bound state and resonance arise simultaneously in 
elastic WJ scattering in the case of strong coupling. This result is a characteristic field effect and 
does not exist in the case of potential interaction. Certain other features of V() scattering are also 
indicated. 

1. The Lee model was considered by many authors es­
sentially in the sense of its field-theoretical interpre­
tation, determination of the masses of physical parti­
cles, and renormalization of the charge. In many 
papers, this analysis was limited to the region of 
stable V -particles (see, for example, [1 • 21 ). In 
papers(3 - 51 devoted to unstable particles, only general­
theoretical questions of introduction and interpretation 
of unstable states were considered in general, as well 
as the determination of their masses and the lifetimes. 
In all these papers, only the N() sector of the model 
was considered, and it is tacitly assumed that there can 
ex.st either one bound state or one resonance in N() 

scattering (see, for example[6 J ). In the former case 
this state was identified with a stable V particle, and 
in the latter the resonance was interpreted as an un­
stable physical V particle. However, it was made 
clear in[? 1 that in the N() sector, when traditional form 
factors are used, there can exist simultaneously both 
stable and resonant states. In accordance with the be­
havior of these states as functions of the coupling con­
stant and of the renormalized mass my ( 0 ), it was 
proposed to interpret these states as being stable and 
unstable V particles and bound N() states (the latter­
as complex systems). 

In the present paper we present a similar investiga­
tion of the possible states in the V8 sector of the Lee 
model, exact solutions for which were obtained rela­
tively recently[a-w]. A number of nontrivial singulari­
ties which appear in the ve sector are explained: the 
simultaneous appearance (at a certain value of the 
coupling constant g) of stable and unstable states, the 
finite interval of variation of the energy of the stable 
state when g is varied, and certain other features 
which do not take place in the case of the ordinary po­
tential scattering and in the N() sector of the Lee 
model. 

2. The Hamiltonian of the Lee model is written as 
follows: 

H=Ho+Hr, (1) 

Ho = m,.p"+~·,. + 1\nnp,.+.pv + mN¢N+¢N + ~ w(q)a+(q)a(q) d3q, (2) 

g { 1 f(w) } Hr =--- ¢v+¢N J --=a(q)d3q +h. C. . 
(2n )'-'' l'2w 

where 1/!v ( 1/!v) and 1/!N ( 1/!N) -renormalized fermion 
operators of annihilation (creation) of the V and N 
particles, satisfying the canonical anticommutation 

(3) 

relations; a ( q) ( a• ( q )) -boson operator of annihilation 
(creation) of the () particle, satisfying the canonical 
commutation relations: w ( q) = w = -1 q2 + fJ.2 , fJ.-mass 
of () particle, g-renormalized coupling constant, 

(4) 

, where go-nonrenormalized coupling constant and 

{5) 

b = mv-mN, 

f ( w) -real cutoff function, such that 

f{f.t) = 1, lim f(w) = 0, 

f(w) '=/= 0 for w;;, f.t; {7) 

my= m~) +lim, m{71--bare mass of the v particle, 

1\m = -g2 S f({J)) d'k . (8) 
2w w-b 

For the investigation of the V() sector of the Lee 
model, we shall need a number of results of the lower 
N() sector. In this sector, the propagator of SV. ( w) the 
physical V particle[u] has the following form (see, 
for example, [41 ): 

[Sv'(w))-1 ==(o1¢v 1 ¢v+!o) 
I E+ze-H 

= (w- b) [ 1 + 4ng2 (w- b) r f(w')~"{J)' dol' ] (9) 
.~ (w'- b) 2 (w'- w- ie) ' 

where I 0) is the vacuum state and E = mN + w is the 
energy of the V particle. The N() -scattering matrix 
S = S ( w) is connected with the propagator (9) by the 
relation 

S(w) = [Sv'*(w)]-1 /[Sv'(w)]-1. (10) 

The poles of the S matrix give stable states at E 
< mN + fJ., i.e., when w < fJ.. The energy of these states 
can be found from the condition 

[Sv'(w)]-1 = 0. (11) 

The resonances of the amplitude of N() scattering are 
obtained at 

Re [Sv'(w)]-1 = 0 (w > f.t). (12) 

We note, incidentally, that the third of the conditions 
(7) exclude the possibility of appearance of false S-
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FIG. I. Behavior of the function 
h(w) for a form factor in the form f(k) = 
M2 [M2 + k2 ]-1 , where M determines 
the character of the cutoff. 

matrix poles connected with the form factor f ( w). 
The behavior of the V -particle propagator was in­

vestigated in detail in[7 J. It was shown that [Sy(w)]-1 

is analytic everywhere except for a cut on the real 
axis. The typical behavior of the function 

h(ill)""' [Sv'(!l))-1 ={ill- b)~ 1 + 4ng2(w- b) 

f f"{oo')l'~oo'doo' J 
X J (oo'- b) 2 (w'- co- ie) ,, 

(9') 

is shown in Fig. 1. In considering the ve sector we 
shall henceforth assume that the V particle is stable, 
i.e., we confine ourselves to the quantities b < JJ. and 
to simplify the notation we put mN = 0. To avoid the 
appearance of ghost states (see[2J) we assume that 
g < gcr• so that 0 < Z :s 1. 

3. We proceed to Ve sector of the model. The 
propagator describing the elastic ve scattering is of 
the form 

[Sve'(oo)]-1 ""'(oj1Jlva .1 1jlv+a+jo) 
E+te-H 

[ 1 + h(oo)A (oo) 1 J-1 (13) 
= 't-h(w)A(w) h(w) ' 

where now E = my + w, and 

A(w)=~ I dw' lm-1-. (14) 
T! M h(w+b-w'+ie) h(w') 

Using for this sector general relations of the type 
(10) -(12), we find that the resonances and the bound 
states are the roots of the equation 

1-h(w)A(w) =0 

for w < JJ. (bound states) and 

1-Re [h{w)A(w)] =0 

(15) 

(16) 

for w 2: JJ. (resonances in elastic VB scattering). The 
imaginary part Im [ h ( w) A ( w)] makes it possible to 
determine the width of the resonance (see [ 41 ). Varying 
the form factor, we can make the product 
Im h.(w)ImA(w) in the relation 

Re[h{w)A (w)] 
= Reh(w) ReA(w)- Imh(w)ImA(w) (17) 

quite small, and assume approximately that the roots 
of (16) coincide with the roots of the equation 

1-Reh(w)ReA(w) =0. (18) 

The resultant error causes no fundamental changes. 
Let us examine the function A ( w) in greater detail. 

It can be written in the form 

A(w) = _ _1__1 .dw' ,Imh(w'L 
n ~ [Reh(w+b-w')+ilmh(w+b-w')Jih(w')l 2 ( 19) 

where Im h ( w + b - w') f 0 only when w + b - w' 

> JJ., i.e., the point w~r = w + b - JJ. will be a branch 
point. We consider two cases. 

1. w~r < JJ., i.e., w < 2 JJ. - b. Then 
Im h ( w + b - w') = 0 and we have 

1 "" dw' 
ReA{w)=---;P~ Reh(w+b-w') 

~ 

. 1 
ImA(w)= -lm-­

h(w) 

Imh(w') 

lh(w') 12 ' 
(20) 

(21) 

( P denotes the integral in the sense of the principal 
value). 

2. w~r > JJ., i.e., w > 2 JJ.- b. Then 
Im h ( w + b - w' ) appears and 

I\eA(w =-~fReh(w+b-w') Imh(w') dw', 
) T!"' lh(w+b-w')l" lh(w')l 2 

" 
(l)+b-~ 

ImA(w)=~ ~ lmh(w+b-w') Imh(w') dw' 
T!" lh(w+b-w')l 2 lh(w')l 2 • 

Thus, the form of the characteristic function 

( 22) 

(23) 

G(w) = Reh(w)RcA(w) (24) 

is given by the relations (9'), (20), and (22). Let us 
note a number of properties of the functions h ( w) 
= ( w - b ) H ( w ) and A ( w ) . Both h ( w ) and A ( w ) are 
real when w < JJ.. From (9') we can readily notice that 
H(b) = 1, i.e., h(b) = 0, and consequently G(b) = 0, 
and that 

lim H(w)=Z. (25) 
foof~oo 

Further, h ( JJ.) > 0, and consequently A ( JJ.) > 0. Since 
h ( w) is continuous, it has only one root at w < JJ., and 
decreases monotonically[7 l, it follows that 

lim h(w)cl (w) = C < U. (26) 

In addition, since the factor Im l h ( w)] -1 is propor­
tional to g2 , we can expect the equality (18) to be 
satisfied at certain g < gcr· Indeed, on going over be­
yond the critical value of the renormalized interaction 
constant, the integral in A ( w) begins to diverge, for 
in this case h ( w + b - w') has a pole (ghost state) at 
w + b - w' < 0, i.e., at w' > w + b, and this point al­
ways falls in the region of integration, and consequently 
it is possible to obtain any final state for G( w) when 
0 g < gcr· A plot of G( w) is shown in Fig. 2. 

It is clear that when g is small G( w can be arbi­
trarily small and positive. When g increases from 

FIG. 2. Form of the 
function G(w): a- weak 
coupling, G(w) < I (no 
single particle states); b -
strong coupling. The en­
ergies w 1 and w 2 at which 
G(w) = I correspond to the 
bound state and the reson­
ance in VO scattering re­
spectively. 
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zero to a certain g', determined from the condition [121 

Z(g') = '/2, (27) 

G ( J.l) increases from zero to 1. In this case neither 
resonances nor bound states are observed (weak inter­
action). Only starting with g > g' do both a bound state 
and a resonance arise simultaneously (strong interac­
tion). 

4. Let us list the characteristic features of the 
behavior of the function G ( w ): 

a) When w < JJ. the function G( w) increases 
monotonically to the first threshold; 

b) the function G( w) decreases monotonically when 
JJ. < w < 2 JJ.- b (b < JJ.), and the derivative experiences 
a jump at the point JJ.; 

c) when w > 2 JJ. - b, the function G ( w) continues 
to decrease monotonically (with a jump of the deriva­
tive at the point w = 2 JJ. - b), and the rate of decrease 
increases immediately after the jump; 

d) lim G ( w ) = C < 0 as w - ""· 
Thus, the monotonic decrease of the function G( w) 

and its negative asymptotic value as w - + 00 ensure 
the existence of a single resonance, which appears 
simultaneously with a single bound state. We note that 
simultaneous appearance of both a stationary and a 
quasi-stationary state has no analog in the case of 
ordinary potential scattering. The simultaneous appear­
ance of a resonance and a bound state is observed also 
in the model with the bilinear interaction [131 • We can 
therefore conclude that such an effect is a multiple 
one, i.e., it is typical of an interaction with two inter­
mediate particles (the two-meson cloud around an N 
particle). In addition, the threshold of NfJ production 
(inelastic channel at E > 2 JJ. - b) is characterized by 
a unique behavior of the cross section of elastic Ve 
scattering, in that there is no infinite jump of the de­
rivative, such as in the behavior of the cross section 
in the case of potential interactionE141 • We note also 
that the natural limitation g < gcr (corresponding to 
a real non-renormalized coupling constant) is the cause 
of the existence of a lower energy limit for the bound 

state (cs. [151 , where this result was obtained from the 
approximation solution of the Schrodinger equation), 
which is not observed in the NEJ sector of the Lee 
model [7 J, where the energies of the bound states and 
of the resonances can be arbitrary when the coupling 
constant is varied (with the same limitations) 
(-oo<E<+oo). 

Thus, an example of a simple field model makes it 
possible to reveal very interesting features of the 
field-theoretical description of an unstable state, hav­
ing no analog in the potential scattering and in the 
lower sector of the Lee model. 

In conclusion, the author thanks V. B. Gostev and 
A. R. Frenkin for useful discussions. 
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