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The stability of an isotropic world with a cosmological constant A is considered. The nature of the 
variation of rotational perturbations, and of gravitational and acoustic waves with an increase in the 
radius of curvature is similar to the case with A= 0, i.e., stability exists in an expanding universe. 
With respect to the perturbations of the density and the associated perturbations of the metric, it 
turns out that in the case when the value of A is close to the critical value Ac they increase rapidly 
near the critical radius of curvature. 

RECENTLY Petrosian, Salpeter, and Szekeres [1 J in 
studying the distribution of quasars with respect to the 
red shift in the case of emission spectra and Kardo­
shev [2 J in the case of absorption spectra have come to 
the conclusion that the evolution of the universe must 
be described by the Einstein equations with a cosmo­
logical constant A 

In this connection it is of interest to investigate the 
stability of an isotropic model of the universe with a 
nonzero A-term. 

(1) 

For an isotropic model with positive curvature the 
metric can be written in the form 

d"" = 11 2 (11) [d~'- dz2 - sin2 x(sin' 8dcp2 + d82 )], (2) 

where x, <{J, 8 are four-dimensional spherical coordi­
nates, while the variable 7J is related to the time t and 
the curvature a by the equation dt = ad7] (the velocity 
of light is c = 1 ) . 

Basically the model with positive curvature is of 
interest. Transition to a model with negative curvature 
is accomplished by the replacement 

(3) 

During the later stages of the expansion where the 
A-term is essential we shall use the equation of state 
dp/dt = u2 (a) assuming that u « 1. In this case the 
equations for the unperturbed metric can be obtained 
under the assumption p = 0: 

da - 2 Aa' ) -==a= l"P(a), P(a) = -a,.a- a2 + -,-. (4 
d~ 3 3 

Here ac = KM/411 2 , M is the total mass of the universe. 
The nature of the variation of a with time depends 

in an essential manner on the value of the constant A. 
In particular, for A = ac 2 there exists a special solu­
tion of equation (4): a= ac =canst corresponding to 
Einstein's stationary model. For A > Ac = ac 2 the 
radius of curvature a increases monotonically with 
time having an inflection point at a = ac (Lemaitre 
model). 

It is assumed in [1 ' 21 that this particular case is the 
one realized in our universe, with the value of A only 
slightly greater than Ac 

O<il=A/A,-1~1. 

An investigation of the stability of the isotropic model 
with A= 0 has been carried out by E. Lifshitz [3 J. 

The equations for the perturbation of the metric 
Ugik= hik 

(5) 

do not explicitly contain the A-term (dependence on A 
is contained only in the unperturbed function a (77 )). 
Therefore we can use the equations for the perturba­
tions hg obtained by E. Lifshitz (a, {3 = 1, 2, 3). 

168 

Scalar, vector and tensor solutions of (5) are possi­
ble leading respectively to perturbations of the density, 
perturbations of the velocity and to gravitational waves. 

1. We consider perturbations of the first type which 
depend on the scalar four-dimensional spherical func­
tion Q(n) 11 • In order to obtain this solution we repre­
sent the perturbation of the metric in the form 

h~ = A.(rJ)P~ + ~(rJ)Q!, 
1 

Q~ = 6! Q<nJ, P! = n' _ l Q<n):~ + Q!, P~ = 0. 

Here )L and Jl are two new functions for which we ob­
tain from (5) the following equations 

.. a . n 2 -1 
A. +2aA.-- - 3-(A+ ~) • 0, (6) 

j.i + 2-!i- ~( 1 +iu') + n 2 ;\A + ~)(1 + 3u2 ) = 0. 

In (6) we go over from the variable 7J to the independ­
ent variable a with the aid of the transformations 

· ,r-,-. i · ,, ,,r- ·; '"P ),'p· 
a~~ r 1 (a), r. = a r. ~ r. r 1', r. = r. -,- 2 

etc. Primes denote differentiation with respect to a. 
In this case (6) will go over into 

( 2 P' ) n2 -1 
)," + ),' \--;; + 2P . - 3P-·(I. + ~) = O, 

[ 2 ( 3 \ P' l n2 - 4 
~" + f.l·' -·\1 +-u2}+- +--(A+~) (1 +3u2)= 0. 

a 2 2P . 3 

(7) 

Perturbations of the density and of the velocity are 
expressed in terms of the functions )L (a ) and Jl (a) by 
the formulas 

l)The most symmetric function Q(n) has the form Q(n) = 
sin nx/sin x. For details cf. [4 ) 
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6F. =_I!_. [ (n•- 4) (A+ !l) + 3P Ill] Q<nl 
e 6ac a~' 

a 
6va.= -6 [(n•-4)1.1 +(n•-1)f,11]P.,, 

a, 

1 
Pa. = n•-1 Q<n>,.,. 

Equations (7) possess two first integrals corresponding 
to fictitious perturbations of the metric, i.e., to per­
turbations which can be eliminated by a transformation 
of. the coordinate system: 

1) I,= -I-'= const; 
1 da 1 da 3yP 

2) A=(n2-1) .la,1P==I.o; J.l=-(n2-1).J -+-""'flo. 
1 ayP a2 

With the aid of these two first integrals we can reduce 
the order of equations (7) by making the substitution 

1 6da 
A+J.I= (l.o+J.Io) \-=, 

• yP 

A1 -J.11 = P-o1 -!-'01 )i~ 6~ +~. 
• yp ayP 

We obtain a system of two equations of the first order 
with respect to the functions ~ ( a) and {; (a): 

1 ( P 1 2 ) u• ~ 8) 
6 + s p --;; = 2 -yp' ( 

~~ +j__= ~ [-2(n•-1) +~PI- 6P], 
a )'P 2 a a2 

Here, wherever possible, we have dropped u2 << 1. 
In solving the system of equations (8) we consider 

two cases. For un << 1 one can set u = 0, and this 
corresponds to the equation of state p = 0 for dustlike 
matter. For un » 1 ( n » 1 ) the perturbations have 
the form of acoustic waves propagating with the velocity 
u and having a wave length of the order of a/n. 

2. We consider first the case p = 0. Then the solu­
tion of equations (7) together with the first integrals 
has the form 

a,yJ5 1 a2da 1 da 
A= C, (n2 - 1)-- .l -- + C2 (n• -1)a,• .l --

a2 P'" a"fP 

1 da a,y"P 1 a2da 
+Aa, .l -=-+B. !-' = -C1(n•-4) --.1--

afr ~ ~ 

1 da r da 3AadP 
-C2 (n2-1)ac" .1----=-Aa, .J--=+-~-B. 

a2fP ayP .(n2 - 1)a• 

In the case of dustlike matter p = 0 one can choose the 
reference system in such a manner that it turns out to 
be comoving and synchronous [5 l, i.e., ova = 0. From 
this condition we determine A: 

A = -Cz(n2 - 1). 

Moreover, we set B = 0. With the aid of the perturba­
tions of the metric obtained in this manner we obtain 
the perturbations of the density. As a result we obtain 

ar¥P1 a2da . 1 ·(a,- a) 
A = C,(n2-1) --.)--+ C2(n2-1)ae.J --_-da, 

a• P'l• a2 yP 

a,yP) a2da 
!-' = -C1(n2-4)-- ---Cz(n2-1)a, 

a• P'J. 

X) (a, -_a) da _ 3C2a,y'P ; 
a2yP a2 

6e r {i> ~ a3da a, -y'P l -·= L·C,(n2-4)-- ---Cz(n•-4)-- Q<nl, 
F 2a2 P'f, 2a• J 

6v.,. = 0. (9) 

One can perform a transition to a model with negative 
curvature directly in formulas (9) by carrying out the 
replacement (3} and, in addition, by replacing 

2a,a Aa' 
n--+in, P(a)=-3-+a•+--3 . 

The formulas obtained above, in principle, give a solu­
tion of the problem, and the integrals in (9) can be re­
duced to elliptic integrals. The dependence of the 
radius of curvature on 11 and on t is defined by the 
formulas 

(10) 

In the case A= 0, i.e., P (a)=(%) aca- a 2 , as can 
be easily shown, the solutions obtained above coincide 
with the solutions of E. Lifshitz. As can be seen from 
(6) the stationary model is unstable. In (9) this corre­
sponds to a singularity at A = Ac, a = ac· 

We investigate in greater detail the dependence of 
the perturbations of the density on the radius of curva­
ture in the case 0 < t:.. « 1. We introduce the notation 
x = a/ac. Then we have 

lle [x(x-1) 2 (x+2)+M'J''• 
-;- = 3C 1 ( n• - 4) Q<nl ___c......:...-=-2x'-::-2-'-'-------'-- (11) 

C x3dx 
x.l . 

0 [x(x-1) 2(x+2)+t.x'f" 

The lower limit of the integral has been set equal to 
zero, and this corresponds to neglecting the term pro­
portional to c2 which is bounded during the expansion 
process. 

The first terms of the expansion of (11) in powers 
of t:.. 1/ 2 have the form: 

lie 3 -;-(x< 1) = 10 C1(n•- 4)Q<n>x, 

6e y3 1 
-{1) =-;-C1 (n•-4)Q<nl-, 

8 l 11'1~ 

{!e - 1 
-{oo) = y3C1(n•-4)Q<nJ __ 

f. "' 
Near x = 1 the behavior of o E/ E is represented by the 
following expansion (ox« t:.. 1/ 2 ): 

6e l'3(n2- 4)C1Q<nl -;-(1 + cSx) = _:_..:___2-::-L'i-:-:,1:----, 

[ -6r 3 (cSx)·• -(6x\• ] 
X 1+}"3~~.-i--'f ;\;;, -)'3 t.'f,) +--· , 

in the case of large x 

cSs (x > 1) = 3Ct (n2- 4)Q<nl [-~- _!_). 
s )'3L'i x2 

For the ''amplification coefficient'' of the perturbations 
of the density which arose long before the critical 
radius we obtain 

, ile j Os 10 1 
K=-(oo) -(x~1) =--=-· 

8 8 'l'3 t.x 

Its value in order of magnitude is greater by a factor 
t:.. - 1 than in the case when the A-term is equal to 
zero [3 ' 41 • 

3. It makes sense to consider the equation of state 
dp/dE = u2 (a) only for large values of n, such that 
un ;::: 1. In this case equations (8) will go over into 

6'+6(~~--!_) =!:"__ ~-. 
\ 2P a 2 yP 

~I + j_ = - 2~2 6. 
a -yp (12) 
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For un » 1 the solution of the system (12) has the 
form: 

Here 

((J = n) ud1] = n) uda_ ~1. 
-yp 

Correspondingly, the perturbations of the density and 
of the velocity in this case will be given by: 

lls n2Q<n> 1 
-- = ---= (C1ei<l> +C2e-i<l>), 

B 6a, "fua 

in3Pa. v u . . 
<lua = -- - (C1e•<l>- C2r<l>). 

6a, aP 

4. We consider rotational perturbations. The 
perturbations of the metric are proportional to the 
tensor s~ with zero trace sg: = 0, so that there exists 
no scalar. As a result of this the perturbations of the 
density are equal to zero, the perturbations of the 
velocity are proportional to the vector sa ( S~ = S~a 
+ s! ). We represent the perturbations of the met~ic 
in the form 

h!= a(a)S!. 

Then Eqs. (5) reduce to the single equation for a 

cr''+cr' '~+~)=o (13) 
a 2P ' 

which has a first integral corresponding to fictitious 
perturbations of the metric a = canst. 

The solutions of (13) have the form 

a(a) = C S da=-· 
a'iP 

The perturbations of the velocity are given by 

aa'iP C 
,Sz;a = -1.-Srr. = --Srr.. 

1a.: 4aca 

Thus, the perturbations of the velocity are stable in an 
expanding universe. The dependence on the radius of 
eurvature agrees exactly with the case A = 0 [3 ' 41 as 
should have been expected as a result of the conserva­
tion of the moment of momentum of the perturbation [sJ. 

5. We now consider gravitational waves. Perturba­
tions of the metric can be represented in the form 

h,~ = v (a) G~. 

Perturbations of the density and of the velocity are 
identically equal to zero, since the corresponding 
scalar and vector do not exist Gg = 0 and Gg ;{3 = 0. 

For the perturbations of the metric we obtain from 
(5) the equation 

v" + v'\(P' +~ \) +(n2 -1) ~ = 0. (14t' 
2P a. P I 

For A = 0 the equation has been investigated in [3 , 41. 
We consider the case n >> 1. We seek a solution of 

the form v (a) = C (a) exp [ i<I> (a)]. Then the solution 
of equation (14) has the form 

1] = s da-_. -yp 
The solution corresponds to gravitational waves propa­
gated with the velocity of light. The amplitude of the 
perturbations of the metric decreases with increasing 
radius of curvature like a -I, and thus the perturbations 
of the metric are stable in an expanding universe. The 
nature of damping agrees with the one qualitatively 
predicted in [sJ. 

In conclusion the author wishes to express his deep 
gratitude to I. M. Khalatnikov for suggesting the prob­
lem and for continuing interest in this work, and also 
to A. G. Doroshkevich and I. D. Novikov for valuable 
advice. 
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