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It is shown that in the relativistic symmetric Coulomb model the states of the continuous spectrum 
with fixed energy E > m realize a single infinite-dimensional irreducible representation of the 
dynamic group SL ( 2, c) ® SU2. Relative to its most important subgroup SLj ( 2, c) this representa­
tion can be decomposed into two irreducible representations with m = -1, p = -i + 2aZE ( E2 - m2 f1~' 2 

and ~ = 1, p = i + 2aZE ( E2 - m 2 t 112. For E = m the representation of SLj ( 2, c) is not completely 
reducible. Analogous results are obtained for a Pauli electron in a Coulomb field. It is also shown that 
the dynamic group connected with the quadratic relativistic equation is SL ( 2, c) ® SU ( 2, 2 ); the 
solutions of the continuous spectrum are classified relative to the subgroups SLj± ( 2, c). 

IN recent papers [1-51 it has been shown that it is pos­
sible to use the infinite-dimensional unitary represen­
tations of the noncompact group 0 ( 4, 2) for the 
classification of particles f3J as well as for the calcu­
lation of various form factors. [3•51 This group is the 
dynamic group of the nonrelativistic hydrogen atom. [sJ 
The principle of its application, and of the possible 
application of other noncompact groups consists in in­
vestigating completely the action of the noncompact 
group in an exactly soluble model and in determining 
its irreducible representation which describes the 
spectrum of the model under consideration and the 
scattering amplitude. Then only the group structure of 
the problem is taken over, like a replica, to the 
physics of elementary particles. It is therefore useful 
to study the group structure of all available exactly 
soluble models, especially the relativistic ones. The 
relativistic Coulomb problem has been investigated 
from this point of view in a number of papersY•8 l 
Biedenharn [gJ has proposed a relativistic symmetric 
Coulomb Hamiltonian which differs from the usual one 
by a term which makes a contribution to the fine 
structure. This model of Biedenharn is of interest in 
itself, since in its discrete spectrum the symmetry of 
the nonrelativistic Coulomb problem 0 ( 4) [u, 12 l is 
established, [wJ which is violated in the exact relativ­
istic Coulomb problem. The solutions of the sym­
metric model differ by terms of the order 
( e 2 Z/l'ic )2/l k I from the approximate Coulomb func­
tions of Sommerfeld and Maue [131 and are very useful 
for the calculation of concrete effects.r141 In [1oJ the 
symmetry group 0 ( 4) was found only for the dis­
crete spectrum, and its generators were realized in 
matrix form. 

In the present paper we construct the dynamic group 
for the continuous spectrum of the symmetric relativ­
istic Coulomb problem-the Biedenharn model. It 
turns out that the dynamic group is the direct product 
of groups SL ( 2, c) ® SU2 and the infinite number of 
states with given energy E :::- m realize a single ir­
reducible representation of this group. We also give 
a classification of the states with the help of the other 
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dynamic groups SLj ( 2, c). It turns out that the states 
with a given energy E > m realize its completely re­
ducible representation which can be decomposed into 
two irreducible representations with 

m = 1, p = -i + 2aZE(E2 - m2)-'l• 

and 

m=-1, p =' i + 2a.ZE (E2 - m" )-'1>. 

We also obtain the dynamic group connected with 
the quadratic Hamiltonian H of the Biedenharn model, 
which is isomorphic to SL ( 2, c) ® SU ( 2, 2 ). The 
states with energy E > m form a single infinite­
dimensional representation of this group. A classifi­
cation of the states is given with the help of the sub­
groups SLj± ( 2, c). 

We consider the special case E = m (for an at­
tractive potential). The dynamic group is in this case 
isomorphic to SL ( 2, c) ® SU2. The states with E = m 
form an irreducible representation of this group. In 
this special case we obtain a not completely reducible 
representation of the group SLj ( 2, c), which com­
prises all states in the same way as in the case of the 
free Dirac equation. raJ We also investigate the non­
relativistic limit of the Biedenharn model-a Pauli 
electron in a Coulomb field. 

1. THE BIEDENHARN MODEL 

The behavior of an electron in an attractive 
Coulomb field is described by the Hamiltonian [151 

aZ 
Hn= ap+ ~m--;-, (1) 

where a, {3 are the standard Dirac matrices, and a is 
the fine structure constant. 

Biedenharn [gJ has introduced the symmetric 
Hamiltonian 

Hs = ap+ flm- a: +P2: K {[1 + c~rr -1 }. (2) 

where K = {3 ( aL + 1) is the Dirac operator. 
The operator H differs from HB by the perturba-
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tion term Hfs, H = HB + Hfs responsible for the fine 
structure of the hydrogen spectrum. The states of the 
discrete spectrum of the operator HB are character­
ized by the principal quantum number N, have the 
energy E = m [ 1 + ( aZ IN )2 ] - 1 / 2 , and are 2N2 -fold 
degenerate (cf. Biedenharn and Swamy r1oJ ). 

Following [101 , we go over to a new representation 
with the help of the operator 

[ 1 aZK J 
S = exp - z p2an arsh ~ 

r 
n=­

r 

The operator HB then goes over into H = SHBS-1 : 

H = 52(ap -flm). 

Using ( 4), we write the equation for the eigenfunc­
tions of H in the form 

To determine ~E it is useful to go over to the 
squared equation of second order with the help of the 
factorization 

(3) 

(4) 

(5) 

(6) 

Substituting (6) in (5), we find that <PE satisfies the 
equation 

QCX>E == [ ~-2a~l!_ + E'-m'] Cl>E = 0. (7) 

We note that a solution of (5) is automatically a solu­
tion of (7). 

Equation (7) can be regarded as a Schrodinger 
equation with a potential which depends on the energy. 
In the nonrelati vis tic limit it goes over into the 
Schrodinger equation for the hydrogen atom. The 
solutions of (7) have the form [7 J 

Cl>E = Ft(kr) Yt,m(S, <p)u, 

where 
Ft(kr) = C1(1J) (kr)' exp (-ikr)F(l + 1- il], 21 + 2, 2ikr); 

k = (E2 - m2 ) 'I•, 1] = aZE I k, 

Ct(1]) = 21e-o"/'l r(l + 1 + i1J) I! r(21 + 2), 

Y zm ( e, cp) is the spherical harmonic, and u is a 
four -component spinor. 

(8) 

It is easy to see that the operators HB and H 
commute with the operator of the total angular mo­
mentum j = r x p + ~/2 and the Dirac operator K. We 
can therefore construct stationary states which are 
eigenvectors of the operators j 2 , jz, and K with the 
eigenvalues j, J1, and K, where j = I K I - 1/2: 

For completeness we give the expressions for 
these functions: 

c,-1 = [E(K' + a 2Z2)- mK] [a'Z'E' + K'(EZ- m')]'h, 

(9) 

where Xk is a two-component spherical spinor and is 
g:iven by the usual formula; [Is] xi( is an eigenvector of 

the operators aL + 1 and jz; Fz(K)( kr) is given by 
( 8), with the index 

l(K) = IKI + 1/ 2 [sign K -1]. 

The constant c is determined by the normalization 

condition. Thus we have an infinite number of states 
with j = 1/2, %, ... for a given energy, and to each 
value j there correspond two states lPEK/1 with 
K = ±(j + 1/2). 

The transition to a new representation allowed 
Biedenharn [7 ] to obtain an additional integral of the 
motion--the operator R =a· p - iaZa · n!'lKH/K2 , which 
commutes with H and j. We note that the additional 
integral of the motion connected with the twofold de­
generacy was first discovered in the exact Coulomb 
problem by Johnson and Lippmann. [1 aJ The meaning of 
this operator R1 as the analogue of the helicity oper­
ator a· p of the free Dirac equation was established 
by Biedenharn. [7 J The existence of the operator R be­
comes evident when we write the operator 0± in the 
form of a 2 x 2 matrix: 

=(=FE [1 + (aZ 1 K)2 (' + m ap- iaZ (an).(aL ~1) E I K')(IO) 
0 ± ap-iaZ(an)(aL+1)E !1.' 2 ±h'[1+(aZ/K)'l'-m 

In the case of the continuous spectrum E > m we 
introduce the three normalization operators 

X1 = (E'- m' + a2Z2£2fK')-'I•( ap- iaZ(an~KH), (11) 

X2 = (a."Z2E2 + K 2E2 - m2K 2)-'h(apK- iaZanflH) 
X 3 = (K')-'hK, n = r / r. 

It is easy to see that these three operators com­
mute with H and form the chiral algebra SU2 raJ with 
the commutation relations 

[X;, Xk] = 2i£iktX,, {X;, Xk} = 2oik· (12) 

It is seen from (11) and (12) that the states with 
K = ± ( j + ';;) form the spinor representation of this 
group SU,. 

2. DYNAMIC GROUP OF THE SQUARED EQUATION 

By the dynamic symmetry of equation (7) we shall 
understand the algebra e of operators Sa belonging to 
e such that [ Q, Sa] = 0. It is clear that the operators 
Sa, acting on any solution of (7), give again a solution. 

It is evident that the operator of the orbital angular 
momentum L = r x p belongs to the algebra e since 
lL,Q]=O. 

In analogy with the nonrelativistic case we introduce 
the Runge-Lenz operator [l 7 ]* 

- aZEr 
A = 1/z ((Lp]- (pL]) + --, 

r 
which commutes with Q. It is easy to verify that the 
operators Li and Ai satisfy the following commuta­
tion relations: 

[ L;, Lk] = ieiktL,, [ L;, ih] = ie;.,)f, 
[A;, A.] = -i(E'- m'- Q) e1k1L1• (13) 

In the space HE of the solutions of (7) with fixed 
energy E > m we define the normalized operators 
Ai = ( E2 - m 2 - Qt'12 Ai, which satisfy the commuta­
tion relations 

[L;Lk] = ie;h,L,, [L;Ah] = ie;h,At, (13') 
[A;Ah] = -ie;h,At. 

The relations (13') show that Li, Ai form a Lie 
algebra of operators which is isomorphic to the Lie 
algebra of the group SL ( 2, c). In the following we 
shall call the Lie algebra by the same name as the 
corresponding group, for brevity. 
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Let us calculate the Casimir operators C1 and c.: 
C, = (L1 + iA1)" = -1- a2Z2E2 I (E2 - m2), (14) 
c.= (L;- tA;)2= -1- a2Z2E2 I (E2 - m2). 

Thus the infinite number of states (8) with energy 
E > m and L = 0, 1, 2, ... form a single infinite­
dimensional representation of the group SL ( 2, c) with 
m = 0, p = 2aZE(E2 - m2)-112 , 2aZ < p < 00 , 

The operators C1 and C2 are expressed through m 
and p in the following way: 

C1 =(~-1-~)(~+1- ip) 
2 2 \ 2 2 • 

c.=(~-1+~)(~+1+ tp) 
2 2 2 2 • 

The mathematical theory of the representations of the 
group SL ( 2j c ) is presented in the monograph of 
Naimark. [18 

It is evident that the Dirac matrices Yi commute 
with the operator Q. Thus the 15 Dirac matrices 
forming the Lie algebra SU ( 2, 2) [19' 201 are contained 
in the algebra S. Since the spin variables in (7) are 
separated from the space variables, the full symmetry 
algebra S is clearly the direct product SL ( 2, c) 
® SU ( 2, 2 ). We note that the four-component spinors 
are an irreducible representation of the group SU ( 2, 2) 
with the largest weight ( 1, 0, 0). 

Thus we see that the states with a given energy E 
form a single irreducible representation of the group 
SL ( 2, c) ED SU ( 2, 2) which is a tensor product of the 
representation of the ~roup SL ( 2, c) with m = 0, 
p = 2aZE ( E2 - m2t 1 2 and the four-dimensional repre­
sentation SU(2, 2). 

It is of interest to study a certain symmetry algebra 
N one of whose generators is the total angular momen­
tum operator h· The algebra 91 is the direct sum of 
the subalgebras SLj± ( 2, c) determined by the genera­
tors 

j 1± = 112(1 ± ~) (L; + 1/2a;), K;± = 1/2(1 ±~)(A;+ '/•a;) (15) 

(where Li, Ai were defined above, and ai are the 
Pauli matrices ) with the commutation relations 

[j;±, i~t±] = ie;~tdz±, [J;±, K;±] = ie;;1K1±, [K;±, K;±] = -ie;;zil±. (16) 

In (16) either all the upper or all the lower signs are 
to be taken. Operators with different signs belonging 
to SLj±(2, c) and SLj-(2, c), respectively, commute 
with each other. 

In order to find out which representations of the 
algebra are realized on the solutions of (7) with a 
given energy, we must calculate the Casimir operators 
of the algebras SLj± ( 2, c) and determine their eigen­
values and the corresponding invariant spaces. 

Using (15) and (16), we obtain the Casimir operators 

C,± = (j1±+ iK;±)• = 1/2(1 ± ~)(-1- a2Z2E2 / (E2- m2)), ( 17) 
Cr = (il±- i.K;±)2 = 1/.(1 ± P) (-2iN- a2Z2E 2 / (E2 - m•)), 

where N = i (a · L - ia · A + 1 ) . In order to find the 
eigenvalues of the operators c[, i = 1, 2 and the cor­
responding invariant subspaces, it suffices, by virtue 
of (17), to find them for the operators N and {3. 

It is easy to verify that N2 = a 2 Z 2E2 /( E2 - m 2 ). 

Thus the eigenvalues of the operator N are equal to 
± aZE ( E2 - m 2 t 112. The projection operator on the 
invariant space corresponding to the value IN I is 

equal to P. = (N +IN I )/21 N I, and that corresponding 
to - I N I is equal to P _ = ( N - I N I ) /2 I N 1. Thus the 
whole space HE of states with a given energy E > m 
[of which the solutions (8) form the basis) is decom­
posed into the direct sum of four invariant spaces 

± 
H±INI 

H = H~1 ED H~NI ED Ht';l ED H.:jNI, 

the projection operators on the corresponding spaces 
are given by 

P±±= (1±fl)(N±jNI)/4jNj. 
In the table we give the values of the Casimir oper­

ators of the algebra !ll in the invariant spaces 
H!INI [IN!= aZE(E2 - m 2 t 112 ]. 

Thus, in Hi Nl we have the infinite -dimensional 
representation SL_,\+ ( 2, c) with m = -1,, p = i 

+ 2aZE ( E2 - m 2 ) 12 and in H: 1 N 1 we have that with 
m = 1, p = -i + 2aZE (E 2 - m2 r 112 . In the spaces 
H±jNj the operators (16) of the algebra SLj+( 2, c) 
give zero. Analogously, SLj- ( 2, c ) gives zero in the 
spaces H~jNji in HTNI we have the representation 
with m = -1, p = -i + 2aZE (E2 - m2 r'/2 , and in 
H:jNj we have that with m = 1, p = i + 2aZE (E 2 

- m2 rl/2. 

3. DYNAMIC GROUP OF THE HAMILTONIAN H 

Any solution of (7) is projected by the operator 0_ 
of (6) into a solution of (5). If the operator o:t, the 
inverse of o_ existed, then one could establish the 
symmetry group of ( 5) from the symmetry group e of 
(7). Let us define its operators by the formula S~ 
= 0-SaO:', where Sa belongs to e. However, there 
exist functions <I> EKJ..L which the operator 0_ trans­
forms to zero. This means that there exists no opera­
tor which is the inverse of 0_, 

We now extend our concept of symmetry, as was 
done, for example, in (81. The symmetry of (5) will be 
understood to be given by the algebra of operators 
S~ such that [Sa, 0] lf!EKJ..L = 0. Thus the basic prop­
erty of the operators Sa is preserved: any solution 
l/!E of (5) is again transformed into a solution by the 
operators Sa. 

Let us consider functions <I>EKJJ. of the form <I>EKJ..L 
= ( 0, (/]EKJ..L), where (/]EKJ..L is a two-component spinor 
which satisfies (7) and is an eigenvector of the opera­
tors (a·L+1) and Lz+az/2: 

(oL + 1)q>EK~ = Kq>EK~, (L, + 1/2az)<JlEK~ = f1QlEKI'· 

From the explicit form (10) of the operator 0 it is 
clear that l/JE = O<I>- f 0. 

We note that one obtains a unique function <l>E;KJ..I. 
from l/JEKJ..L. Indeed, since the function l/JEKJ..L itself 
satisfies (7), we have <I>EKJ..L = eh )( 1 - f3 )l/JEKJ..L. 

Let us define the operators L'i, A'i, and a{ by 

( RL,R-1 0 ) (RA 1R-1 0 ) 
L( = 0 CL,c-t ' A;'= 0 CA,C-1 ' 

a{= r Ra1R-1 0 l 
0 · Ca1C-I ' 

where 
(18) 

R = op+ i(on) (oL + 1)E / K", C = E(1 + a2Z2 I K2)'"- m, 

R-' = [E2 - m2 + a 2Z2E2 I K"]-'R, 

r a•Z"E"l-'[ ( a•Z2 ' •r, C-'=LE"-m"+-- E 1+~1 +m K2J K•l . 
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H~INI 

c;= c;=o 
c~ =-I-N' 

c:=-2i 1 N 1-N• 

c~= c;=o 
Ci=-I +N' 
c;=2iiNI-N' 

The operators Li and Ai are defined above, and ai 
are the Pauli matrices. The operators (18) satisfy the 
same commutation relations (13') as the operators Ai, 

Let us verify that any of the operators Li, Ai, and 
oi applied to a solution lj!EKJ.L of (5) leads again to a 
solution. Using (8), (6}, and (10}, we find 

(19) 

( RL; IPEK~) -
=t = 0-L;IPEK~· 

\ CL; IPEK~ 

Applying now the operator 0+ to iJ:E, we find, owing 
to (10), 0+ ¢'E = 0. An analogous proof holds for the 
operators A{ and ai. Thus we find that the operators 
(18) have the property 

[L;'O+]¢E = 0, [A;'0+]¢E = 0, [u;'O+]¢E = 0 

and hence, form the dynamic symmetry group of (5). 
We note that (5) goes over into the free Dirac equa­

tion for a - 0, and the operators (18) go over into the 
operators constructed in (sJ. 

The dynamic group with the generators q, A{, and 
a{ is isomorphic to the direct product SL ( 2, c) l8l SU2 • 

The Casimir operators of this group commute with 0+ 
identically, not only when applied to solutions. Calcu­
lating the Casimir operators (14) by substituting in 
them Li and Ai for L{ and Ai, we find C1 = -1 
-a2Z2E2/(E2 - m 2 ), C2 = -1- a 2Z2E2/(E2 - m2 ) and 
a!2 = 3 1 . 

The states with a given energy E > m form a 
single infinite -dimensional representation of the group 
SL ( 2, c) l8l SU ( 2 ). This representation is the tensor 
product of the representation SL ( 2, c) with m = 0, 
p = 2aZE( E2 - m 2 t 112 and the spinor representation 
of the group SU 2 • 

Let us consider the algebra SLj ( 2, c), where the 
total angular momentum operator ji is taken as one 
of the generators. It follows from (18) that h = Li 
+a{ /2, since h commutes with R and C. Let us 
define the operator K{ = L{ + ia{ /2. These operators 
are the generators of the algebra SLj ( 2, c) with the 
commutation relations (13'). We calculate the 
Casimir operators 

where 

C1 = (j; + iK;')2 = -1 - a2Z2E2/ (E2- m'), 

C2 = (j; - iK;')2 = -2iN - a2Z2E2 I (E2- m 2), 

N =- i[1 + (E2 - m2)-''•R]K. 

We ob'tain for N' 2 , taking into account of the fact 
that R and K commute, 

N'2 = a2Z2E2 I (E2 - m2). 

We introduce the projection operators P+ a~ P_ 
on th~ invariant spaces ~ with N = I N I and N 
= -IN I, correspondingly: 

C{=C;=~O Ci=C;=o 
C~ = I + N' C~ = I + N 2 

c;=2iiNi+N' c;=-2iiNI+N' 

The whole space of states with energy E is de­
composed into two spaces H+ ® H_ in each of which 
we have an irreducible representation of the group 
SLj ( 2, c). In H+ we have the representation with 
m = -1, p = i + 2aZE(E2 - m 2 t 112 , in H_ we have 
that with m = 1, p = -i + 2aZE(E2 - m 2 t 112 • 

4. SYMMETRY OF THE "FREE" MOTION 

A special case is the point of the spectrum E = m 
for an attractive potential. Equation (7) with E = m 
goes over into the nonrelativistic equation for the 
hydrogen atom with E = 0. Because of (13), the oper­
ators Ai commute with each other on the solutions <I>E 
with E = m. The group SL ( 2, c) degenerates into a 
group which is isomorphic to the group of motions in 
three-dimensional space. Degeneracies of this type 
have been considered by Iononu and Wigner. [211 

In this case one can, however, construct a dynamic 
group which is isomorphic to SL ( 2, c). The genera­
tors of this group L = r X p and M = ( 1/2 )· aZm ( L x A 
- Ax L) satisfy the commutation relations (13'). The 
Casimir operators are C1 = -1 and C2 = -1. Thus we 
find that the solutions with E = m, L = 0, 1, 2, ... form 
a single infinite -dimensional representation of 
SL ( 2, c) with m = p = 0. 

The full symmetry group is evidently the direct 
product SL(2, c)® SU(2, 2), where SU(2, 2) is the 
algebra of the 15 Dirac matrices. The states with 
E = m transform like the tensor product of the repre­
sentation SL ( 2, c) with m = p = 0 and the represen­
tation of SU ( 2, 2) with the largest weight ( 1, 0, 0 ). 

Let us now consider the algebra ~ = SLj+ ( 2, c) 
+ SLj -( 2, c) with the generators 

j;""- = 1/ 2 (1 ± ~) (L; + 1/ 2u;), K;± = 1/z(i ± M (L; + 1/.iu,). 

The Casimir operators have the form 

c,+ = '/2(1 ± M c,± = -(1 ±MiN, 

where N = i (a· L - ia · M + 1 ). Calculating the square 
of N, taking account of the fact that M · a and a . L + 1 
anticommute, we obtain N2 = 0. Hence the operator N 
cannot be brought into diagonal form but can only be 
written in the form 

( 0 Nu) 
0 0 . 

Thus the representation of SLj+ ( 2, c) acting in the 
space H+ of states with f3 = +1 is not completely re­
ducible. Let us separate from H+ the subspace of 
states H; on which N gives zero. In H; an irreducible 
representation of the group SLj+ ( 2, c) with m = 1, 
p = -i is realized; in the factor space H + /H; we have 
an equivalent representation with m = 1, p = -i. We 
note that an analogous result is obtained for the free 
Dirac equation in raJ. The theory of not completely 
reducible representations of the group SL ( 2, c) has 
been worked out by Zhelobenko. [24 1 
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Using (18), where Ai is replaced by the operator 
Mi, we obtain the set of operators L{, M{, and a{ 
which commute with the operator o.. These operators 
define the dynamic symmetry group of (5) in the case 
E = m. Calculating the Casimir operators of this group 
isomorphic to SL ( 2, c) ® SU2 , we find that the states 
with E = m transform like the tensor product of the 
infinite-dimensional representation of the group 
SL ( 2, c) with m = p = 0 and the spinor representation 
of su2. 

Let us consider the algebra SLj ( 2, c) with the 
generators h = L{ + af/2• K{ = M{ + ia{ /2. The Casimir 
operators are 

C,+ =;= (ji + iK/) 2 = -1, C2 = (il- iK/)2 = -2iN', 

where N' = - i ( 1 - X2) K. It follows easily from (11) 
with E = m that N'2 = 0. This means that the states 
E = m transform according to a not completely reduc­
ible representation of the group SLj ( 2, c). In the in­
variant space of states Ho where N is equal to zero, 
we have the representation with m = 1, p = -1; in the 
invariant factor space we have an equivalent repre­
sentation. 

The existence of not completely reducible repre­
sentations of the simple group SL ( 2, c) in the present 
problem is not entirely accidental, since these describe 
the state of free motion of a particle with spin 1/2 • (a) 

5. NONRELATIVISTIC PAULI EQUATION 

Let us go to the nonrelativistic limit in (7) by re­
placing E by m and E2 - m 2 by 2mE' and regarding 
the spinors as two-component objects. Then (7) goes 
over into the usual Pauli equation for a particle with 
spin 1/2 and energy E' in a Coulomb field. The oper­
ators Ai go over into the usual Runge-Lenz vectorY71 

Changing the energy in (13), (13'), and (14) accord­
ing to the above-given rule, we find that the dynamic 
symmetry group is the group SL ( 2, c) ® SU2 and the 
states with given energy E' transform like the tensor 
product of the infinite-dimensional unitary representa­
tion p = v'20!ZE-112, m = 0 of the group SL ( 2, c) and 
the two-dimensional representation of SU ( 2 ); this 
agrees with the result obtained earlier in [22 •23 1. We 
note that we have 0 < p < "" in the nonrelativistic 
case, whereas 20!Z < p < oo in the relativistic case. 

If we use the algebra SLj+ ( 2, c) of the operators 
ii and Ki [cf. (16)] we find that the states with energy 
E belong to two infinite-dimensional nonunitary repre­
sentations of the group SLj+ ( 2, c) with m = -1, p = i 
+ 20!ZE ( E2 - m2 t 112 and m = 1, p = -i 
+ 20!ZE ( E2- m2 t 112. 

We note that the special case E' = 0 in an attrac­
tive potential corresponds exactly to the case E = m 
discussed above. Thus the states with E' = 0 trans­
form according to an irreducible representation of the 
group SL ( 2, c) ® SU2 with the generators L, M, and 
C1 which is a tensor product of the representation 
SL ( 2, c) with m = p = 0 and a spinor representation 

of SU 2. With the choice of the algebra SLj+ ( 2, c) with 
the generators HKj we find that the states with E' = 0 
form a not completely reducible representation with 
the Casimir operators C1 = -1, C2 f. 0 but C~ = 0. 

The authors are deeply grateful to A. M. Baldin, 
V. B. Berestetski'i, A. A. Komar, and M.A. Markov 
for useful discussions of the results of this paper. 
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