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Approximate solutions are given for the equations that describe the interaction of high-frequency and 
low-frequency waves propagating in nonlinear dispersive media under the assumption of a weak non
linear interaction. The number of high-frequency waves that participate in the interaction is arbitrary 
but only one low-frequency wave is considered. Resonance and nonresonance wave interactions are 
considered, as is the case of a weakly inhomogeneous medium. The results that are obtained are ap
plied to the interaction of light with plasma waves. 

1. INTRODUCTION 

THE present work is devoted to an investigation of the 
nonlinear interaction of waves that propagate in dis
persive media. The assumptions as to the nature of the 
nonlinear interaction are the following. 

We assume that in some medium there can propagate 
(in the linear approximation) two waves, low- frequency 
and high-frequency, and that the interaction between 
these waves is such that one high-frequency wave can 
decay into a low-frequency wave and another high-fre
quency wave, or that it can combine with a low-frequency 
wave to form a new high-frequency wave. Thus, if ini
tially only one high-frequency wave with frequency w 0 

and one low-frequency wave with frequency v are exci
ted, then by virtue of the nonlinear interaction there 
will be an infinite number of waves at the combination 
frequencies wn = w0 + nv, where n is an arbitrary in
teger. 

The problem of determining the redistribution of en
ergy between the various harmonics can be solved ap
proximately under the following assumptions: 1) the 
nonlinear interaction is so weak that the amplitudes of 
the waves change only slightly in distances of the order 
of a wavelength (in other words, the notion of a wave 
with a definite frequency and wave vector holds); 2) the 
high- frequency w is considerably higher than the low
frequency v. 

The basic equations are derived in Sec. 2. Section 3 
is devoted to an investigation of the symmetry proper
ties of the equations that are obtained and to the conser
vation relations and the consequences that follow from 
these. The fourth and fifth sections contain an investi
gation and solution of a particular problem. In the sixth 
section we extend the results to the case of weakly in
homogeneous media. As an example we consider the 
interaction of transverse electromagnetic waves and 
plasma waves in an isotropic plasma (Sec. 7). 

2. BASIC EQUATIONS 

Let us consider a uniform nonlinear dispersive med
ium in which two waves can propagate (we denote these 
by u and v); the equations that describe the propagation 
of these waves are assumed to be of the following form: 

140 

iJ2u IJ2u .. ~ 
--c12- = G1(x- x', t- t')u(x', t')dx' dt' + :Je,(u, v), (2 1a) 
~ ~ - . 

where :Je1 and :'fe2 are quadratic forms in u and v given by 
the relations 

{> 
:'fe1 (u, v) = -2(u, u, v), 

{>u 

{> 
:'fe2(u,u)= -2(u, u, v). 

{iv 
(2.2) 

Here, 2 (u, u, v) is the sum of the cubic terms of the 
Lagrangian which describes the nonlinear interaction 
between the waves. The dispersive properties of the 
medium are described by the kernels G1(z, T) and 
G2 (z, T). The dispersion relations, as determined from 
the linear theory, are of the following form: 

w2-c12k2+g1(k,{J))=0, v2 -cb<.2 +g2 (x,v)=O, (2.3) 

where 

As is evident from Eq. (2.2), the nonlinear interaction 
is a three-wave interaction in which two of the inter
acting waves are of type u and the other of type v. 

We shall solve this problem with two different sets 
of boundary conditions : 

a) At the boundary of the medium (x = 0) two waves 
are excited: type u with frequency Wo and amplitude ao 
and type v with frequency v and amplitude bo: 

u (0, t) = aoeiooot, v(O, t) = b0eivt. (2.4) 

b) At the boundary of the medium two type u waves 
are excited with frequencies Wo and w 1 and amplitudes 
ao and a1: 

v(O, t) = 0. (2.5) 

Because of the nonlinear interaction, as the waves 
propagate along the x-axis there appear u-waves with 
combination frequencies 

Wn = Wo + nv (2.6) 

and v-waves with frequencies mv. The problem consists 
of determining the dependence of the amplitudes of the 
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u and v waves on the coordinate x for the specified 
boundary conditions. 

In this work we shall limit our analysis to the case 
in which of all the low-frequency waves, only one is ex
cited with appreciable amplitude, the frequency v (this 
situation is realized if, for example, v-waves with fre
quency mv (m > 1) are highly damped in the medium). 

We now seek the solution of (2.1) in the form 

u(x, t)= Re {an(x)kn-'1'e(iw,t-ik.x>}, 

v(x, t) = Re {b(x)x-'heivt-ixx}, kn = k(wn), 
(2.7) 

where the relations between the frequencies and wave 
vectors are given by (2.3). 

Substituting Eq. (2.7) in Eq. (2.1) and taking account 
of Eq. (2.2) we obtain kn-1an"- 2ian' 

= h(n- 1, n) an-lb exp ( -ill.nx) + h(n, n + 1} an+lb* exp (ill.n+JX), 

x-'b" -2ib' = ,~h(n-1, n)an*_lanexp(ill.nx), (2·8) 

n 

where Lln = kn-1 + X - kn, 

By virtue of the assumption as to the weakness of the 
nonlinear interaction we can neglect the second deriva
tives of the amplitude in Eq. (2.8). 1 > As a result we ob
tain the following system of equations: 

-2ian' = h(n -1, n)an-lb exp(-ill.nx) 

+ h(n, n + i)an+l b' exp(ill.n+l x), 
(2.10) 

(2.11) 

In the case being considered, by virtue of the inequali
ties 

(2.12) 

it is reasonable to replace the dispersion relation k(w) 
by the linear approximation k(w)""' ko + k'(wo)(w- wa). 
Then the detuning is found to be independent of m: 

(2.13) 

In place of Eq. (2.11) it is convenient to use the fol
lowing relation, which follows from (2.10), (2.11) and 
(2.13): 

where 

b"- ifl.b' + Q2b = 0, 

4Q2 = I(LI2h2(n-, n_+ 1)-la+l 2h2(n+-1, n+) 

+ ~ lanl 2 [h2(n,n+1)-h2(n-1,n)]. 

(2.14) 

(2 .15) 

Here, k- and k+ are the limits of the allowable values 
of the wave vectors for the u-waves so that the u-waves 
with k < lL and k > k+ cannot propagate in the medium. 
In the majority of practical cases the volume occupied 
by the medium is bounded and the wave conversion 
process occurs over finite distances L, so that only a 
finite number of waves N(L) can actually be excited. 
Hence the boundaries of the spectrum can be neglected 
if the wave vectors of the initial u-waves remain suffi-

!)This procedure is equivalent to the first approximation in the 
Krylov-Bogolyubov method. 

ciently far from the boundaries: 

(ko- k-) /x, (k+- ko} /x > N(L). (2.16) 

In this case it is convenient to replace Eq. (2.15) by 
the expression 

4Q2 = ~ iani 2 [h2 (n, n+ 1)-h2(n-1, n)]. (2.17) 

Considerable interest attaches to the case in which 
the detuning t::. is small because it is only for conditions 
of resonance nonlinear coupling that one expects any im
portant redistribution of energy between wave modes. In 
the nonresonance case in which t::. is not small only a 
few waves can be excited. For this reason, in the non
resonance case one expects that only a few equations 
will remain out of the infinite system in Eq. (2.10). For 
the case in which the amplitudes of all waves are zero 
except for three or four, equations of the form (2.10) 
and (2.11) have been investigated in nonlinear optics and 
in the theory of nonlinear wave interactions in a plasma 
(cf.[l-31 ). A paper by Danilkin[41 has considered the in
teraction of high-frequency electromagnetic waves with 
electron plasma waves in a uniform isotropic plasma 
and has obtained a solution of equations of the form in 
(2.10) and (2.11) which is a particular case of the solu
tions obtained in the present work (cf. Sec. 4). 

3. CONSERVATION LAWS AND SYMMETRY OF THE 
EQUATIONS OF MOTION 

Two integrals of the motion follow from Eqs. (2.10) 
and (2.11): 

(3.1) 

(3.2) 

The first of these is the total energy of the system 
while the second is the total action of oscillators with 
frequencies { kn}. The second integral is essentially an 
adiabatic invariant. 

Furthermore, for the case of exact resonance (A = 0) 
the equations for the amplitude are invariant under the 
transformations 

x--+-x, b->--b. (3.3) 

A very useful feature follows: if the amplitude b(x) 
vanishes at certain points x = Xt, x2 then b(x) and, conse
quently an(x) are periodic functions with period 
2lx2-xtl. 2> 

On the basis of these properties of the equations of 
motion we can draw certain conclusions as to the nature 
of the redistribution of energy between the waves that 
are excited. 

If the band of allowed values of wave vector {kn} is 
bounded from below (kn 2: k-) the total energy of the 
u-waves is bounded from below: 

(3.4) 
and consequently 

Ev,;;;; E- fk__ (3.4') 

If the band of allowable values of the wave vector { kn} 

2)We note that Eq. (2.1) contains second derivatives which are not 
invariant against the substitution (3.3) when A= 0 so that the indicated 
invariants and the conclusions that follow are actually approximate. 
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is bounded from above (kn < k .) then the total energy of 
the u-waves is bounded from above: 

(3.5) 

and consequently Ev 2: E - Ik •. 
If k- ::s k ::s k + , then 

Jk_ .;;;;;; Eu .;;;;;; lk+. (3.6) 

4. RESONANCE CASE 

We now consider the case in which A = 0, that is to 
say, the exact resonance condition is satisfied. By vir
tue of the inequalities in (2.12) the coefficients h(n- 1, n) 
are weak functions of n and this makes it possible to 
find an approximate solution for the problem. 

a) Zeroth approximation. In the zeroth approxima
tion in K/kn the coefficients h(n- 1, n) are independent 
of n so that Eqs. (2.10) and (2.14) assume the following 
form: 

-2ian' = h(ban-1 + b•an+l), (4.1) 
b" + Q2b = 0, 4Q2 = h2 £la-J 2 - Ja+J 2] 

(an=O forn=n--1, n=n++1). (4.2) 

The general solution of Eqs. (4.1) is given by the 
following expressions: 

(4.3) 

where 
Ymn(x) = i(m-n)ei(m-n)~/m-n(hjBi), 

(4.4) X 

B(x)= ~ b(z)dz, ~(x)=argB(x), 
0 

and Jn(x) is the Bessel function. In this case, for an 
unbounded band of allowed values we find 

am0 =am(O). (4.5) 

For a semi- bounded band (an = 0 for n = l - 1 or n = l 
+ 1) -am0 = ± ~ak(0)[6(k- m)-ll(k + m- 2!)] (4.6) 

k=l 

and for a finite range of allowed values of { kn} (an = 0 
for n = l- 1 and n = l + N + 1) 

oo l+N 

am0 = .~ ~ak(0)[6(k-m-2sN)-Il(k+m-2l-2sN)}. (4.7) 
s=-oo k=l 

It is evident from these expressions that as IB(x) I in
creases a larger and larger number of high-frequency 
waves are excited and the squares of the moduli of the 
amplitudes of the excited waves are equilibrated on the 
average. 

As far as the amplitudes of the low-frequency wave 
are concerned we note that these depend sensitively on 
the form of the region of allowed values of wave vectors 
{kn} and initial conditions, as can be seen easily from 
Eqs. (4.2) and Eqs. (4.3)-(4.7). Thus, for the case of an 
unbounded band of allowed values of { kn} the quantity 
0 = 0 and the solution of equation (4.2) becomes the fol
lowing: 

b(x) = bo + bo'x, B(x) =boX+ 1/zbo'x", (4.8) 

for the boundary conditions in (2.4) we have b~ = 0 and 
for the boundary conditions in (2.5) b0 = 0 and b~ = hacia1 

and the amplitudes of the low-frequency waves increase 

linearly with x. If one takes account of the limitations 
on the regions of allowed values of {kn}, it follows 
from the energy conservation relation (3.1) that infinite 
growth of b(x) is not possible. In the case of semi
bounded systems bounded from below for allowed values 
of {k} we find 0 2 2: 0 and consequently b(x) vanishes 
many times. By virtue of the symmetry of Eq. (3.3) this 
means that b(x) and, consequently an(x), are periodic 
functions. If the band of allowable values of { kn} is 
bounded from above then b(x) increases exponentially. 
For the case of a finite range of allowed values of {kn} 
the nature of the variation of b(x) is determined only by 
the initial conditions. In accordance with the energy 
conservation relation (2.1) we find that b(x) is a bounded 
function. Consequently either b(x) vanishes at least two 
times and the wave conversion process is periodic in x 
or it does not vanish more than once, in which case 
IB(x) I increases with x and the conversion process, in 
accordance with Eqs. (4.3)-(4.7), leads to an equilibra
tion (on the average) of the energy distribution between 
the high-frequency waves over the entire range l ::s n 
::s l +N. 

c) WKB approximation. In order to solve the equa
tions for the u-waves (2.10) taking account of the depen
dence of the coefficients h(n- 1, n) on n we make use of 
the WKB method in conjunction with a Laplace trans
form. The general solution of this equation is given in 
the form of (4.3) where the coefficients a~ are deter
mined from Eqs. (4.5)-(4.7); the functions Ymn(x) are 
found to be given by the following expressions after 
some simple but tedious calculations: 

n 

exp(f.LJBJ) TIP! 
2iei(m-n)~ e-H.oo l=m 

Ymn(x)= (hmhn)'l• ~. ((pn2 -1) (pm2 -1)]'1•df.L. 
e-too 

(4.9) 

Here, 
Pn (f.L) + Pn -I (f.L) = -2i~t / hn, hn = 1/z[h(n- 1, n) + h(n, n + 1)], 

B(x)= ~ b(z)dz, ~(x) = argB(x). (4.10) 
When n = m, 

(4.11) 

In the case of a semi-bounded band and a finite range of 
allowed values of { kn} the coefficients hn are deter
mined by relations of the form in (4.6) and (4.7): 

±~ 

hn = ± ~ hk[6(k-n)-ll(k+n-2l)} (4.12) 
k=l 

and 
oo l+N 

hn = .~ ~ hk[6(k- n- 2sN)-Il(k+ n- 2l- 2sN)]. 
s=-ook=l 

In deriving Eq. (4.9) and the equations of motion 
(2.10) we have omitted terms proportional to {3' (x). In 
neglecting the dependence of the coefficients h(n- 1, n) 
on n these terms cancel each other and for the boundary 
conditions being treated here (2.4) and (2.5), it follows 
from Eq. (2.14) that f3'(x) = 0. It can be shown that the 
role of the omitted terms is unimportant in the more 
general case. The point is that if B(x) is an unbounded 
increasing function then {3(x) changes slowly and {3' (x) is 
negligibly small. However, if B(x) and all of the wave 
conversion processes are periodic then terms of order 
{3' (x) cannot have a noticeable effect on the process 
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within the length corresponding to one period. As is 
evident from Eq. (4.9), the functions Ymn(x) are asym
metric with respect to the transformation n - 2m - n 
if the coefficients h(n - 1, n) depend on n. This means 
that the process of exciting the u-waves for the boun
dary conditions in (2.4) is asymmetric with respect to 
n = 0. For example 

Y±t.o = l,(ii±dBI), h±l = (hoh±,)'"· 

It then follows that for small values of \B\ (h\B\ « 1) 
the ratio of the moduli of the amplitudes \ada -d is equal 
to \hJii_1j; for large values of \B\ (h\B\ » 1) the ratio 
\aJa-1\ ~ (\h-Jii1\) 112. Thus, when hn > hn-1 waves at 
higher frequencies predominate; when hn < hn- 1 waves 
at lower frequencies predominate. 

In the equation for the amplitude of the v-wave, if we 
take account of the dependence of the coefficients 
h(n - 1, n) on n in 0 2 contributions are also obtained 
from terms that are proportional to the square of the 
amplitudes of the unbounded waves 

4Q2 = \a-\ 2h2 (n-, n- + 1)-\a+\ 2h2(n+-1, n+) 

+ ~·· \anl 2 [h2(n,n+1)-h•(n-1,n)]. 
(4.13) 

If the dependence of the coefficients h(n- 1, n) on n is 
weak the difference in the square brackets in Eq. (4.13) 
can be regarded as independent of n. Denoting this quan
tity by q, we find that (4.13) is replaced by 

4Q2 = la-\ 2 [h2 (n-, n_+ 1)- q] -\~\'[h2 (n+ -1, n+) + q] + ql, 

(4.14) 
where I is the integral of the motion (3.2). 

The form of 0 2 becomes particularly simple when the 
limit of allowable values of {kn} can be regarded as 
infinite: 40 2 = ql. In this case the behavior of the am
plitudes of the v-wave is determined by the sign of q. 
When q > 0, with the boundary conditions in (2.4) we find 

b(x) =bocosQx, B(x) = (bo/!:.1) sinQx. (4.15) 

In this case b(x) and an(x) are periodic functions in x 
with period 21T /0. Under these conditions, since the 
maximum number of appreciably excited u-waves is 
approximately equal to 2maxh\B\, as follows from Eq. 
(4.5), then 

I bo I I bol 
Nmax~2h Q =2h~. (4.16) 

When q > 0 and for the boundary conditions in (2.5) 
bo' 

b(x)=bo'sinQx, B(x)=g-(1-cosQx), (4.17) 

so that in this case 
bo' = ao•a,h(O, 1), 

4h2(0, 1) lao• ad 
q[jao\ 2 + \ad 2l 

(4.18) 

When q < 0, with the boundary conditions in Eqs. (2.4) 
and (2.5) 

b(x)= bochl!:.!lx, 
bo 

B(x)= lQTshiQix (4.19) 

and 

b(x)= bo'shl!:.!lx, 
bo' 

B(x)= lQT[chiQjx-1]. 

In this case the amplitude of the v-wave and \B(x) I both 

increase exponentially in x. Taking account of the boun
daries of the region of allowable values of {kn}, in ac
cordance with Eq. (3.4'), we find that b(x) becomes a 
bounded function and that its behavior is extremely 
sensitive to the boundary conditions. 

5. NONRESONANCE CASE 

We now consider the case in which 6. "' 0, that is to 
say, the case in which the exact resonance condition is 
not satisfied. If the transformation 

b(x)-+ b1(x) = b(x) exp (-i~) (5.1) 

is made we find that the equations for the amplitude of 
the u-waves (2.10) are of the same form as the equa
tions for the resonance case so that the solution is 
given by Eqs. (4.3) and (4.9)-(4.12) if the following 
substitutions are made in the latter: 

"' B(x)-+B1(x)= S b1(z)dz, ~(x)-+~,(x)= argB,(x). (5.2) 
0 

We find that the equation for the amplitude of the 
v-wave (2.14) differ somewhat in form from the case 
investigated earlier. This difference leads, first of all, 
to a violation of the symmetry of Eqs. (2.10) and (2.14) 
with respect to the transformation in (3.3) so that now 
the periodicity of the conversion of the u-waves is no 
longer connected with the periodicity of b(x) and vice 
versa. For simplicity we limit the analysis to the case 
of an infinite band of allowable values of { kn} . In this 
case, in the equation (cf. Eq. (2.14)] 

b" - ill.b' + Q2b = 0 (5.3) 

the quantity 0 2 can be regarded as a constant, as in the 
preceding section, 

4Q2 = ql (5.4) 

so that the integration of Eq. (5.3) can be carried out 
trivially 

(5.5) 

where 
/.1,2 = 1/z[~ ± (~2 + 4Q2) '1•], 

ib'(O)+ ~b(O) ib'(O)+ l.,b(O) 
~= ~-~ •= ~-k 

(5.6) 

It is evident from this expression and from Eq. (5.1) 
that b(x) and b1(x) are oscillatory functions and that the 
amplitude of the oscillations either remains constant 
(when 40 2 > -6. 2) or grows exponentially (when 40 2 < 
- t:.. 2). In similar fashion we find the behavior of B1(x): 

(5.7) 

where 

Thus, Eqs. (4.9)-(4.12) together with Eqs. (5.2) and 
(5.5)-(5.7) represent a solution of the problem. In order 
to investigate in greater detail the effect of the detuning 
of the resonance on the wave-conversion process, we 
consider t:.. 2 >> 402 , in which case the detuning plays the 
decisive role in the wave conversion. Under these con
ditions 

gz 
1.,'~

~· 
~~~-~. (5.8) 
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For the boundary conditions (2.4) 

b(x)= b0e-i<l'x!ll., 
ibo . 

B,(x)= ~(e-'"'x-1), (5.9) 

I bo. fl:&l !J.x 
IB1 1=2 ~sm 2 , ~,(x)=argbo- 2 . 

From these expressions and from Eq. (4.3), (4.9), and 
(4.11) it is evident that the amplitude of the v-wave os
cillates slowly and that the process of conversion of the 
high-frequency waves is periodic with period 21T/~, 
where the maximum number of u-waves that can be ex
cited is given by 

Nmax:::::: 2max(hjB.j) =4hjbo/ !!j. 

For the boundary conditions in (2.5) 

b(x) = i~' (e-ill'xfll.- eill.•), bo' = h(O, 1)a0' a., 

B, (x) = bo'[Q-2(e-i!l'x/ll.- 1) - tJ,.-2(e-ill.x -1)]. 

(5.10) 

(5.11) 

(5.12) 

For small values of x (!2 2x/~ « 1) both terms in the 
rectangular brackets in Eq. (5.12) make comparable 
contributions. When x > ~ -1 the second term can be 
neglected so that 

b I 

B1 (x) = Q: (ei!l'x/ll. -1), 
(5.13} 

~~ {x) = arg bo'- Q2x I 2/:J.. 

In this case the amplitude of the v-wave oscillates 
with frequency ~ while the period associated with the 
conversion of u-waves is very large: 41T~/!2 2 where the 
maximum number of significantly excited u-waves is 

(5.14) 

In reviewing the behavior of the wave-conversion 
process in the nonresonance case we may note the fol
lowing. 

a) If a u-wave and a v-wave are excited at the boun
dary x = 0 [the condition in Eq. (2.4)], since waves at 
the combination frequencies wn are formed with wave 
vectors that differ from the characteristic k(wn), where 
the magnitude of the detuning ~ increases with the 
number of the combination wave, the conversion of the 
u-waves is periodic. The value of the period and the 
maximum number of appreciably excited waves is in
versely proportional to the magnitude of the detuning ~. 
Under these conditions the amplitude of the v-wave os
cillates with frequency !2 2 /~ « ~. 

b) If two u-waves are excited at the boundary [the 
condition in Eq. (2.5)] then there can be a very large 
(as compared with the preceding case) number of 
u-waves at the combination frequencies by virtue of the 
fact that the amplitude of the v-wave b(x} contains a 
term which is proportional to e~x, indicating the exci
tation of a v-wave with wave vector K' = K + ~ which 
satisfies the resonance condition kn = kn-1 + K'. 

6. GENERALIZATION TO THE CASE OF INHOMO
GENEOUS MEDIA 

If the medium is inhomogeneous its dispersion and 
nonlinear properties depend on the coordinate x. In this 
case even the solution of the linear approximation to the 
problem of wave propagation becomes difficult. Under 
the assumption that the inhomogeneity is weak (that is to 

say the properties of the medium do not change greatly 
in a distance of the order of a wavelength} an approxi
mate solution to the linear problem can be obtained 
from the WKB approximation: 

u.,(z, t) = a.,k-'i•(w, x)exp [ iwt + i ~ k(w, z)dz J, 
0 

Vv(z, t)= bvx-''•(v, x)exp[ ivt.+ i ~· x(v, z)dz]. 
. 0 

(6.1) 

The equations for the amplitudes aw and b11 are of the 
same form as Eqs. (2.10) and (2.11) but now the coeffi
cients h(n- 1, n) depend on x: 

-2ian' = h(n- 1, n; x) ban-! exp{ -i ~ !:J. (z)dz} 
0 

+h(n, n+ 1; x)b'an+1 exp{i ~ !!(z)dz }. 
0 

(6.2) 

-2ib'= ~h(n-1,n;z)a;_,anexp{i~ !:J.(z)dz}. (6.3} 
n 0 

Here, as before,~ (x) = kn(x}- kn-1(x)- K(x). 
The difficulties that arise in the investigation of these 

equations in general form are so substantial that we are 
forced to consider certain particular cases in which the 
solutions are especially simple. Under the assumption 
that the coefficients h(n- 1, n; x) can be written in the 
form of a product of two functions, one of which depends 
only on n and the other only on x, we find that the varia
bles in Eq. (6.2) can be separated. We shall limit our 
analysis here to this case. Then 

h(n -1, n; x) = h(n -1, n)qJ{x). (6.4) 

Transforming to the new variable 
:t 

z = ~ cp(y)dy, (6.5) 

and using Eqs. (6.2) and (6.3) we find 

-2ian'=h(n-1, n)b 1an-t+h(n, n+1)bt'an+t. (6.6} 

b"-i!:J.b'-Q2b=O, b1 (z)=b(z)exp[-i~!!(y)dy]. (6.7) 
0 

The solution of the first of these equations is given 
by the relations in (4.3) and (4.9)-(4.12). As far as the 
second equation is concerned we find that under the as
sumption of an unbounded band of allowable values of 
{ kn} the coefficient !22 is a constant: 

4Q2 = ql; q = h•(n, n + 1)- h2 (n -1, n). 

Although the solution of this equation in general form is 
not known, the investigation in any given case is not 
particularly complicated. For example, when the reson
ance detuning is important [~ (z} » !2 2 ] the solution of 
the equation becomes 

(6.8) 

Qualitatively, the wave conversion process in this case 
is not very different from that investigated in the pre
ceding section. 
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7. INTERACTION OF HIGH-FREQUENCY ELECTRO
MAGNETIC WAVES WITH PLASMA WAVES 

As an example we consider the interaction of high
frequency transverse electromagnetic waves with plasma 
waves in an isotropic plasma. The particular solution of 
this problem is contained in papers by Danilkin. [4 ' 51 

Assume that at the boundary of a plasma (at the plane 
x = 0) there is excited an electromagnetic wave with 
frequency w and a plasma wave with frequency v: 

u(r, t) lx~o = uo exp [i(wt + kouY + ko,z) ], 
(7 .1) 

v(r, t) lx~o = Vo exp [i(vt + xyy + x,z)]. 

As a result of the nonlinear interaction, during the 
course of the propagation of the waves there will appear 
waves at the combination frequencies wn = Wo + nv with 
wave vectors kn = k(wn) where kny = kay + nKy and 

knz = koz + nKz· If damping is neglected, dispersion 
relations are of the following form: 

(7 .2) 

where We = (47Te 2 pm-1) 112 is the plasma frequency, m is 
the mass, e is the charge VT is the mean thermal veloc
ity and p is the electron density. 

We note that neglect of the damping of the plasma 
waves is valid only when v >> KVT· When v ~ KVT the 
Landau damping becomes important so that the neglect 
of the damping is allowable only for long plasma wave
lengths. Under these conditions v f>:J Wo. Our analysis is 
restricted to these waves. 

The original equations and the derivation of the equa
tions for the amplitudes of the interacting waves can be 
found in the papers by Danilkin. [4 ' 51 We choose the fol
lowing amplitude normalization: 

[ -.,._ew-'e:-X-:-· -:-_w_n-:2 _ J 'I• , 
Un = ean 2mc2v2 kn COS 9n 

(7 .3) 

x [ ew,2 1 ]'I• 
Vv=-bv --- , 

x 6mur2 x cos <p 

where en and q; are the angles formed by the wave vec
tors kn and K with the x-axis; then these equations can 
be written in the following form: 

-2ian' = h(n- 1, n)an-t b exp( -ib.nx) 

+ h (n + 1, n)an+t b' exp (ib.n+tx), 

- 21b' = ~ h(n- 1, n)aL1 an exp(ib.nx), 

(7 .4) 

where 
X We3 ( e \'/, 

h(n-1, n) = ----.-- - [cos Bn-t cosBncos<pkn-tknx]-'1•, 
2 l'6 v 2 c2uT m 1 (7 . 5) 

b.n = kn - kn-1 - X. 

If the frequency of the electromagnetic wave w is much 
higher than the plasma frequency then wo » v so that 
k » K and the condition in (2.12) is satisfied. Further
more, under these conditions the dispersion relation 
(7 .2) does not differ from the linear relation up to ac
curacy of order (w~/w~). Since the system of equations 
in (7 .5) coincides with a system in (2.10) and the condi
tions are satisfied for which the analysis applies to the 
latter, we can apply all of the results obtained in the 
earlier sections. In particular, if koy = k0z = Ky = Kz 

= 0, then Bn = q; = 0. If K = v/c f>:j we/c the resonance 
condition is satisfied and ~n = 0. In this case the ampli
tudes an(x) are determined by the relations in (4.3), 
(4.7) and (7 .9). 3 J We find that the amplitude of the plasma 
wave grows exponentially if, in accordance with Eqs. 
(4.2), (4.14) and (4.19), at the initial stage we can neglect 
the limitation from below on the allowable values of 
{kn}: 

b(x)=bochJoJx, 0 2 =- !6[ :. c~:: (:YJ 1~r 
In this case 

B(x) = boQ-I sh IOJx. 

If K ""- v/c the resonance condition is not satisfied, ~n 
= ~ ""- 0 and the solution for the amplitude of the plasma 
wave is given by Eqs. (5.4)-(5.6). 

The author is indebted to G. Ya. Lyubarskii:' for valu
able comments. 
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3)The paper by Danilkin[ 4 ] contains a solution for the resonance 
case in the zeroth approximation (cf. Sec. 3) without considering any 
limitation on the allowable values of kn . 


