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We consider spin waves and correlation functions in a two-sublattice Heisenberg ferromagnet at tem
peratures below the transition point Tc. We obtain the damping of the spin waves and show that at 
large wavelengths the damping is small T < T c, if the magnetomechanical ratios of the sublattices 
are equal (J.1.1 = J.1. 2). When J.1.1 f J.1. 2, the damping of the thin wave with wave vector k = 0 is not equal 
to zero and is proportional to (J.1.1 - J.1. 2) 2. The width of the ferromagnetic resonance in a ferrimagnet 
is analyzed qualitatively and estimated quantitatively. 

1. INTRODUCTION 

As is well known, in a ferrimagnet, a model of which 
consists of two spin sublattices between which there is 
antiferromagnetic ordering, there exist two branches of 
collective excitations. One of them is analogous to spin 
waves in a ferromagnet, and the other corresponds to 
optical oscillations in the spin system. In the usually 
considered region of low temperatures (T « Tc, where 
Tc -transition temperature) the occupation numbers of 
the optical excitations are exponentially small and there
fore the influence of the latter on the kinetics of the spin 
waves can be neglected. In this case the relaxation 
processes in ferrimagnets and ferromagnets do not 
differ at all qualitatively, provided the magnetomech
anical ratios for the spins of the different sublattices 
are equal (JJ.l = J.1. 2) or provided there is no external 
magnetic field. Calculations of spin-wave damping at 
low temperatures, performed for a ferromagnet but 
qualitatively suitable also for a ferrimagnet, are given, 
for example, in [l-4J. 

The damping of a spin wave with wave vector k = 0 
determines the line width of ferromagnetic resonance 
absorption. It should be noted that the width of the 
resonance curves in ferrite single crystals is connected 
with certain processes [3' 5J. Different causes of the line 
broadening of ferromagnetic resonance (FMR) are dis
cussed in numerous theoretical papers. The role of de
fects in an inhomogeneous magnetic structure, which 
cause the coupling between the homogeneous precession 
excited at resonance (k = O) with the inhomogeneous spin 
waves (k f 0) has been explained in sufficient detail. 
Clogston et al. [s] considered the processes of scatter
ing of homogeneous precession by microscopic magnetic 
fluctuations caused by the disordered distribution of the 
magnetic ions over the crystal-lattice sites of ferrite
spinels. Kittel et al. [7J investigated relaxation proces
ses with participation of impurity magnetic ions having 
a large spin-lattice relaxation frequency and exchange
coupled with the spin system. A strong broadening of the 
resonance curves in samples with rough surface can be 
attributed [s] to the excitation of spin waves with k on the 
order of the reciprocal dimensions of the roughnesses. 

The processes listed above make an appreciable 
contribution to the line width, but their influence can be 
weakened to a considerable degree [9 , raJ by performing 
the investigations on yttrium iron garnet single crystals 
grown with an insignificant impurity content (less than 
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10-7) and with well polished surfaces. The nature of the 
apparently "true" line width observed in this case has 
not yet been sufficiently well studied. The processes of 
interaction between the homogeneous precession and the 
spin waves occur also in an ideal ferrodielectric (spin
spin relaxation) [1, 2:;. However, the results obtained by 
considering the mechanisms of spin-spin relaxation re
laxation at low temperature [l, 2J and extrapolated to 
room temperatures give a line width which is smaller 
by several orders of magnitude than necessary to ex
plain the experiment [llJ. 

In the vicinity of the Curie point, the line width in
creases sharply [5 ' 9J. A hypothesis was advanced [7J that 
such an increase is due to relaxation processes connec
ted with thermal fluctuations of the spontaneous mo
ment. The contribution of the fluctuations of magnetiza
tion to the line width was taken into account phenomeno
logically[12' 13] and it was shown under certain assump
tions that the corresponding broadening is proportional 
to (Tc - T) -l/2 . A microscopic approach makes it possi
ble to explain the role of the spin waves and magnetiza
tion fluctuations in the damping of the homogeneous 
precession, and to obtain for an ideal ferromagnet near 
Tc an analytic expression for the line width as a function 
of the temperature and the demagnetizing factors of the 
line shape L1 4J • 

In the present paper we investigate the influence of a 
two-sublattice structure of an ideal ferrodielectric on 
the kinetics of the spin waves in a broad temperature 
interval. It is clear from physical considerations that 
the structure of the ferrite cell, which contains several 
magnetic atoms with uncompensated spin does not 
change the concluded existence of long-wave excitations 
in the system at all temperatures below critical [l5J. 
However, the temperature and frequency dependence of 
the damping of the spin waves in the ferrite can differ 
qualitatively from the corresponding dependence in a 
ferromagnet. This difference is connected with the fol
lowing: 1) the existence of optical excitations, scatter
ing from which, just as scattering from spin waves, is 
quite significant at T ~ Tc; 2) the spontaneous-moment 
inhomogeneity, which is proportional to the difference 
of the spontaneous moments of the sublattices and which 
influences the fluctuation scattering; 3) the inequality 
of the magnetomechanical ratios for the spins of the 
different sublattices (J.1.1 f J.1.2), which leads to an addi
tional damping of the spin waves in an external magnetic 
field H. When J.1.1 f J.1.2, the frequencies of the inhomo-
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geneous spin precession in the sublattices are different. 
But the exchange coupling prevents rotation of spins 
with different frequencies. As a result, the unique mu
tual "friction" of the sublattices in the system can lead 
to a finite damping of the spin wave even at k = 0 in the 
absence of magnetic-anisotropy interactions between the 
sublattice spins. The exchange interaction Vo should 
greatly decrease these broadening effects. For the 
reasons listed above, the relative role of the process of 
spin-wave scattering by the fluctuations of the spon
taneous moment and by the collective excitations is 
different in different temperature and magnetic -field 
regions. The main purpose of the present paper is to 
consider these relaxation processes and to express the 
corresponding broadenings in terms of the microscopic 
parameters of the two-sublattice system. 

The analysis is carried out with the aid of the tern
perature diagram technique developed in[15 ' 16:J, for tem
peratures T < Tc and magnetic fields uH << Vo, when 
antiferromagnetic ordering is present in the system and 
the concept of spin excitations is meaningful. 

2. DIAGRAM TECHNIQUE FOR A TWO-SUBLATTICE 
SPIN SYSTEM 

We consider a two-sublattice system, confining our
selves to the case of a magnetically-isotropic crystal. 
We denote by r1 and r2 the sites of the first and second 
sublattices and assume that antiferromagnetic interac
tion exists between the sublattices. We consider the 
case when the interaction inside the sublattices is small, 
as is the case, for example, in an yttrium iron garnet. 
The Hamiltonian of such a system, placed in an external 
magnetic field H, is 

( 1) 

where Sr1 and Sr2 are the spin operators at the sites r1 
and r2; Jl1S1 and Jl~2 are the magnetic moments, and 
V(rl- r2) > 0. 

We rewrite ;"/(in the form ,/fo + .!(', 

;;c, =- 2j V(r1-r2)u,u2- 2jSr,( !!2H- L; V(r1-r,)u1) 
r1r2 r2 r 1 

- 2j Sr, ( !'1H- 2j V(r,- r2)U2 ), 
rl l'z 

Here Ho corresponds to the zeroth approximation of the 
self-consistent field [15 ' 16], and a1 and a2 denote the mean 
values of the spin moments of the sublattices. 

The free energy F in the zeroth approximation of the 
self -consistent field is equal to 

~Fo = - (N,N2) •;,(Y1 - ~!!,H) (y,- ~!!2H) 
~Vo 

_ ,y, In sh [(S, + 1/2) (y1a1)l_ N2ln sh[(S2 + 1/2) (y2a 2)] . 

sh [ (y1ai) /2] sh [ (y2a2) /2] ' 

Y1 = ~(~11H- v,<'2>u,), Y2 = ~(1-',H- V~21> 0"1), a;= Y;IY;, j = 1,2. 

(2) 
Here{:l = 1 IT; N,, JY2- number of sites in the sublattices; 

Vo2 = v,<''l Vd21l, V~12> = 2j V (r,- r,), v,<21l = 2j V (r1- r2), 
r, 

(12) (21) "' N 1V0 = N2V0 = .::J V(r1 - r2). 

The mean values a1 and a2 of the spins in the sub
lattices are obtained from the condition that the free 
energy F as a function of the variables Yj and Oj be a 
minimum: 

aF 
-=0, 
ay; 

a ( F- ~ 2j t..;N;a;2 )/ Ba; = 0, 
;=1,2 

(3) 

where "-j are undetermined Lagrange multipliers. The 
system of equations (3) can be rewritten in the form 

u, = (~!!zll- y,)/~v,<''l= a,b,(y,a,), 

u;y; + ~'J...;u; = 0, a;'= 1. 

Here 

b;(Y;) = (S; + 1/z)5'th[ (S; + 1/z) Y;] - 1/zcth (1/zY;). 

(4) 

(5) 

The system of equations (5) determines the equili
brium configurations of the spins Oj = ajlaj [17J. Let the 
field H be directed along the z axis and let the spontane
ous moments of the sublattices be such that N1a1 > N 2a2 • 

Then ar =-a~ = 1 and aj = af = 0, provided the follow-

ing inequality is satisfied [l7] 

(6) 

We confine ourselves to the case of weak fields H, when 
the inequality (6) is satisfied. Then antiferromagnetic 
ordering will take place in the system. The magnetiza
tion M in the system is in this case equal to 

(7) 

where 

Uj = b;(Y;), !/1 = ~(/l-!H + V~12>a,), !/2 = ~(-!!zH + v~2!) crz). (8) 

In the absence of a magnetic field, H = 0, it follows 
from (8) that a second-order phase transition takes 
place in the system at a temperature T c equal 

T, = 1/a[S,S,(St + 1) (S2 + 1)lf'Vo. 

In accordance with (2), (7), and (8), the thermodynamic 
quantities vary near Tc, in agreement with the phenom
enological theory. In particular, when H = 0 the magne
tization M increases in proportion to (Tc- T) 112 . 

To calculate the next terms of the expansion of F, we 
employ the diagram technique described in [6]. Each 
connected diagram can be represented, in accordance 
with[16J, in the form of single-cell blocks joined by the 
interaction lines V(rl - r 2). Each interaction line joins 
the vertices of blocks belonging to different sublattices, 
either S~ or S~, or Sf with St where S:!: = (SX ± iSY)/-/2. 
The Fourier components of the single-cell blocks, cal
culated in [16], must now be labeled with the number of 
the sublattice. Accordingly, the Green's functions 
G(iwn), used in [16], where iwn = 2JTinT, have for each of 
the sublattices the form 

G!(iwn) = (y,- i~wn)-', Gz(iwn) = -(y2 + [~wn)-', (9) 
where the Yj are given by (8). 

The spin temperature correlation functions are de
fined as: 
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Here T-T-ordering symbol, Sll(t) = exp(Jt0t)SIIexp(-Jt'0 t); 
the mean value ( ... ) denotes the trace of po(. . . ) with 
Po= exp(-W!Co)/Tr exp(-{3:Jta): land j are the sublattice 
indices. 

The function K(Zj) is represented by the aggregate of 
1/fl 

all the singly connected diagrams with two vertices. 
Denoting by L: (Zj) the aggregate of all the irreducible 

IIJ.l 
diagrams. we can write the correlation functions in the 
form 

Here 

l, p, m, j = 1. 2; 

and summation over pairs of identical indices is implied. 
Solving the system (10) with respect to K(Zj), we ob-

t . 1/fl 
am 

K~\k, iwn) = 2:~ (k, iwn)/D-+(k, iwn), 

K<_!l (k, iwn) = {2:(2~ (k, iwn) + ~V~Zt) [2:~ (k, iwn)L~ (k, iwn) 

- L.<:':;_(k, iwn)L~~(k, iwn)]}/D-+(k, iwn), (11) 

where 
D-+(k, iwn) = 1 + 2:.<:~ (k, iwn) · ~vf'l + 2:~ (k, iwn) · ~V~2) 

+ p;<_!l (k, iwn)L_<:~ (k, iwn)- 2:_<:~ (k, iwn) 2:~~ (k, iwn)) ~2V~2) V~'l. 

The remaining K(Zj) are obtained from (11) by permuting 
1/fl 

the indices of the sublattices and interchanging the spin 
indices. 

It was shown earlier L:16J that in the case of a large 
interaction radius, and also in the case of low or high 
temperatures. it is sufficient to confine oneself for L: 11 J.l 
to the simplest diagrams (see, for example, =16], Figs. 
1a and b). In this approximation we have 

2:~~'(k,iwn)= b1G1 (iwn), :S~\k,iwn)=- b,G,(iwn), 

:S,~t) (k, iwn) = bnobt', :S~~) (k, iwn) = bnobz', 

:Sv~2)(k, iwn) = :sJ':) (k, iwn) = 0, (12) 

where bj are given by (8), Gj by (9), b{ = &bj(Yj)/ayj, and 

Onm is the Kronecker symbol for the corresponding 
frequency difference. Substituting (4) in (11) we obtain 
for the correlation functions 

.(!14 • . _ b,G,(iwn) 
1'-+(k, 'wn)- 1 + ~2b,bzGt(iwn)Gz(iwn) V<'j;'JV(~) 

(it) Onobt' 
K, (k, iwn) = 1- "'b 'b 'V<''lV<ZtJ , 

p 1 2 k k 

K (22) k iw _ , Onobz' 
" ( ' n)- 1- "'b· 'b 'V<"lV<zt) 

p 1 2 k k (13b) 

The excitation spectrum is determined by the poles 
of the analytic continuation of K(k, w) of the correlation 

+ 

FIG. 1. 

function K(k, iwn). Replacing in (13a) iwn- w, w > 0 
and recognizing that K_.(k, iwn) = K+-(k, -iwn), we ob
tain for the spin-wave spectrum in this approximation 

~w" = Yt ~ Yz + [ ( y, ~ Yz )'- ~'b,b, V~"l vf'l r 
~~k = Yz; Yt + [(y' ~Y·Y- ~'b,b,V~2) v~') r. (14) 

The excitation spectrum (14) coincides with the spec
trum predicted by the phenomenological theory. The 
first branch wk is analogous to the spectrum of the or
dinary ferromagnets and assumes for small k the form 

wk =vH + bVo(k2Ro2 /3); 

b = .:.(N_,_N-'-2 ):...''_' b....:1_b2_ 

N,b 1 - N2b2 '· 

R02= ro2(UctUcz)'!, = ~r2V(r) I ~V(r), 
r r (15) 

v cj is the volume of the unit cell of sublattice j. 
The second branch wk is connected with the presence 

of two sublattices and is analogous to the optical oscilla
tions in the spin-moment system. At small values of k 
we have 

(16) 

In (15) and (16) it is assumed that (b1ba/b)Vo » J.ljH, as 
is usually the case in ferrites. . 

To calculate the next terms of the expansion of L:~W 
it is convenient to introduce in lieu of the initial inter
action V effective interactions that take into account the 
particle correlation in the presence of spin waves: 

-~V~~ (k, iwn) = ~V~12J Kf:l.~ (k, iwn) ~V~21), 

~ve> (k, iwn) = ~V~12J - ~l'~12J K~ (k, iwn) ~1'~12). (17) 

The remaining v~W are obtained from (17) by inter
changing the indices of the sublattices and the spin in
dices. The interaction v(Zj) joins the vertices sz of the 

zz 
sublattices l and j and is represented by the dotted line. 
The interaction v~lj) joins the vertex s • in sub lattice l 
with vertex s-in sublattice j, and is represented by a 
solid line. 

3. SPIN-WAVE DAMPING 
.6 

The damping of the spin waves is determined by the 
imaginary part r(k) of the denominator of the correla
tion function K- + (11). The first terms of the expansion 
of L;(Zj) in the parameter r 03 , shown in Fig. 1, make the 

IIJ.l 
following contribution to the spin-wave damping: 

_ "". sk2ck2 { bt'bz ( V _ V )3 
r,(k)- :riLJ 1- "'b 'b 'V' N b 'lk k-q q 

q p12.k-q 11 

b2'b1 2 2b,'bz' + Nzbz ('lk-1Vk-q-Vq) + (N,N,)'f, [VqVk-q(1Jk-1)('1k-1-1) 

+{Vk-q- Vq) 2] ~vk-q }b(wq- rok), (18) 

where 
s" = [(y,-~rok)/~(wk+;;;k)J"', ck= [(y,+~wk)/~(wk+rok)]'", 

'lk = (sk/c") (N,bt/Nzbz) '''• Vk = (V ~12lV!1l)'''· 
The damping determined by formula (18) is connec

ted with the scattering of the spin waves by the fluctua-
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tions of the moment sz. In the absence of a magnetic 
field, or when J-L 1 = J-L 2, it decreases in proportion to k5 • 

At low temperatures, the damping r 1 is exponentially 
small, and increases on approaching the transition point. 

At low temperatures, an important role is played by 
the damping described by the next terms of the expan
sion in r 03 and corresponding to the scattering of spin 
waves by one another. The diagrams of this approxima
tion are shown in Fig. 2. This figure does not show 
diagrams describing the corrections to the first ap
proximation (18), for in the case of single -sublattice 
systems[1s] these corrections do not change the depen-
dence of the damping on the wave vector k. . 

The corrections of second order in r 03 in ~(ZJ) make 
llJ-L 

the following contribution to the spin-wave damping: 

r,(k) = _:rt_ :2; A112(k, p + q- k; p, q)[n(wPH-•) 
2N1N2 pq 

- n(wk + Wp+q-k)J[t + n(•wp) +n(wq)]i\(wk+wp+q-k- Wp- Wq) 

+-n-2; A122 (k,p +q- k; p, q)[n(~PH-k) 
N,N, pq 

- n(wk + ;;;PH4 )][1 + n(wp)+-n(~q)}o(w•+ ~+•P-k- Wp- ~q)!(19) 

where the amplitudes of the scattering of the spin wave 
by the first and second branches of the excitations are 
given respectively by the expressions 

All (k, p + q- k; p, q) = SkCp+q-kSpCq (Vk-P- 'lk-IV p) 
+ skrp+q-kCpSq (Vk-q- T]k-1Vq) + CkSp+q-kCpSq (Vk~p--:- T]kVp) 

+ CkSp+q-kSpCq (Vk-q- T]k Vq), 
A,,(k, p + q- k; p, q) = SkSp+q-kSpSq (h-P- T]k-1Vp) 

+.SJr.Cp+q-kCpSq (Vq+p- T]k-IV p+q-k) + CkSP+q-kSpCq (Vq+p- 'l]kV p+q-k} 
+ CkCP+q-kCpCq (Vk-p- T]k V p); 

n(w) = [exp (j3w) -1]-1• {20) 

We can write down analogously the damping r2(k) of 
the optical branch of the excitations. In this case 
A11- A22 = A11, A12- A21 = A22, and w- w. In the 
case of small momenta, Au and A12 are given by 

Au(k,p+q-k;p,q)=u11L2( V~02 
)[ 2k(p+q-k) 

_ u( u1uz )''' (J-Lt- l!z)H (k' + (p + q _ k)') J' 
b1b2 Vo 

A 12 (k, p + q - k; p, q) = 

=u1u.( V~o')[2k(k-p-qJ+(2- :,+ :)(kp)J 

( U11L2 )''' + u blbz (1!1- l!z)H; 

N1b1 N,b, b2 

u = Ui + IL2, Uj = Nib,- N,b, , lL2 = N,bl- N,b, 'Ullb.! = b;b, (21) 

It follows from (19) that when T « (b1b:/b) Vo the 
damping of the spin waves due to the scattering by the 
optical branch is exponentially small. In this region of 
temperatures, at J-L 1 = J-L 2' the expression for r 2 is 
analogous to the corresponding expression for the 
single-sublattice system [lsJ 

(kRo)' b'l, Vo ( 3T )"' 
a) Wk >T: r,(k) = i2r;T (b,b,)' 4:rtVo · Z•;,(J31!H), (22a) 

(22b) 

{ ln2 (T/wk) 
· ln2 (2bVo/wk) 

for T<;;;; 2bVo 

for wk<;;;; 2bVo~ T, 

where 

Za(x) = ~ n--<>exp(-nx). 
n=t 

If J-L 1 f J-L 2 the damping of the spin wave does not van
ish even when k = 0. From (19) -(21) it follows that in 
the temperature interval 

!!H<;;;;T<;;;;2bVo 

the damping of the homogeneous precession is equal to 

r,(O)=~ (u,u,)':•u'(!_)S( (J-Lt-_f-Lz)H Ylln(J3f!H)I. (23) 
64nr06 (b1b2 ) ;, V0 V0 

At temperatures T?; (b1b/b)Vo, it is necessary to 
take into account the scattering of the spin waves by the 
optical excitations. It is seen from (21) that this addi
tional damping mechanism does not change the functional 
dependence r2(k) ~ k 2 wk if J-!1 = J-!2- In the case of in
equality of the magnetomechanical ratios, the scattering 
by the optical excitations also yields a damping propor
tional to wk(J-L 1 - J-L 2) 2H2V02. Since it follows from ex
periment that IJ-L1- J-L2IHVo1 < 10-2, the relative spin
wave damping r 2(k)/wk for long spin waves, kRo « 1, is 
small when T « Tc· On the basis of ( 19) -(21) we can 
draw the same conclusion concerning the damping of the 
long-wave optical excitations. 

When the transition point is approached, the fluctua
tion damping r 1(k) and the damping r2(k) increase. To 
calculate r 1(k) and r 2(k) when T- Tc, we determine 
the values of al(T) and a2(T) which enter in expressions 
(18)-(21). By solving Eqs. (8) at temperatures and 
fields such that T = (Tc- T)T(;1 « 1 and J-LHT(;1 · T-312 

« 1, we get 
f N 2 )'/, ( N1 )'I• 

o1 = b1 ;::;, a1y1 :::::; , - (a16-r) '''· az = b,:::::; a,y,:::::; -N (a,e-r)'"· 
I N, 2 

{24) 
where e = 6(N1N2 ) 'l•a 12al (N 1c2a12 + N2c1a,Z)- 1, a;= S;(S; + 1)/ 3, c; 

=a1 (6a; + 1)/ 10. 

Substituting in ( 18) the expansions (24) and the corre
sponding expansions for Ck, sk, and 1Jk at kRo << 1, we 
get 
ri(k) = T,r0- 3,-'h(yt(kR0)'+ y2 (kRo)(([!1 -[!,)HT,-'+y,(kRo)2-r'") 2]; 

7 1 u,u, )''• 1 3 ( u,u, )'" , y, = 14"!;:;-\_e_ (a,a,)'l,, yz = ~ - 6- (a1az) ''• 

1 1 e )''• u 
y,=6\u,u; (a 1a,)'f,· (25) 

It is seen from (25) that the damping increases 
rapidly near Tc· However, in the region of small k, 
(kR0 ) 2 < T, the relative damping r1(k)/wk is small. 

The damping r 2(k) in the considered region of tern
peratures and fields can be written, in accordance with 
(19)-(21), in the form 

r 2 (k)= 1; 1r0-•-r-2wk(kR0 ) 2 + £,ro-"-r-3wk(f!,- !l2 ) 2H2T,-2, (26) 

where ~1 and ~2 depend on N1, N2, S1, and S2, and are 
slowly varying (logarithmic) functions of (kRo) 2 and 
T-1/2J-LHT(;1. For example, the contribution made in (26) 
by the mutual scattering of the spin waves is described 
by the second expression of formula (22b): 

r,(k) = ___!c___ (u,IL2)''• (kRo)• ln2 (kR0 ) for (kRo)'> [!HTc-1r'~•. (27) 
8n3r06 (a,a,) 'I• (fh)''• 
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It follows from (26) and (27) that, just as in (2 5), in 
spite of the growth of the damping near Tc, for the 
longest spin waves with k < R;1r 112 the relative damping 
is small when T < Tc· 

We have considered above the first two approxima
tions in the parameter r;3r-112 at temperatures near Tc 
such that this parameter is small. It can be assumed, 
however, that, just as in the case of a single -sublattice 
system, the dependence on k of the fluctuation damping 
and of the damping due to the scattering by the spin 
waves and optical excitations will have the same char
acter also in higher order in the given parameter. In 
this case, in the absence of a field, the relative damping 
in the region under consideration is given by [1sJ 

Im w/ J) = f 1 (r0-3,;-'h) (k2Ro'/r:)'" + f,(r0- 3.,;-'h) (k2Rri'/r:)ln2 (kR0). (28) 

It is seen from (28) that in the region of applicability of 
the self-consistent field approximation the damping of 
the spin waves is small when kR0 < r 112 . The quantity 
RoT -1 I 2 represents in the self -consistent method the 
spin correlation radius Rc(r) near Tc· It can therefore 
be assumed that the relative damping is small also out
side the region of applicability of the self -consistent 
field method, provided 1/k « Rc(r). If Rc(r) ~ T-213, as 
is indicated by phenomenological considerations, then 
lm w/w « 1 when (kRo) 2 « T413 [15]. 

4. WIDTH OF FERROMAGNETIC RESONANCE IN 
FERRITES 

We shall make a few remarks concerning the width 
of the FMR, i.e., the damping of the spin wave with 
k = 0. The damping of the homogeneous precession is 
determined by r(o). 

Without taking into account the effects of anisotropy 
and magnetic interaction, at J.J. 1 = J.J. 2 the damping r(o) 
= 0, as follows from (22), (23), (25), and (26). The 
difference of the magnetomechanical ratios of the sub
lattices leads to a nonzero width of FMR also without 
account of the anisotropy interactions in the two-sub
lattice system. In this case, when T « (b1bjb)Vo, the 
damping r(o) is given by (23). Near Tc, in accordance 
with (26), the FMR width is proportional to 
(J.J. 1 - J.J. 2 ) 27 -3w 3T~2 , where w = J.J.H. It is possible to esti
mate more accurately the order of magnitude of r(O) if 
u 1 >> 1 and u2 >> 1 (for yttrium iron garnet u1 ~ 5.7 and 
u2 ~ 4.3 when T « 1). The main contribution to the 
integrals of (19) is then made by small q2 5 qg, (qoRo) 2 

= 3(u1, u2) 1-. When q2 5 qg, the quantities entering in 
the integrands are of the following order of ma~nitude: 
wq ~ bVo(qRo)7'3, wq ~ (b1bJu1u2l 112Vo, Cq ~ u~ 2, and 
sq ~ uY2. As a result, in the temperature regwn 
T » bV0 » (b1b:/b)V0 the processes of scattering by 
spin waves and optical excitations make contributions of 
equal order to the FMR width: 

1 ( ,_, - ,_,, )' (bT) 2w3 b,b,Vo r,(O)~-- --1-- ---In--, w~(b,b,jb)Vo. (29) 
10r06 1-t (b,bzVo)' bw 

Near Tc, T « 1 we get from (29), with allowance for 
(24)' 

(30) 

The anisotropy effects can be taken into account by 
introducing into the Hamiltonian (1) the energy operator 

of the magneto-crystallographic anisotropy[17J. We con
fine ourselves for simplicity to the case of a uniaxial 
ferromagnet, when the anisotropy energy is given by 

(31) 

Then, according to Sec. 2, it is necessary to replace 
J.J. 1H, J.J. 2H, and V zz throughout by respectively J.J. 1H 

+ b2V~a)(N2/N1l 112 , J.J.2H- VtV~a)(N1/N2) 112 , and Vzz 

+ y(a). The difference (J.J. 1 - J.J. 2)H in (29) is then re
placed by o(J.J.Heff) = (J.J.Heff) 1 - (J.J.Heff) 2, which equals 

li(·~.tHerr) = (I-tt- ,_,,)H + (N,N,)-'h(N,b, + N,b,) V0<«1. (32) 

The broadening connected with the inhomogeneity of the 
effective field (32) has, in accordance with (29), an or
der of magnitude 

(al) 1 ( Vo )'( T )' b2w I b,b,Vo r, (0)~-- - --n--
ro• V0 V0 ( b,b,) 3 bw 

(33) 

li.tt- ,_,,IH ~(N,N,)-'h(N1 b 1 + N,b,) V~"1 • 

The line width due to the decay of the spin wave with 
k = 0 in scattering processes in which three other spin 
waves take part equals, as follows from (19), where A11 
~ 4 2c2V(a) 
~ So o o 

<•21 27 ( v,<~)' ( T )' bVo T bV (34) 
r, (O) ~ 48rrr06 ' Vo Vo (b,b,)' ~ •· 

The damping r 2(0), obtained above for a large inter
action radius, when the parameter r;3r-112 is small, is 
appreciable if the fluctuation damping r 1(0) is small, 
for example, when T << Tc· However, at temperatures 
on the order of the transition temperature, in the case 
of degeneracy of the energy of the homogeneous preces
sion with the energy of the inhomogeneous spin waves 
(w = Wo = Wp), the damping r 1(0) can become larger 
than or of the order of the damping r2(0). If the interac
tion radius is not large, r;3 ~ 1, then an expression of 
the type (2 8) where k(R0 ) 2 must be replaced by a quan
tity on the order of the r~t~o of the dipole interactions 
the exchange interaction L14J, is valid ior the FMR line 
width, when T $ 1. The terms from (28) can be separa
ted experimentally, since the fluctuation damping de
pends essentially on the demagnetizing factors, which 
impose limitations on the possibility of energy transfer 
from the homogeneous precession to the inhomogeneous 
spin waves lHJ. 

The contribution of the fluctuation damping to the 
FMR line width can be estimated in the first approxima
tion in the parameter r;3r-112 with the aid of (18) and 
(25). It follows from (18) and (25) that the fluctuation 
width (~H) 1, with allowance for the dipole interactions 
A. in the considered region of temperatures and fields 
( 7 « 1, h == J.J.HT~1 « r 312 ), can be written in the form 

" ( " )''• " ( " ,.,, l.t(LV/),==ft(O)=p,r03r:'i• V0 J,(n,)+P2ro"r:'" Vol J,(n,) 

(35) (I-tt- ,.,,)'H' ( " )''• + fl3 "'r'i T -V Ia(n,), 
r{l ~ c o 

( ) 1/2 - ( ) 1/2 2 - d where P1 = a1a2 y1, P2- a1a2 Y2Y3, p,- Y2, an 
I(ns) is a certain function of the demagnetizing factors 
n which determines the dependence of (~H) 1 on the 
sg~pe of the sample [llJ. It is assumed in (35) that the 
condition J.J.H » bl ~ hl is satisfied, so that the sam
ple can be regarded as single-domain. 
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Let us estimate (.:lH) 1 in a spherical sample of 
yttrium iron garnet. In this case N1/N2 = 3/2, S1 = S2 
= 5/2, Tc = 560°K, >../ Jl ~ 103 Oe, A./Vo ~ 10-3 , I(ns) ~ 1, 
and r 03 ~ 1. The inequality of the magneto-mechanical 
ratios in the case of yttrium iron garnet may be con
nected with the fact that the Fe3 + ions occupy non
equivalent positions in the crystal lattice. The differ
ence between J.!.1 or Jl2 and 2Jl B, where Jl B is the Bohr 
magneton, is due to spin-orbit interactions in the lat
tice. However. the ratio IJ.!.1- J.!.2I/J.!. is small, since the 
sublattices are made up of identical ions in the S-state. 
If we assume that the difference (3-6%) between the ex
perimental and theoretical values of the magnetic mo
ment [taJ per formula unit of Y3 Fes012 is due to effects 
of spin -orbit coupling, then we can conclude that the 
ratio does not exceed several percent. As a result, the 
fluctuation width is of the order of 

(~H) 1 .~ (10-3-r-'" + 10- 1-r'-'h + 1Q-4,;-'I,~H2T,- 1 )a (36) 

and can reach several Oe when T ~ 10-2 and 
w ~ 104 MHz, in agreement with the experimental 
data ~5 ' 19-21]. It is seen from (36) that when T >> 10-2 the 
value of (~H) 1 depends little on H and is proportional 
to T - 112 . When T ~ 10-2 the width is (~H) 1 ~ T - 312 and de
pends noticeably on H. In strong fields, however, the 
dependence of (~H) 1 on H will not be quadratic, since 
the ave rage spin moments a1 and a2 have a more com
plicated dependence on T and h in the region of fields 
h > T312=15=. The functions Y1 (T, h) and Y2(T, h) can be 
obtained from the system (18), which takes near the 
transition the form 

( N2 \'I• Sh 
a, - y,3 - 8-ry,-- = 0. (37) 

N1 1 2u2 

In the limiting case 1 » h » T 3 i 2 we get from (37) that 
Y1 ~ Y2 ~ h 113 • Therefore the fluctuation width at 
h » T 312 will be of the order of (~H) 1 ~ 10-3 H Oe. 

In estimating the fluctuation width of the FMR in the 
yttrium iron garnet we did not take into account the 
crystallographic isotropy energy, which is very small: 

y(a)/A. ~ 10-2-10-1. In the general case, introduction of 
the anisotropy energy, for example with the aid of (31), 
leads to an additional fluctuation width in the form 

_3,2 
[t (~H) Ia = ro-3 ( v~a)) 2J.'/, Vo (p,r'"I. (n,) + p,-r-'"1, (n,))' (3 8) 

1 rtt - rt•l H ~ -r'l• v~·> , h ~ -r''•; 
_ 3(a1a,)'f, ( u,u, )''• 
P•-~ - 8 - , ps=p,u2• 

It is seen from (38) that the second term, which is 
connected with the inhomogeneity (32) of the effective 
field, is larger than the first when T > u -2 and the flue
tuation width in this region of temperatures is propor
tional to T -I/2. 

The contribution to the width (~H) 2 (in yttrium iron 
garnet) made by the scattering of the homogeneous pre
cession by the spin waves and by the optical excitations, 
with allowance for dipole interaction and the inequality 
of the magnetomechanical ratios of the sublattices, does 
not depend, in accordance with (28) and (30), on the 
shape of the sample and its order of magnitude near the 
transition is 

(~Hh == w•r,(o) ~ (1D-"'r''• + 10--'-r-'J.t'H'T,-') Oe (39) 
When T ~ 10-2 and w ~ 104 MHz, the width (~H)2~ (~H)l 

~ 1 Oe. With increasing T, (~H)2 decreases rapidly, 
and the frequency dependence of the width ~H = (~H) 1 
+ (~H) 2 is determined by the fluctuation width (~H) 1, 
inasmuch as (~H) 2 wl (~H) 1 w ~ h T - 312 « 1. We can 
therefore expect in a sample in the form of a disc mag
netized perpendicular to its surface (I(ns) = O) that the 
FMR width ~ H = (~H) 2 and that in the region of tern
peratures T > 10-2 and fields h < T 312 it is much smaller 
than the corresponding width in a spherical sample or a 
disc magnetized parallel to its surface (I(ns) ~ 1), and 
depends much less on the frequency. The experimental 
data [zoJ apparently confirm this fact. 

In the field region h » T 312 the width is (~H) 2 
~ 10-2 H and we can expect the FMR width in this tern
perature and field region to be proportional to the fre
quency and to be independent of the shape of the sample. 
The latter calls for experimental verification. 

CONCLUSION 

From the results obtained in the present investiga
tion we can draw the following conclusions: 

1. When the magnetomechanical ratios of the sub
lattices are equal, the spin waves, just as in the case 
of a single-sublattice system [ls], exist near the transi
tion for sufficiently small momenta. 

With the aid of the diagram technique descri~ed in 
Sec. 1, it is easy to investigate a compensated antiferro
magnet (J.!.l = Jl2, S1 = S2, N1 = N2), in which a1 = a2 = a 
in the absence of a magnetic field. In this case wk = wk 
= aVakR0 /f3, as seen from (19), and the damping of the 
spin waves is proportional to r 03a-1V0(kR0 ) 2 or 
r 06a-3V0(kR0 ) 2, as follows directly from (18) and (19). 
However, a compensated antiferromagnet calls for a 
special analysis, in view of the strong dependence of its 
properties on the anisotropic interactions. 

2. The difference between the magnetomechanical 
ratios of the sublattices causes the damping of the homo
geneous precession to be not equal to zero even without 
allowance for the anisotropic interactions: r(o) 
~ (J.!.l- Jl2) 2. In ferrites that have no compensation 
points, lilt - Jl2i! Jl ;5. 0.1 and in weak fields, the inequal
ity does not affect the existence of spin waves with k2 

> J.!.H/bVoR~. 
The behavior of the spin waves and the resonant 

properties of the ferrites in the vicinity of the compen
sation points N1J.!.1a1(Tk) = N2J.1.20"2(Tk) can be investigated 
by the method described above. 

3. The ~H(T) dependence agrees qualitatively and in 
order of magnitude with the results of experi-
ments [s, 19-21] performed on the most perfect single 
crystals of yttrium iron garnet, the samples of which 
were thoroughly polished and contained insignificant 
amounts of impurities. 

The difference between the magnetomechanical ratios 
of the sublattices can cause a frequenc5 dependence of 
FMR width. The experimental data [9-21 agree with the 
obtained results. However, the order of magnitude of 
the ratio IJ.!.1 - Jl2IIJ.!. used in the estimate of ~H(w) can 
be regarded only as the upper limit of the values of J.!.1 
and Jl2· On the other hand, if !J.!.1- J.!.2I/J.!. is smaller by 
one order of magnitude, as indicated by certain indirect 
determinations of the values of J.!.1 and J.!.2 in yttrium 
iron garnet [22-24], then the frequency dependence of the 
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FMR width becomes appreciable, owing to the foregoing 
effect, in fields H?; 104 Oe. 

In conclusion, I am grateful toY. G. Yaks, A. I. 
Larkin, and A. G. Gurevich for interest in the work and 
useful discussions. I am sincerely grateful to B. E. 
Rubinshte1n for calling my attention to [22- 24]. 
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