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Quantum field theory methods are used to consider the properties of the energy spectrum of the con
duction electrons in a ferromagnetic metal. It is shown that the interaction with the spin waves leads 
to an appreciable renormalization of the Fermi-excitation spectrum and to an additional damping, due 
to the processes of radiation of spin waves. 

J. As is well known, the conduction electrons exert an 
appreciable influence on the magnetic properties of 
ferromagnetic metals. Together with the electrons that 
originate from the internal incomplete shells of the 
transition-element metals forming excitation bands with 
high level density (d- or f-bands) in the metals, the con
duction electrons ''responsible'' for the ferromagnetic 
ordering mechanism itself contribute to the magnetic 
moment of the ferromagnet and lead to singularities in 
the spin-wave spectrum [1]. 

It is natural to assume that the ferromagnetic order
ing itself, in turn, affects the properties of the conduc
tion electrons. The purpose of the present paper is to 
consider the properties of the energy spectrum of the 
conduction electrons, due to the interaction with the spin 
waves in a ferromagnetic metal. It will be shown below 
that this interaction results in a strong renormalization 
of the law of conduction-electron dispersion and in an 
additional damping due to spin-wave radiation. 

To simplify the calculations, we shall use the iso
tropic model of the conduction-electron spectrum, ac
cording to which the ground state of the ferromagnetic 
metal at T = 0 is characterized by two Fermi spheres 
with radii P+ and P- for the electrons with Sz = 1/2 and 
Sz = -1/2 respectively (sz-quantum number of the pro
jection of the electron spin on the direction of the total 
spin momentum of the system). The distance between 
the Fermi surfaces A = p.- P- determines the contribu
tion Ms of the s -electrons to the total macf:Jnetic mo
ments M0 of the system and, as shown in 1-, determines 
the intensity of their interaction with the spin waves. 

The calculations will be carried out for the case of a 
zero temperature, although obviously the main proper
ties of the result remain in force also on going to T f 0, 
if T « ® (®-Curie temperature). We shall neglect, in 
addition, the effects of the magnetic anisotropy, since 
allowance for them, in view of their smallness compared 
with the exchange interaction, entails corrections of 
little significance to the main result. 

2. In determining the spectrum and the attenuation 
of the Fermi excitations, we shall start from the fact 
that they are determined by the poles of the electronic 
Green's function [;lJ : 

G±(e, p) = [e- eo(p) - L±(e, p) ]-1 ( 1) 

(Eo(p) -energy of interacting electrons, L:!: (E, p) -self
energy part, the plus signs and minus signs denote the 
spin polarization, and we shall henceforth take G to 
mean the Green's -function component corresponding to 
the conduction -electron band). 

We separate from the general expression for L:!: that 
part which corresponds to a non-analytic contribution 
of diagrams containing the interaction of electrons with 
spin waves, denoting it by L.t(E, p). Since we are inter
ested in the spectrum of the conduction electrons in the 
region of energies ~ ®, and since the characteristic fea
ture determining the dependence of L ~ on E is the maxi
mum spin-wave energy~®, and the scale of the depen
dence of L ~ on p is the Fermi momentum, in the main 
region of variables E and p considered here the function 
L~(E, p) depends little on p, and we therefore assume 
that 

Further calculations will show that 

In this connection we introduce the function 

which is thus equal to the Green's function G.(E, p) when 
lEI»®, accurate to quantities~®/ lEI. We assume 
further that the difference L:!:(E, p)- L~(E) is analytic 
in the lowest order in E/EF· Using the pole expression 
for G: 

we represent the G-function near the pole in the follow
ing form: 

~ (~ 
G±(s, p) = s- v±( I PI-P±)- a±(~±' (e)- 2::±' (0)) 

The quantity v ±which enters in (3) and (4) is the veloc
ity of the Fermi excitations when ® « IE I « E .F 

As is well known, the self-energy part has the same 
analytic properties as G(E, p), and there exists for it a 
dispersion relation connecting to the real and imaginary 
parts (see, for example, [3J) : 

e "'5 de' Im L± ( e') sign e' 
Re(L:±(e)-2::±(0))=- '(, ) · n_00 ee-e 

( 5) 

The problem of determining the spectrum of the Fermi 
excitation thus reduces to a finding of Im L_!(E). 

We note that the imaginary part of L is determined 
by the real processes of decay and scattering of the 
quasiparticles, the initial product of which is one Fermi 
excitation. When lEI<< EF, owing to the smallness of 
the statistical weight per electron or per hole, the 
maximum probability is possessed by processes in 
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whose final state is contained only one Fermi excitation. 
Such processes are the emission of a spin wave by an 
electron with Sz = -1/2 or a hole with Sz = 1/2. The 
corresponding contribution to L: ~ is shown graphically 
in the figure (the straight lines in the figure represent 
the electronic Green's function, and the wavy lines the 
Green's function of the spin waves). 

We note that, owing to the finite distance between the 
Fermi surfaces, these turn out to be threshold proces
ses, and accordingly Im L:~(E) = 0 when E < Eo and 
lm L~(E) -= 0 when E >-Eo (Eo"" w(~), w(k)-energy of 
spin wave with momentum k). 

Following reasoning similar to that used in [4J to ob
tain the damping of the quasiparticles as a result of 
fermion-fermion interaction, we arrive at the following 
equations for L!: 

• r de' r dp' 
lm~-'(e)=- J -J --lg(p, p-p') 12 

0 n (2n) 3 

x Im G+(e', p')ImD(e- e', p- p'), (6) 

-· 
I r de' r dp' I I ' I ImL:+ (e)=- J- J-- g(p p -p) z 

0 n (2n) 3 ' 

Xllm G_(e', p')ImD(e'- e, p'- p) (7) 

(here D(w, k) is the Green's function of the spin waves 
and g(p, k) is the vertex part corresponding to the scat
tering of an electron by a spin wave). 

Using (4) and the expression for the spin-wave 
Green's function 

D(ffi,k) = [c,J-ak2 +io]-', 6-++0 

(a~ ®a2 , a-interatomic distance), which is valid if we 
neglect magnetic anisotropy, the interaction of the spin 
waves with one another, and the singularities due to the 
magnon-fermion interaction, we get 

• d I 

ImL:-'(e) = -n ~de'\ _P_Ig(p, p -p') l2a+ 
0 "' (2:rr)' 

(8) 
X 6(e'- v+(l p'l- P+)- a+(L:+' (e')- L:+' (0)) )b(e- e'- a(p- p') 2), 

-· r dp' 
ImL:+'(e)=:rr Sde' J--lg(p',p'-p)l 2a-

- 0 (2n) 3 

Xb (e'- v_( I p'I-P-) -a-(L:-' (e') -2:;_' (0))) b(e'- e- a(p'- p) 2}. (9) 

The weakness of the damping due to the processes 
not considered here, and the vanishing of Im L:~(E) when 
E > 0 and of Im L:~(E) when E < 0, has enabled us to 
represent Im G! in the last formulas in the form of 
6 functions. 

It is easy to see that, accurate to quantities~ ®/EF, 
the right-hand sides of (8) and (9) do not depend on the 
concrete form of L:~(E). Indeed, carrying out integration 
with respect to IP'I, we obtain 

Im~-'(e)=-n~dd (~~;3 lg(p,p-p+(e'))l 2 a+ (10) 
0 

·b (e- e'- a(p- P+(e') )2), 

-· 
I " ' ) r ' r dop• m""'+ (e = n .l de .l--lg(p-(e'), P-(e')- p) l2a_ 

0 (2n} 3 

X b(e'-e-a(p-(e')-p)2) 

( IP!(E) 1-roots of the equations 

(11) 

e-v±(IP±(e)I-P±) -a±(L:±'(e) -2::±'(0)) =0, 

dop,-element of solid angle in the direction of Pt(E')). 
But since the region of variation of IP - P± (E) I is of the 
order of PF, and when E ~ ® we have IP.t(E) I- P! 
~ ®PF/EF, the substitution IP±(E) I- P± in (10) -(11) 
leads to an error~ ®/EF in the final result. 

Carrying out the integration with respect to the en
ergy and the angular variables in (10) and (11), and also 
using estimates for g(p, k) [1J, we get 

Here 

{ 
0, e <eo 

a_ ImL:-'(e} = -nb(e- eo), 
-nb9', 

nbEl' 

a+ImL:/(e)= { -nb(e,+eo), 
0, 

El' > e> eo, 

e>EI' 

e < -El' 
-8'<e<-eo. 

e>-eo 

8' =min (8, 4ap,Z), 8o = a(P+- P-) 2 ~ 8 2 I BF, 

b = a+a-g2p,Z I 8n2apF2 ~ 1. 

From this we get with the aid of ( 5) 

{ I 8' e I a_[ReL:-'(e)- 2:;_'(0)] = -b (e- eo)ln --
Eo-e 

El' 18'-e I} +e0 ln-;-8'ln ~ , 

a' I El'+e I} -e0 ln-;-+ El'ln ~ . 

(12) 

(13) 

(14) 

(15) 

Formulas (12)-(15) retain their form when the sign 
of the difference of the Fermi momenta p1 - P-is re
versed, thus demonstrating that they are independent of 
the mutual orientation of the total magnetic moment of 
the system and the total magnetic moment of the conduc
tion electrons (Ms tl Mo or Ms II Mo) 1 >. 

It should be noted, however, that the obtained expres-

1) A different situation takes place in the analysis of the singularities 
of the spin-wave spectrum. In [ 1 ] the spin-wave polarization operator 
ll(w, k) was set in correspondence with the diagram representing the 
splitting of the spin wave into an electron with Sz = 112 and a hole with 
Sz = -112. This is actually not true. Since the magnetic moment of the 
spin waves is antiparallel to M0 , the operator ll(w, k) is determined by 
a diagram describing the decay of a spin wave into an electron with 
Sz = -112 and a hole with Sz = 112 (the author is grateful to A. A. 
Abrikosov for calling his attention to this circumstance). The spin-wave 
spectrum obtained in [1 ] corresponds formally to the case Ms H M0 • In 
order to go over to a description of systems with Ms tt M0 it is neces
sary to make the substitution ~Po ~-~Po, which is equivalent to 
w ~ -w, in the expression for (w, k) from [1]. The graphic representa
tion of the spin-wave spectrum near the singularity is then, for the case 
Ms tt M0 , the mirror reflection of the spectral curve for systems with 
Ms t,), M0 relative to the line w = a~ 2 • The sign of the singularity in the 
spin-wave spectrum thus affords an experimental possibility of deter
mining the sign of MsiM 0 . 
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sions for L:(E) become meaningless in the vicinity of the 
point Eo, which is close to the threshold energy of the 
decay processes. The non-applicability of the obtained 
formulas for L: when E ~ Eo is connected with the fact 
that in their derivation we used an expression for the 
Green's function of the spin wave, not renormalized by 
the interaction with the conduction electrons. Yet it is 
precisely in the region w ~ wo that the renormalization 
of D(w. k) becomes significant (its consequence is the 
singul~rity of the spin -wave spectrum, obtained in [1J). 

It can be shown that those diagrams for L: which con
tain line complications connected with the interaction 
between the electrons and the spin waves introduce in 
the calculated L:(E) corrections are not small compared 
with(!EI-Eo)ln(jEj-Eo) inthevicinityof lEI~ Eo. This 
points to the need for simultaneously considering the 
singularities of the spectrum of the spin waves and the 
Fermi excitations. Separating in the diagrams for L: the 
singular element-the loop of Green's function 
GD (D(w. k) = [w- ak2 - II(wk)] -1-we arrive at IE I~ Eo 
to the following system of equations: 

I de'dp' I 'I2G (' ')D( ' ') 2:-(e,p)=-iJ (2n)• g(p,p-p) +e,p £-B,p-p '(16) 

d 'd' 
2::+(£ p) = -i~ _e_P_Ig(p', p'- p) I2G_(e', p')D(e'- e, p'- p), (17) 

' (2n) 4 

which must be supplemented by the corresponding equa
tion for II(w, k): 

II(w k)=-i\ dedp lg(p,k)I 2G-(e+w,p+k)G+(e,p). (18) 
' J (2n)• 

Inasmuch as aE./ap > aE-/ap in the case of momenta 
lying near the corresponding Fermi surfaces (for con
creteness we assume that Ms lt Mo, i.e., p.> p_), we 
can show that the threshold energy of the spin wave 
w = E- corresponds to its decay into a hole with Sz = 1/2, 
E = 0, p = p. and an electron with Sz = -1/2, an energy 
E = E- (we denote its momentum by P- > P-, the thres
hold value of the spin-wave momentum is f!._ = P+- P-
< D.). The threshold of the process for an electron with 
Sz = -1/2 also takes place at E = E-, and corresponds to 
a decay into an electron with Sz = 1/2, E = 0, p = P+ and 
a spin wave with w = E- and k = f!._. The threshold en
ergy of a hole with Sz = 1/2 is larger than E-. 

We take further account of the fact that the singular
ity in II(w, k) and L:(E, p) is the result of integration in 
(16) -(18) over the region of variables lying in the im
mediate vicinity of their threshold values, and we also 
make the natural assumption that near the threshold 
L: and II depend on their variables via linear combina
tions of their deviation from the threshold values (it can 
be verified directly that such a dependence cannot be 
stronger than xlnx). As a result, the system of integral 
equations can be reduced to a system of first-order 
differential equations. Omitting these straightforward 
but rather cumbersome manipulations, we present the 
final result: 

2;_(e,p) -:J2_(e-,fi-) ~ [e-e--fL(p-fi-)] 
X {In [e- e-- iL(p- fi-) ]} 6 /'F, 

l1(w,k) --fl(e-, /L) ~ [w -e-+v-(k-LL)] 
X {In [w- £_ + iJ_(k- !l-) ]}i-B/e F, 

v_""' (at:_ 1 ap)v~P-· 

(19) 

(20) 

Its meaning consists in the fact that the singularity 

of the s~in-wave spectrum remains the same as calcu
lated in "1J without allowance for the renormalization of 
the electron spectrum. On the other hand, the singular
ity of the Fermi-excitation spectrum is practically 

nonexistent, since {ln [ E - L- v- (p - p_)] }8 /EF differs 
noticeably from unity in an exponentially. narrow inter
val of the variables E and p. 

Let us consider the consequences for the Fermi
excitation spectrum, following from the obtained formu
las (12)-(15) and (19) for L:. When lEI» e, in accord
ance with the initial assumption, we have 

12:'(e):-2:'(0) I >1 

and the excitation energy is E.(p) = v:t(P- P±). In the 
region IE I :; Eo we have -

When Eo « IE I « e, the excitation velocity depends on 
the energy and is equal to 

0£± V± -= I 
ap -1+bln(®/e) 

The damping due to the mechanism considered here 
takes place for electrons with Sz = -1/2 when E 2: Eo 
and for holes with Sz = 1/2 when E ~-Eo. Its magnitude 
in the region Eo << IE I « e is equal to 

nblel 
v~ 1+bln(B/e)· 

When IE I ~ e, the electrons with Sz = -1/2 and the 
holes with Sz = 1/2 have a damping that is comparable 
with their energy, and consequently the description of 
the electronic excitations in terms of quasiparticles is 
meaningless in this region. 

Thus, the interaction with the spin waves leads to a 
strong renormalization of the velocity of the Fermi exci
tations of the conduction band in the direct vicinity of 
the Fermi surface. This renormalization leads to an 
additional growth of the specific heat of the system 
compared with a nonferromagnetic metal and its depen
dence~ T ln T in the temperature region e 2/EF << T 
« @, 

3. The properties of the energy spectrum of the con
duction electrons in ferromagnetic metals, considered 
by us here, are a manifestation of the general proper
ties of interacting quasi particles in solids. We note, 
for example, the analogy between the system considered 
here and a system of interacting electrons and 
phonons[5 J. In both cases there take place two regions 
of the spectrum lEI« wg/EF and lEI» wo (wo-limiting 
frequency of spin waves or phonons), where quasiparti
cles exist with a linear dispersion law and with weak 
damping, determined essentially by the electron-elec
tron interaction. In either system, when IE I~ wo (in an 
electron-magnon system this takes place for electrons 
with Sz = -1/2 and holes with Sz = 1/2), the attenuation 
is comparable with the energy, and the Fermi excita
tions do not reduce to long-lived quasiparticles. 

We call attention to the fact that, in view of the com
plexity of the dispersion of conduction electrons near 
the Fermi surface, it is possible to introduce, besides 
the limiting values of the two-particle vertex part 
r(plo p 2 ; k) with respect to the momentum transfer 
k = (w, k): 
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f"'(Pt.P•)= lim f(p~,p,;k), 
k=O, W-+0 

fk (P<, P•) = . lim f (p1, p,; k), 
w=O, k-+0 

which are known from the theory of Fermi liquids [6J , 
also the additional quantity 2 ) 

f"'(p,, Pz) = f (p,, p,; k) /k~o, e"'"'""'F' 

which would coincide with the usual limit rw, accurate 
to terms of order e/EF, were the loops of the Green's 
functions G(p)G(p + k) in the diagrams for r to be re
placed by G{p)G(p + k). The convenience of the function 

fw lies in the fact that the quantity rk is expressed in 
terms of fw and parameters characterizing the Fermi 
excitations when e « IE I « EF with the aid of an equa
tion identical to that obtained in [6J for the connection 
between rk and rw. It can be shown that as a result of 
this circumstance the magnetic susceptibility of the 
para process, as well as the statistical limits of other 
quantities characterizing the kinetic properties o~JeFO
magnetic metals, are determined by the function r(wl 

2JThe advisability of introducing rw was pointed out by L E. 
Dzyaloshinskii. 

and by the density of the electronic states in the region 
® « JEJ « EF. 

In conclusion, I am deeply grateful to I. E. Dzyalo
shinski1, whose interest and advice were of great help 
in the work. 
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