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The excitation of rotational and vibrational states of diatomic molecular ions is considered in the 
Born-Coulomb approximation. A "direct" nonresonance excitation mechanism of the molecules is 
assumed. The transition cross section is represented in the form of a sum of partial moments of the 
radial matrix elements. The sum can be evaluated exactly for dipole molecules and yields an analytic 
expression for the excitation cross section. For quadrupole mollecules the result has been obtained in 
terms of elementary functions in the vicinity of the excitation threshold or higher. The vibrational ex­
citation cross sections for H; and HeH• ions are calculated. Their maximum values are respectively 
1.3 x 10-16 and 7.1 x 10-16 cm2 • 

THE excitations of neutral molecules were considered 
theoretically in many papers. In particular, Massey1 11 

obtained the first results on the excitation of polar mole­
cules, while Gerjuoy and Stein12 1 calculated in the Born 
approximation the cross sections for the excitation of 
molecules with zero dipole moment, but with vanishing 
quadrupole moment. A complete review of the investi·· 
gations is contained in the paper of Takayanagi13 1• The 
excitation of molecular ions has apparently not been in­
vestigated so far. An exception is the work of Stabler1 4 1, 

who obtained the cross section for rotational excitation 
of quadrupole molecular ions in the case of extremely 
low energies. In the present paper we obtain formulas 
for the calculation of the cross sections of the vibra­
tional and rotational excitations of dipole and quadrupole 
molecular ions. The limits of applicability of the ob­
tained formulas are indicated. By way of illustration, 
we calculate the cross sections of the vibrational exci­
tation of the molecules H; and HeH•. 

1. CHOICE OF PERTURBATION AND BASIS FUNC­
TIONS 

We consider the excitation process 

AB+(v!M) + e --+AB+(v'J'iVI') + e, (1) 

where v, v', J, J', M, and M' are the vibrational, total 
rotational, and azimuthal rotational quantum numbers of 
the molecule. The Hamilton operator of this system is 
represented in the form (using atomic units) 

Z 0 +Zb-1 
A ~ Za zb 1 1 
H= H1(r1,R)- -----. ---+ ~ ----V • (:2) 

jr-Ral jr-Rbj i~t jr-r;j 2 r' 

where Hi (ri> R)-ion operator, ri, r, Ra, and Rb-vec­
tors of the molecular electrons, the incoming electron, 
and the nuclei of the atoms, reckoned from the center 
of mass of the molecule, and R-internuclear distance. 

Since we plan to use a perturbation-theory formal­
ism, we choose the energy operator of the unperturbed 
system in the form 

flo= H; (r;, R) - 1/2 V r 2 - 1 / r. 

Such a choice makes it possible to take into account 
exactly the distortion of the incident wave by the 

(:3) 
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Coulomb field. The remaining part of the electrostatic 
interaction, in accordance with this analysis, is 
responsibl'e for the excitations and can be taken into 
account in most cases in the first order of perturbation 
theory. Cases when this approximation may turn out to 
be insufficient will be noted separately. The operator 

if = - -c--Z--'a---,-
jr-Ral 

( 4) 

is the perturbation. We shall assume, as usual, that the 
wave functions of the molecular ion can be represented 
in the Born-Oppenheimer approximation and conse­
quently the eigenfunction of the operator Ho will be of 
the form 

Here l/!ez(ri, R) is the wav~ function of the molecular 
electrons, <Pv(R) and YJM(R) are the vibrational and 
rotational functions of the nuclei of the molecule, and 
Fk(r) is the Coulomb function of the continuous spec­
trum. We note that violation of the Born-Oppenheimer 
approximation is significant in problems involving the 
capture of a continuum electron in the bound state, auto­
ionization, etc. Inasmuch as we are considering only 
"direct" and not resonant excitations, the Born-Oppen­
heimer approximation for such processes can be regar­
ded as vali.d, and the energy levels can be regarded as 
stationary .. 

2. TRANSITION CROSS SECTION 

In first··Order perturbation theory the differential 
cross section of the transition kvJ - k'v' J (k-wave 
vector of the incident electron) is 

d(l '!' 1k'"' 1 A 

<1 v ->-v )=-- LJ ---j('¥-j3t'j'¥+)j 2 dQ 
41!2 k MM' (2J + 1) , 

(6) 

In this formula it is assumed that the functions w- and 
w• contain functions of the continuous spectrum, norm­
alized to the unity density at infinity and containing 
divergent spherical waves in the initial state and con­
verging ones in the final state. 

The matrix V= (l/!eziHil/!ez) plays the role of the 
potential energy of the electron-ion interaction respon-
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sible for the transition. At the distances r > q we have 

(7) 

where QA 1-L is the A 1-L- moment of the charge distribution 
of the ion; when account is taken of the axial symmetry 
of the ions in question in the expansion (7), we have 
1-L = 0 and only the sum of the multipoles over A remains. 
The quantities Q1(R) and ~(R) are respectively the 
dipole and quadrupole moments of the molecule. In the 
region r < q the potential of the interaction is deter­
mined by many physical factors and is actually unknown. 
For this reason, V is used in the entire region of values 
of r (an analogous approximation in the electron-atom 
collision theory was introduced by Bethe). A certain 
justification of this procedure is connected with a small 
contribution of the region r < q, which follows from the 
analysis of the matrix elements of V and from the ex­
perience with the numerical calculations (see, for ex­
ample/5 1). 

Let us consider now the matrix element 

Here 

'k'k = (k'l Vlk) = < k' 1.~ Qv-•-•P,.(;R) I k). 
1.=1 

lk) = Fk+(r) = e-•'112 f(1 + i!])eikr F(-ir], 1, i(kr- kr)) 

= :34n(- )m i1ei•, Yz-m(b) Yzm(;~ (kr)-1 Fz(kr), 
lm 

(8) 

(9) 

and analogously for lk') u. The z axis is reckoned from 
the mass center and lies in the plane of the vectors k 
and k 1

; 

11 = -1 I k. 

integrating with respect to r in (8), we get 

where 
')..Jllml'm' 

Mi("'-1 = k!' S Fl'(k'r)r'"-1 F1(kr)dr, 
0 

a1':z'm•= (4n)''' (-)"ei'~'[(21+1)(21'+1)(2A+1)]'1• 
2A+ 1 

y/ I. I' A) ( I l' A\ . 
1\ 0 0 0 m -m' ~I 

(11) 

(12) 

(13) 

(14) 

The round brackets denote the Wigner 3j- symbols, and 
cp is a phase factor which is of no importance in what 
follows. 

We calculate 

(15) 

Choosing the z axis in the direction of the vector k, we 
find that 

(16) 

1) All references connected with the use of Coulomb functions can 
be found in the paper by Alder et al. [6 ] 

where 

( l J' A )I l J' A ) 
y 0 0 0 \ M M' -~ . 

(17) 

We then set up the product II*, integrating the result 
with respect to dn and summing over M and M 1 , so that 
we get 

:3 S IJI•ag = ::8cAdMz;;-"'-1l'· 
MM' ').Jl' 

(18) 

Here 

>. (4n) 3 

Czl'JJ• = (2A + 1) I (v'IQ>.I v) 1'(21 + 1).(21' + 1) (2/ + 1) (2/' + 1) 

( ll' A)'('. J' A)' (19) xooo ooo · 
This result is connected in obvious fashion with the 
total cross section. We finally get for a 

~ 

C1 = :3 0">., 
"'=1 

k' 2l'+1(ll'A)' cn(vl-+ v'f') = 16rr--l (v'IQ,.I v) 1'--
k 2A+1000 

(I!' A)' X~ (21 + 1) (21' + 1) I Mil·'"-! I'· 
ll' 0 0 0 

3. DIPOLE TRANSITIONS 

(20) 

Let us consider electric dipole excitation of the mole­
cule (A= 1). In this special case, the matrix element (8) 
coincides with the corresponding matrix element in the 
theory of dipole bremsstrahlung, and can be calculated 
exactly, this being equivalent to summation over ll 1 in 
(20). We obtain 

( l I' A)' .:3 (21 + 1) (21' + 1) IM;;;"-· I' 
ll' '0 0 0; 

n 2 exp (2:rt1]) d . . 1 
=-------- Xo-IF(-zt]-11] 1xo)l 2 

2kk'[exp(2:rt1])-1](cxp(2n1]')-1J dx0 ' • ' ' 

E 1 ( E) 
""""ME kk' rYo \ M£, M£ . (21) 

In formula (21) Xo = - 411Tl 1 /('TJ 1 
- 'T] )2 , E = k2 /2, O"o is a 

function tabulated in171 , for values 2-5 ::s ~E ::s co and 
1.01 ::s E/ ~E ::s 5.0. 

The cross section of the dipole transition takes the 
form 

2n (J/'1)2 
rYt = 3M1 (v'IQ.ju) 1'(2/' + 1) O 0 0 rYo. (22) 

For the rotational excitation vJ- vJ ± 1 it follows 
therefore that 

(23) 

where 

{ (J+1)/(2J+1) for excitationJ--+1+1 
g±= J/(21+1) for de-excitation J--+J-1. 

For vibrational transitions we have in the harmonic 
approximation for the vibrations of the nuclei 
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(v'jQ,(R) jv>=f'Q') \v'jRjv>= (oQ,) (v+ 1 )''', (24) 
oR Ro oR Ro 2mw 

where m-reduced mass of the nuclei and w-oscillation 
frequency, v' = v + 1. 

The cross section of the vibrational excitation, 
summed over the final rotational states, is 

vibr ( + 1) _ Jt ( oQ, )2 V + 1 
O't v----+v - 3mw OR 0 M cro. 

4. QUADRUPOLE TRANSITIONS 

(25} 

For quadrupole transitions X.= 2. Then in the sum 
over ll' in (20) there remain the values l' = l :s 1 or 
l' = l ± 2. The integral for M?z (see16 1 is expressed in 
terms of the generalized hypergeometric functions 
F2(a, {3, y, o, E; x, y) and F3(a, {3, y, o, E; 1/x, 1/y) of 
two variables, and can be obtained numerically. Under 
certain relations between the parameters, however, or 
in certain energy intervals, the result can be obtained 
in terms of elementary functions. 

We consider the region of greatest physical interest­
in the vicinity of the threshold of excitation and above. 
We introduce the quantity 

6=~ ~,. (26) 

In the vicinity of the threshold of .c:.E/E :;;; 1 and k" « 1, 
so that the condition 1r~ » 1 is always well satisfied. 
Under this condition we get 

s n 2 1 
!Mz~ j2 = [1(1 + 1) (21 + 1))2 kk' [1 + O(e-•<)]. (27) 

The values of the integrals Mzz± 2 can be obtained with 
the aid of the recurrence relations for the integrals Mu. 
It turns out here that Mzz ± 2 oo k2Mzz, and therefore their 
contribution to the cross section is negligibly small in 
the energy region under consideration (k2 < 1). 

From (20) we get for the cross section of the rota­
tional transition 

rot nQ22 

a2 (J -+l ± 2) = Fg±(l), 

( J/+22)2 
g±(l)=-(21+4±1) 0 - ·0,567. 

I 0 (} 
(28) 

In this formula, the largest limiting values of k2 for 
a specified transition .c:.E are determined from the con­
dition 1r~ > 1. Introducing the rotational constant By, we 
rewrite this condition in the form 

4nBv(l + 1) / k" > 1. (29) 

Inasmuch as By is of the order of 10-4 , we should have 
for the wave number k :;;; 0.1. Under these conditions the 
cross section af0 t <; 100 q-g1r. For elastic scattering 
(J - J) the cross section a~l diverges as k- 0. 

We proceed to vibrational excitation of quadrupole 
molecules. For the transition cross section summed 
over all the rotational states, we get 

atbr = 0,284: (v + 1) ( oQ2 )2 ' 
mwk oR Ro (30) 

under the condition 1r~ > 1. For vibrational transitions, 
this condition limits the maximum value of k2 to ener­
gies on the order of several electron volts. 
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5. CERTAD'l" EXAMPLES 

0-1 

E, eV e 

Let us apply the results to the molecules H; and 
HeH•. The necessary spectroscopic and quantum-mech­
anical data for H; are widely known, and those for HeH• 
were taken from the paper by Anex18 1 • The obtained re­
sults are shown in the figure for the 0 - 1 transition. 
There are neither experimental data on ion excitation 
nor other theoretical calculations. From the considered 
examples it follows that the cross section for the exci­
tation of dipole transitions is larger by approximately 
one order of magnitude than the cross section of quad­
rupole excitations, this being in agreement with the 
general notilons. In order to verify the feasibility of ob­
taining data for the quadrupole transition, let us com­
pare this cross section with the theoretical limit. Prac­
tically the entire contribution to this cross section is 
due to the partial wave l = 1, and consequently the cal­
culated cross sections should not exceed, in any case, 
the value 3~r/k2 . Therefore, according to (30), the ratio 

~ _ 0.284 ( oQ2 )• 
- 3mw aR, Ro (v+ 1) 

should be smaller than unity. The conditions for the ap­
plicability of perturbation theory in the general case 
requires satisfaction of the condition .c:. << 1. In our ex­
ample .c:. ~ 0.01, from which we can conclude that the 
result is valid within the framework of the initial ap­
proximations. 

In concl.usion, the authors are deeply grateful to Yu. 
N. Demkov, G. F. Drukarev, and v. S. Egorov for a dis­
cussion of the work. 
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