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Phase transitions of the superconducting type in a one-dimensional metal in the presence of impuri­
ties are investigated on the basis of the Bychkov, Gorkov and Dzyaloshinskil theory. A study of the 
contribution of "parquet" type diagrams in coordinate space shows that the highest power of the 
typical logarithmic term occurs at a certain space order of the elementary lattices. It is shown that 
owing to a special cancellation of the phase shifts the impurities do not affect the transition temper­
ature or excitation spectrum of any possible superconducting state in the quasiclassical approxima­
tion. 

INTRODUCTION 

LITTLE[1J called attention to the possible existence 
of superconductivity in one-dimensional systems. Such 
a system was investigated theoretically by Bychkov, 
Gor'kov, and Dzyaloshinskii (BGD)C2 • 3J. They have 
shown that the structure of the superconducting system 
can be much more complicated in the one-dimensional 
system than in the three-dimensional system, because 
in the one-dimensional case there can exist two types 
of bound states: Cooper pairs with resultant zero 
momentum, and an electron-hole pair with momentum 
2po (Po-Fermi momentum). 

We investigate in this paper, on the basis of the 
work of BGD, a one-dimensional superconducting sys­
tem containing impurities. The employed model is 
one-dimensional because the potential of the impurity 
depends on the distance along a straight line. In real 
systems, the transverse dimension of the chain is de­
termined by the dimension of the atoms. The variation 
on the potential in the transverse direction is neglected, 
but this leads only to slight corrections to the final 
results. An analysis is not applicable to molecules 
whose electrons can move from one point to the other 
along different paths. 

In the first section we compare the temperature of 
the possible transition of pure and impurity chains 1l. 

The Green's functions are calculated in the quasi­
classical approximation (more accurately, in the case 
when the impurity potential is smaller than the kinetic 
energy of the electrons at the Fermi level). Particular 
attention is paid to diagrams whose contribution con­
tains typical logarithmic expressions, which were taken 
into account in the BGD papers in the determination of 
the transition temperature. We shall use here coordi­
nate space rather than momentum space. As a result 
of a careful investigation of the problem of averaging 
over the impurity locations, it is shown that it is possi-

llThe transition temperature is the temperature at which the vertex 
part of the normal system diverges. (The contribution of the diagrams 
is calculated in the logarithmic approximation, and therefore an arbitrary 
factor appears in the expression for the transition temperature. 
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ble to average only in the final result, and that averag­
ing in individual parts of the diagrams leads to errone­
ous expressions. We find that in our approximation the 
impurities do not influence the transition temperature, 
because in the quasi-classical approximation the elec­
tron phase shifts connected with impurities cancel each 
other. This cancellation is realized only in a linear 
system in which the electrons can move from one point 
to the other along a single path, and therefore the phase 
shift has a definite meaning. 

In the second section we investigate the supercon­
ducting state. We do not investigate the feasibility of 
the superconducting state in a one-dimensional system. 
Many objections were raisedC4J against the existence 
of superconductivity in linear systems. These objec­
tions are valid only for an infinite system [sJ, and al­
though we do assume that our system is finite, it is re­
garded as sufficiently long to be able to neglect the 
boundary effects. The solution of the equation for the 
Green's functions, as obtained in the BGD papers, 
shows that the physical quantities such as the energy 
spectrum and the coherence length, are not sensitive 
to the presence of impurities. The influence of impuri­
ties is appreciable only in cases when the linear sys­
tem is investigated by trial particles which do not be­
long to the system. 

1. CALCULATION OF THE FIRST CORRECTION TO 
VERTEX PART IN THE PRESENCE OF IMPURITIES 

BGD have shown that the diagrams of second order 
give a logarithmic contribution of the type ln ( Eo/T), 
where Eo is the cutoff energy (equal in order of magni­
tude to the Fermi energy) and T is the temperature. 
They are the diagrams of the Cooper pair and of the 
particle-hole pair (of the zero-sound type). We calcu­
late below, on the basis of the results of Gor'kov and 
Dzyaloshinski1, the contributions of these diagrams, 
taking the influence of the impurities into account. 

The electron interaction is of the form 

where the coupling constant g is small. Such a local 



768 A. ZAVADOVSKII 

w 

~ -w 

a b 

FIG. 1. 

interaction corresponds to the effective electron-elec­
tron interaction proposed by LittleC1J, and contains the 
screened Coulomb interaction. Gor'kov and Dzyaloshin­
ski'i have shown that the Coulomb interaction is 
screened, because the entire Bose complex is in this 
case electrically neutral. 

The contribution of the vertex corrections of second. 
order of the Cooper and zero-sound types (Figs. 1a 
and b) is given by 

(2) 

and 

(3.) 

where Gw is the single-particle temperature Green's 
function. In these formulas, the spin indices are not 
written out. The equation for the Green's function is 

{ 1 {)2 1 iw+--·+J.I- V(xt) 1-G.,(xt.x2)= ll{Xt-X2), 
2m ox12 

where V ( x) is the potential of the impurities and i.J. 
is the chemical potential. The free Green's function 
(solution for V ( x) = 0 ) are written in the form 

G~0\x)= G~~r(x)+G~~z(x), 

where (in the case when w « i.J.) 

0 e-lmxl/• 
G~~ .. (x)= - 2-.-e±ipo>[sign(w)± sign(x)] 

v~ 

(4) 

(€1) 

(the plus sign in (6) is taken for a = r, and the minus 
sign for a = l). Here p0 = mv0 is the Fermi momen­
tum and x = x1 - x2. The separation of the Green's 
functions into two parts corresponds to the fact that 
the electrons with momentum p < 0 and momentum 
p > 0 (the left and right sides of the momentum space) 
are investigated separately. 

Assuming that w « i.J. and V « i.J., the solution of 
( 4) is written in the form 

where 

(0) { i :r· } G.,, .. (xt, x2) = G.,, .. (x1 - x2)exp ±--;;-J V(z)dz •. 

(7) 

(H) 

Expression (8) shows that the wave function of the 
electrons near the Fermi surface is multiplied only by 
a phase shift that depends on the coordinates. The 
separation of the Green's function into left and right 
parts at energies close to the Fermi energy continues 
to be meaningful, owing to the assumption V « i.J.. 

Calculating the vertex part of the Cooper type, we 
find that its contribution does not depend on the pres­
ence or absence of impurities. Indeed, substituting the 
Green's function (7)-(8) in (2), we obtain (for example,. 

The phase factors, which depend on the potential, 
cancel each other here. In the case of an electron­
hole pair, such a cancellation does not take place 
(for x1 > x2): 

B(x,x2)= T ~ G:!.(x1 - x2)G~~~(~- Xt) 
O>>O 

xexp{ +2~) V(z)dz} 
x, 

(9) 

(10) 

The phase factors can be averaged by assuming a 
random impurity distribution 

li'(x)=O, 
--- v 
V(xt) V(x2) = -;r6(xt-X2), 

where T is the relaxation time. We get 
--- "' (0' (0) B(a::~,~)=T LJGm (x1-x2)G.,·(x2-x1)e-2lxl/1 (11) 

where l=Tv. 
The typical logarithmic correction ( g2/21TV) ln ( Eo/T) 

is obtained from (9) by integrating A(x) with respect 
to x in the interval ( r 0 , oo), where ro is the small­
distance cutoff length. A similar calculation for 

00 J B ( x) dx yields a similar logarithmic expression for 
ro 
the almost pure chain ( TT » 1), but with negative 
sign. In the presence of impurities we have 

S~ B(;;)dx =- .E..lne0-r 
2nv .. 

and this can be smaller than for the pure chain. This 
raises the question whether it is legitimate to average 
over the impurity distribution in individual parts of 
diagrams of the "parquet" typeC2- 3J on Fig. 2. In the 
case of averaging in individual parts of the diagrams, 
the contribution of the zero-sound type can be sup­
pressed by increasing the impurity concentration. 

FIG. 2. 

Before we answer this question, let us calculate the 
contribution of the diagrams in the logarithmic approx­
imation, performing the integration in coordinate 
space. 

2. CALCULATION OF DIAGRAMS IN COORDINATE 
SPACE 

BGDC2•3J calculated typical diagrams of the 
"parquet" ltype, using momentum variables. The pur­
pose of their calculation was to take into account the 
logarithmic terms of the highest (of the type 
g [g ln ( Eo IT) ]n). We investigate the behavior of such 
terms by integration in coordinate space. Let us con-
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sider separately diagrams corresponding to two parts 
of the Green's function Gw,r and Gw,z, marking the 
corresponding lines with the indices r and z. Since 
GfZ\ and GfZ>z (6) contain the factor ( Y2 ) [sign ( w) 

' ' - sign ( x)], which has values ± 1 or 0, depending on 
the sign of w and x, it is advantageous to carry out 
the integration with respect to x separately for the 
different relative spatial arrangements of the variables. 
We shall designate the order of the arrangement of the 
variables of the bare interaction along the horizontal 
direction of the diagrams. Instead of discussing the 
general case, we investigated a typical diagram, shown 
in Fig. 3, which, according to BGD, makes a contribu­
tion ~g4 ln3 ( c: 0 /T). The dashed line separates those 

I I 

''--~/ 
",/~:-/~ 

I ' 

FIG. 3. 

parts of the diagram, which give the logarithmic con­
tribution. Figure 4 shows three types of different 
spatial distributions of the variables. The distances 
between the elementary vertex parts are marked on 
the horizontal line under the diagram. All the dis­
tances are positive. 

FIG. 4. 

We consider first the diagram on Fig. 4a. The 
energy variables were chosen such that its contribution 
does not vanish only in the case when all the vertices 
w, w', and w are positive. The spatial order of the points 
Y1 and y2 is important, for if the order is reversed the 
contribution vanishes at positive energies. The oscil­
lating exponential factors of the Green's functions (6) 
cancel each other at the points x1 and x2, but, more 
significantly, they cancel each other also at the points 
Y1 and Y2· If this were not so, then the integral of the 
rapidly oscillating factors exp ( ± 2ipo y) or 

exp(±4ipoy) with limits Y1 and y2 would approxi­
mately vanish. 

The contribution of the given order of arrangement 
of the variables is given by the expression 

(1000 oo ra 
d dz ~ d•v ~ d" V' 

To rg l'o 

-
x:e-2(w+z)w' /ve-2wwjv 

= g•( 2:S ~ az ~ aw ~au. 

Xsh-1 ( 2n\T u ~ w) 
Xsh-1 ( 2nT w;; z) 

xsh-1 ( 2nT :) . (12) 

We now integrate with respect to u and z, introducing 
the new variable s = 27TTw/v and retaining only the 
significant terms having the maximum power of the 
logarithm. We then obtain 

g• 7 1 
-(2-)> J ds(Ins) 2 -ds 

1tV 2., Teo sh S 

~g•(In~)" (13) 

A similar result is obtained also in the case shown 
in Fig. 4b. The situation is entirely different in the 
case of Fig. 4c. The integrations cannot be carried 
out completely independently of one another, and yield 

T soo w w 

g< ( -). \ dw (' du (' dzsh-'(2nr.!!!....) 
\v2 • J J v 

r~ r 0 rr, 

g' r 2 1 ( eo) ( ) 
~ (2nv)'lln~ •• dss Sli3"7 ~ g' lnT , 14 

where s = 27TTw/v. 
Thus we see that limiting the integration interval 

makes the degree of the logarithm expression smaller 
than without such a limitation. 

From this example we see the following. 
1. A significant contribution is made only by such 

arrangements of the internal vertex points, whose ex­
ponential factors (for example exp [ + 2ipoy]) cancel 
each other. 

2. By investigating diagrams of the "parquet" type 
in momentum space, BGD found that the highest degree 
of the logarithmic expression In ( Eo/T) is determined 
by the maximum number of such cuts along two lines 
of the diagrams, which cause the diagram to break up 
into two unconnected parts. Three such cuts are shown 
in Figs. 3 and 4. The integration interval is not bounded 
when the cut can be drawn vertically. If this cannot be 
done, then the cut does not lead to the appearance of a 
logarithmic term (see diagram 4c). 

3. INFLUENCE OF IMPURITIES ON THE LOGARITH­
MIC TERMS AND CRITICAL TEMPERATURE 

In the presence of impurities in the Green's func­
tion, there appears an additional phase shift containing 
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an integral of the impurity potential (see Eq. (8)) · We 
investigate these new phase factors again in the case 
shown in Fig. 3. We take an arrangement of variables 
corresponding to Fig. 4a. Using the Green's function 
(8), we see that the additional phase factor in the con­
tribution (12) vanishes: 

v. •• ... "• (1!)) 
exp{ ~.U V(z)dz- ~V(z)dz- ~V(z)dz+ ~V(z)dz 

X1 %1 1/2 1/1 

Y1 II~ 

+ ~ V(z)dz- ~ V(z)dz]} =f. 
lit 1/1 

The same is obtained in the case of Figs. 4b and c. If 
we were to substitute in the expression for the contri­
bution of the diagram the average value of the closed 
loop lying between the vertices Y1 and y2, then we 
would obtain, in accordance with ( 11), the factor 
exp { -2 1 y1 - y21 /l } , and therefore we would obtain 
not the correct result g4 ln3 (Eo/T), but g4 ln2 
g4 ln2 ( ~:: 0 / T) ln EoT) ln EoT. It follows therefore that it is 
impossible to average over the distribution of the im­
purity separately for different parts of the diagram. U 
this is necessary, then it is possible to average only in 
the final result. 

We now investigate the impurity phase factor for 
any diagram, without averaging over the impurity dis­
tribution. We first investigate the dependence of the 
phase factor on the coordinates of the internal bare 
interactions. We see that a significant contribution is 
obtained from those regions of the intervals of the in­
ternal bare interactions, in which the phase factors of 
the type exp ( ± i2p0y) which do not depend on the im­
purities, vanish. It is easy to establish that the inte­
grals of the impurity potential in the additional phase 
factors likewise do not depend on the position of the 
internal vertex parts in the significant interval, since 
the signs in front of the phase factors containing the 
momentum p0 and the impurity potential V are in a 
unique correspondence. The limits of the integrals in 
the additional phase factors are the coordinates of the 
bare interactions lying on the boundary of the diagram. 
Let r S!S2 ... S2n ( xh X2, ... 'Xn I Xn+l• ... Xm I v) denote 
the generalized vertex part with 2n variables, where 
the indices s 1 , s2, ... , s2n denote the indices r and l 
of the incoming and outgoing lines. The vertex part r 
can be represented in the form of the product 

r (.:z:i . .. xniXn+l .. . .:Z:znl V) 
81B:t-•• s2 n 

= fs0
18:. ••• s2 n (x1 .. XnfXn+i···X2n) 

where r 0 gives the vertex part in the absence of im­
purities. The phase factor cp contains n integrals of 
the impurity potential. 

It should be mentioned that if it is assumed that the 
integrals have a positive sign in the phase factor, then 
the upper limits of integration are the coordinates of 
the vertex parts on the boundary of the diagram, which 
are connected with the outgoing lines with index r or 
with the incoming lines with index l. 

Inasmuch as the region of applicability of (16) is 
broader than the logarithmic approximation, the phase 

factors that depend on the impurities are separated in 
the equation for the vertex part of the "parquet" type, 
and we are left with an equation for the vertex part of 
the pure system. Therefore the divergence of the ver­
tex part appears at the same temperature in both cases. 
Thus, if V « 11., then the critical temperature does 
not depend on the impurity concentration. 

4. SUPERCONDUCTING STATE 

The theory of the possible superconducting state in 
a one-dimE!nsional system was developed by BGD. We 
took into aecount two types of anomalous pairings, viz., 
pairs of the Cooper and zero-sound type. A divergence 
appears at the critical temperature in the scattering 
amplitudes of both pairs. Introducing two anomalous 
Green's functions, BGD decoupled the equations, in a 
manner similar to that used in the three-dimensional 
case. We shall briefly discuss here the case when 
there are no impurities, writing out the equations in 
coordinate space. We assume first that the self-energy 
parts a and K, corresponding to anomalous pairing, 
are local functions in space (we shall subsequently dis­
card this assumption). As in the normal case, i.e., 
above the critical temperature, we separate the 
Green's functions into two parts and determine them 
from the BGD solution in the Fourier representation: 

where 

(0) (0) G(O) ( ) G., (x)= G.,,,(x)+ .,,z x, 

F-:;0>(x)= F.,:r(x)+F-::;~(x), 

p~> (x) = F~\(x)+ F~~z(x); 

e-1~+6"• Rlv ( ro ) 
G(O) (x --x )= e±ip~z,-z,) __ .~--"--· ~+signl.:z:) 
'"'• cz 1 2 2ui "fro2 + ll2 · 

(17) 

(the upper sign in the right sides is taken for the func­
tions with index a = r, and the lower one for functions 
with index a= l). 

Further, we introduce two new Green's functions, 
which take into account production or annihilation of 
the electron-hole pair with momentum ±2po: 

Here 

(19) 

1i is the total energy gap; Xio = Xi - Xo, where Xo is an 
arbitrary point, and for simplicity we assume Xo -- oo. 

The Green's functions ( 17) and ( 18) are solutions of the 
decoupled E!quation, which can be written in coordinate 
space in th<~ form 

( 1{)2 )<0) +(0) 
iro+---+J.t G.,,r(x1 -Xz)+~Fro,r (Xt -xz) 

2m ox,2 

+ xe2ip,z,. G-:O) (Xi, Xz) = /l (.:z:!- X2), (2Qa) 

( iw---.!...-~+ ~-t) ~~(x1 -x•>+ ~·c~;,(x1 - x,)= 0, (20b) 
2m ax,• 
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Equations of the same type are obtained by making 
the substitutions r - l and + - -. 

A similar system of equations is derived also in the 
presence of impurities. It can be solved in the quasi­
classical approximation. The Hamiltonian is supple­
mented by the potential energy, and a dielectric gap is 
introduced with a phase factor, such as to satisfy the 
self -consistence requirement 

2'"'' 
xe2ip,z"-+xe2ip,z.,exp{- f S V(z)dz }. (21) 

"'' 
The solution of the obtained equations follows from 

the solution for the pure chain by adding the phase 
factors discussed in the preceding section. For exam­
pie, 

G.,,,- exp{ipo(Xt- xz)+ -~! V(z)dz}, 

"'' 
G!- exp{ =Fipo(x10+x2o)±~[ ~ V(z)dz+ ~' V(z)dz ]}, 

:Co Xo 

+ {· i :r· 1 F,.,,- exp zpo(x,- x2)+--;;- J V(z)dz f. (22) 

"'' 
So far it was assumed that the self-energy part is 

a local function. We now generalize the results. We 
assume that the separation of the Green's functions 
into parts corresponding to the left and right sides of 
the momentum space is not connected with the locality 
of the self-energy part. The phase factors of the 
Green's function are in this case likewise independent 
of the locality, and only the non-oscillating amplitudes 
are sensitive to the structure of the self-energy part. 
Equation (20a) takes the form 

( iw +...!.._~~+ V(x1)+ J.L)G.,,,(xhx2)+ ~ d2xs~(xhxa) 
2m ox12 

Xexp{ip0 (~1 -x3 ) ++ ~· V(z)dz }F~-.• (x3,x2) 

"'' 
+ ~ d2x3x(xhx3)exp{ipo(x,o+x30) 

-+(~ V(z)dz+~·V(z)dz1}G.,(x3,xz)=6(xt-X2). (23) 
Xo :Co 

It can be shown that in such a choice of phases, the 
self -consistency of the solution is satisfied. Let us 
investigate, for example, the contribution of the dia­
gram (Fig. 5) to the self-energy part. Substituting (22) 
in the contribution of this diagram, we can show that the 
obtained phase is taken into account in (23). 

From the foregoing we can draw, in the quasi-

+ 

~ ,. 
FIG. 5. 

classical approximation, the following conclusions. 
1. The amplitude of the self-energy part does not 

depend on the impurity concentration. 
2. The single-particle energy spectrum is likewise 

independent of this concentration. The spectrum is de­
termined from the single-particle Green's function 

p(E) = --21 .~ {G(x,x;E+ie)-G(x,x;E-ie)} dx, 
m 

where Gw = G ( E = iw). Substituting the Green's func­
tion from (22), we see that p (E) actually does not 
depend on the impurity concentration. 

3. In a manner similar to the foregoing, we can 
prove that the function of the after effect of the current 
on the vector potential likewise is independent of the 
impurities. Consequently, in the quasi-classical ap­
proximation the coherence length does not depend on 
the impurities. The results obtained in the three­
dimensional case is entirely different. 

Thus, we conclude that the physical properties of a 
one-dimensional system in the quasi-classical approxi­
mation did not depend on the concentration of the im­
purities, if the system is investigated separately from 
other systems. 
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