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A microscopic description is presented of the statistics and dynamics of phase transitions of the dis­
placement type in ferroelectrics. The coefficients of the Devonshire expansion of the free energy are 
expressed in terms of microscopic parameters. The correlation effects in the transition region are 
considered. The spectrum of the low-frequency oscillations above and below the transition point is 
obtained. 

INTRODUCTION 

PHASE transitions in ferroelectrics are usually 
divided into two classes: of the order-disorder type and 
of the displacement type [1J. In order-disorder transi­
tions, for example in KHaP04 or triglycin sulfate, the 
ions and radicals which determine the polarization of 
the crystal have several (usually two) symmetrical 
equilibrium positions in the cell. These positions are 
quite far from each other, so that the total potential in 
which the ion moves is strongly anharmonic. These 
positions are statistically uniformly populated above 
the Curie temperature Tc, and a spontaneous asym­
metry of the population, leading to polarization, appears 
below Tc. The character of the phase transition is in 
this case the same as in the well-known Ising model [2 J; 
in particular, the transition is usually of second order. 
A theoretical description of order-disorder transitions 
encounters the usual difficulties of taking into account 
strong correlations in second-order phase transitions, 
it being necessary in this case to take into account also 
the influence of the long-range forces of the dipole­
dipole interaction [3 J. However, the dynamic effects 
connected with the possibility of nonrelaxation oscilla­
tions of the ion between the equilibrium positions are 
usually exponentially small [4 J, and the high-frequency 
dynamics of the crystal has no singularities near 
Tc [4,sJ. 

Transitions of the displacement type, which are 
peculiar to ferroelectrics of the oxygen-octahedral 
type C1J such as BaTiO~, are characterized by the fact 
that the anharmonicity of the potential has, for all the 
ions, the small order of magnitude that is usual for 
crystals. The phase transition takes place at ordinary 
temperatures T that are small compared with atomic 
energies Eat, owing to the special cancellation, typical 
for these structures, of the terms that determine the 
rigidity against the given deformation of the cell [e, 7 =. 

The smallness of the anharmonicity makes it possible 
to describe the transition by the usual methods of ex­
panding in powers of the ratio of the oscillation ampli­
tudes to the cell dimensions, i.e., TEat -I_ In this con­
nection, as will be shown below, the correlation effects 
characteristic of second-order phase transitions are 
also proportional to TEat-1 and are small everywhere, 
except at temperatures very close to the point of the 
second-order phase transition Tc· Since, on the other 
hand, in transitions of the displacement type a first­
order transition usually takes place before T c is 
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reached, there is no dangerous region and the expansion 
in powers of the anharmonicity is valid for all values of 
T. In thermodynamics this leads to the Devonshire ex­
pansion in powers of the polarization [sJ, and in dynam­
ics it eorresponds to the existence of a critical oscilla­
tion, called the Cochran oscillation, with a small and 
strongly-temperature-dependent gap in the energy 
spectrum [7 ' 9 - 12' 4 J. 

The foregoing considerations, which were developed 
in papers by a number of workers [e-13 J, make it possi­
ble to construct a quantitative theory of a displacement­
type transition, starting from microscopic considera­
tions. This is precisely the purpose of the present 
paper. Inasmuch as the anharmonic terms play a de­
cisive role in the transition, in this case there is a 
rare opportunity of directly determining the micro­
scopic anharmonicity parameters in term of macro­
scopic quantities. The same constants determine here 
both the thermodynamics and the dynamics of the sys­
tem in the region of small wave vectors k, a region 
important for the critical phenomena near the transi­
tion. Therefore the microscopic approach should make 
it possible to relate the thermodynamic properties with 
such dynamic characteristics as the temperature de­
pendence of the frequency and the width of the critical 
oscillation, the dielectric losses at high and ultra-high 
frequencies, the probability of the Mossbauer effect 
near the transition, etc. 

The microscopic approach to the thermodynamics 
of ferroelectrics of the displacement type was de­
veloped in a paper by Kwok and Miller [sJ who derived 
an expression for the phenomenological parameters of 
the Devonshire expansion in terms of microscopic quan­
tities. Certain problems, however, particularly the 
thermodynamic contribution of the critical degrees of 
freedom and the correlation effects, were not considered 
in lsJ. In addition, they discarded in their microscopic 
expressions a number of terms which in general have 
the same order of magnitude as the retained terms. We 
therefore obtain in Sees. 3 and 4 a more accurate 
microscopic expression for the Devonshire coefficients, 
and discuss the correlation effects. The main purpose 
of the paper, on the other hand, is an analysis of the 
dynamics in the transition region. In Sec. 5 we obtain 
with the aid of a general expression for the phonon 
Green's function, equations for the oscillation spectrum 
of the system in the region of small k, with allowance 
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for the connection between the acoustic and optical de­
grees of freedom and the piezoelectric effect. Thus, 
we present a microscopic derivation of the phenom­
enological equations of Ginzburg L9 • 14] and Cochrane 10 • u] 

and their generalization to the case of non-zero values 
of k in the region below the transition. From these 
equations we find an expression for the spectrum of 
the critical oscillations. A strong mutual influence of 
the critical and acoustic branches, leading to an unus­
ual form of the spectrum of these oscillations at small 
k, is noted. It is found that in perovskites the spectrum 
of five low-lying branches at small values of k are 
determined by six constants, so that its experimental 
study makes it possible to determine these important 
characteristics of the crystal. The temperature de­
pendence of the quadratic displacement of the ions and 
the Mossbauer effect near the transition will be con­
sidered in another paper. 

We consider an ideal single-domain crystal. For 
concreteness, we discuss the case of perovskite, but 
the generalization to other cases is obvious. We use 
the temperature diagram technique [lsJ, which is the 
most compact method of simultaneously describing the 
statistical and dynamic properties. The method and the 
qualitative results, including the existence of critical 
oscillations, are applicable also to the case of non­
ferroelectric transitions of the displacement type L9 , 4J, 

2. HAMILTONIAN AND DIAGRAM TECHNIQUE 

As usual, we consider a crystal in the adiabatic ap­
proximation, assuming that the energy of the system is 
determined completely by specifying the coordinates 
and velocities of the ion centers. Then, expanding in 
usual fashion the energy in powers of the deviations of 
the ions from the equilibrium positions in the cubic 
phase [7 •8 J, we have for the Hamiltonian the expression 
H _ 1 ~ . · i 2 .-L 1 ,-~ a1i1a;it , a1i1 a]i2 'l i - 2 LJ m, (u,) , 2 LJ tD (r1 - I 2) u,, llr, - LJ eiUr E, 

u i1i1 ir 
r.r, 

+ S~ ~ {E2 + H2) dV + ~ ~ J, Cll"'i,. "n in (rb ... , rn) u~:i, . .. u"n in, ( 1) 
n=3 i 1 ••. in n. rn 

ft···~'n 

Here u~ and u~ are the displacement and the velocity 
operator of the i-th ion in the cell, characterized by the 
lattice vector r = n,a, + n2a2 + 11J a 3 ; aa are the funda­
mental periods, which form in this case a Cartesian 
triad of vectors; <1> are the coefficients in th.e e::wansion 
of the potential energy. The interaction <I>a,11a212 
( r, - r2) includes only the short-range forces, partie­
ularly the difference between the field acting on the ion 
and the average field, but does not contain terms cor­
responding to the long-range dipole-dipole interaction. 
These facts are described with the aid of the average 
macroscopic field E, regarded as an independent dy­
namic variable; ei is the effective charge of the ion, 
and by virtue of the neutrality of the cell we have ~ei 

i 
= 0. The coefficients <I> satisfy the known relations that 
follow from the invariants of the ene:r;gy of t}:le crystal 
under homogeneous displacement u~1 - u~ 1 + const: 

~ (!Ja,;,a,;.(r) = ~ cJ)a,;·"·'·(r) = O, 

~ q,a:liJ ... Gtmim .an in (rh ... 'rm, ... ' rn) = 0. 
imrm 

(2) 

After the usual changeover to Fourier components 

1 uki = ---== ~ Urie-ikr, $«1i1a2iz(k) = ~ $a;1 ~ 1a2i2(r)e-ikr, 
"fN r 

1 
E =-~ E e-i"'" k - LJ r , 

"fN 
r 

(3) 

where Ilk is the quasimomentum and N is the number 
of cells, the Hamiltonian (1) takes the form 

(4) 

Here Vc is the volume of the unit cell and Hint de­
notes the last term of ( 1), expressed in terms of ul· 
We are not interested here in the shortwave electro­
magnetic radiation with wavelength of the order or 
smaller than the cell dimension (the x-ray region), so 
that we can confine ourselves to the use of the field 
values at the lattice sites as the dynamic variables of 
the field. In this connection, the components Ek are 
defined in (3) just as Uk, and a factor vc appears in 
the next to the last term of ( 4). 

The quadratic expression in the square brackets of 
(4) can be reduced in the usual manner to the diagonal 
form corresponding to noninteracting phonons [aJ. How­
ever, bearing in mind an application to the study of the 
spectra at small values of k and at small displace­
ments of the individual ions, it is more convenient to 
perform this transformation in the following manner. 
We choose as the "acoustic" variable the coordinate 
uk = uk of t~e given ion, and introduce iJ.?. place of the 
remaining ul the relative coordinates y1 = ui - u. We 
then make a. canonical transformation of the "optical" 
variables Yk with coefficients independent of k, in 
such a way that when k = 0 the terms of the Hamilton­
ian Ho in (4) which are quadratic in y and y take on 
the diagonal form: 

In our case of perovskites with five ions per cell, 
the index j in (5) runs through twelve values. As noted 
by Kwok and Miller [aJ, owing to the cubic symmetry of 
the twelve quantities, the A-i in (5) constitute four 
triply-degenerate groups "-b (b = 1, 2, 3, 4), and for 
each b the three unit vectors ej = eba correspond to 
three polarizations of a along the principal axes of the 
crystal: 

. ~ v;(b) 
Yk 1 = ~~Xbk, 

b "fm; 

After these transformations are performed, the 
Hamitonian (4) takes the form 

Ho +Hint= -2
1 ~ [..a,;,;._,+ u,Au_, + {--'- (E,L, + IJ.H_,) 

k .1:1 

+ ~ (2u_. y;:t;, ;.;bk + 2u_,Vbxbk- 2zbE-kxbk -T xbk;.;b-k + AbXbkXb-k) 
b 

We have introduced here the notation 

(6) 

(7) 
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ij 

S~~·(k) = ~ v;(b)vi(b')m;', mj'' QJiai~(k)- i.bl'nt,•OaB· 
ij 

(8) 

and the displacements ui in the Hamiltonian Hint are 
expressed in terms of u and Xb· 

The matrices A, V, and Sin (7) and (8) vanish at 
small values of k. This follows from (2) and (3) for 
A and V and from (5) and (6) for S. Owing to the 
separation of the long-range electromagnetic forces 
into an individual term, the potentials <I> (k) and the 
matrices A, V, and S are analytic at small values of 
k. Therefore at values of k smaller than the recipro­
cal cell dimension 1/ a the expansion of these matrices, 
with allowance for cubic and mirror symmetries, can: 
be written in the form 

A = ,Atk2 ( a1gl + a1g' + a.g•), V = k2l':ft ( v1g1 + v1g1 + v.g•) , 

s' = k 2 (s,g1 + s1g1 +sag"). (9) 

For brevity we have omitted here the indices b and b' 
in the matrices V and S; ab Vi> and Si are constants, 
and the tensors gi depend only on components of the 
vector n = k/k: 

ga~1 =nan~, ga~1 = Oa~- nanp, '5a~a = ~ eaaeaP (nea) 2, (10) 
cr=i 

where ea is the unit vector of the principal axis a. In 
formulas (9) for A and V, the mass of the cell ft is 
separated as a factor in order to reduce the quantities 
ab Vi, and Sk to one dimensionality-the square of the 
velocity. The constants ai are then expressed as fol­
lows in terms of the elastic moduli Cik: 

1 c.,. 1 ( ) a,= (c,, + 2c.,) a,=-, aa = (c11 - c12 - 2cu) -, 11 
p p p 

where p = .tt/vc is the density. The quantities with the 
index a in (9) determine the degree of crystalline 
anisotropy, for example, aa determines the elastic 
anisotropy of the crystal. 

As noted by a number of authors [?,sJ, and as will 
become clear in what follows, the phase transition 
occurs at temperatures T much lower than the atomic 
energies Eat only if one of the constants A.b in ( 5) and 
(7), which we shall designate Ac, is negative and small 
compared with the remaining A.r, being a quantity on 
the order of A.rTE~t- The corresponding degree of 
freedom Xc will be called critical, and the others will 
be designated by the letter r. Owing to the smallness 
of A.c, the critical degree of freedom at small values 
of k is strongly affected by anharmonic additions due 
to Hint, and also by the terms of V c and Sec which 
are proportional to k2 • For the remaining degrees of 
freedom, the anharmonic corrections can be neglected 
together with large values of A.r· 

We choose a transverse gauge for the potentials of 
the electromagnetic field: div A = 0, A = At. Then the 
dynamic variables in the Hamiltonian (7) will be the 
coordinates u and XJJ, the scalar potential cp, and At· 

Therefore, if we introduce the 18-component vector ~i 
with components ( u, XJJ, cp, At), then the temperature 
Green's function of the system [ 15J can be written in the 
form of the matrix 

p 

G;j (k, iwa) = ~ dTe'"'n' L; eik(r,-r,) (T(~;(r,, 0)- It)(~i(r2, T)- ~;)).(12) 
0 r, 

Here {3 = 1/T, Tis the symbol of the T-ordering= 15J, 
iwn = 2i1TllT are the imaginary frequencies of the tem­
perature diagram technique, ~i ( r) = eHT ~ie-Hr, Ii 
= ( ~i), and the mean value ( ... ) denotes the trace 

Sp [ ( ... ) exp (-~H) ][Sp exp (-~H) ]-1• 

The zeroth Green's function G0 corresponds to the 
Hamiltonian H0 in (7) and is given, as usual, by the 
equationC 15 J Hlj Gjz =oil, where Hij denotes the coef-

ficient of %~i~j in (7), with replacement of the time­
derivative operator by the frequency, d/ dt - wn, and 
with reversal of the sign in the diagonal term corre­
sponding to the scalar potential [ 15 J H = -k~ c ( 41T r 1 • 

The explicit expression for the matrix G~1 is 

Go-1 (k, iwn) = 

,A{;jjn2 +A w"' Yrt;;+ vb 0 0 

wn'ffl,; + Vo" Uln2 + "-o+ Sw ikzb 
Uln 

zbc 

0 -ikz0 
k 2v, 

0 
(13) 

----zm 
0 wn 0 _z;s(w~' + k') -zb-

c 4n c2 

The first row and column correspond here to the dis­
placements u, the second to XJJ, the third to cp, and 
the fourth to At; v• denotes the Hermitian conjugate 
of the matrix V. It is assumed that the wave vector k 
is much larger than the reciprocal dimension of the 
sample 1/L, otherwise k must be understood to be 
an operator of differentiation with respect to the co­
ordinate (see Sec. 5). 

The anharmonic term in (7) can be written in the 
form 

(14) 

A momentum index ki is implied for each of the dis­
placements ~i contained in (14), and the potentials 
V 15n> 1· = .V1)l:1• • •1.kn differ from zero only if the total 

1· • • n 1· • • n 
momentum equals the reciprocal lattice vector b: k 1 

+ .•. +kn =b. 
The diagram technique is constructed in the usual 

mannerC 13 • 15J. Each Green's function (11) corresfonds 
on the diagram to a solid line, and each term v< l> of 
(14) corresponds to a vertex with n outgoing lines. In 
addition, just as in the case of an ideal Bose gas [ 15•8 J, 
it is necessary to separate among the optical degrees 
of freedom the non-zero mean values of the coordi­
nates XiJ, and in the acoustic degrees of freedom the 
deformations Uaf3· Graphically these mean values will 
be represented by a cross from which a dashed line is 
drawn. After calculating the free energy F, the equili­
brium value of the homogeneous displacements and 
deformations can be obtained from the condition that F 
be minimal. 
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3. CALCULATION OF THE FREE ENERGY 

Taking into account the statements made in Sec. 2, 
the graphic expression for the density of the free en­
ergy F can be written in the form 

t 
' 

* a 

+ ~~o-i< + 

d f 

• 
+ +(5-* + ->,d.• 

: ~- '~ (15) 
• g k 

In estimating the order of magnitude of the different 
terms in (15), we assume for concreteness that the 
phase transition occurs at temperatures larger than 
the Debye temperature ®D of the crystal, both in the 
majority of the perovskites and in BaTi03. We also 
take into account the fact that the deformations ua{:l 
and the square of the spontaneous polarization P 2 have 
in atomic units the same order of magnitude as T, and 
the anomalous rigidity is A.c ~ A.rTE~t· Then the first 
six terms a-f in the expansion (15) are of the order of 
T2 and the remainder of the order T3. These last 
te~ms could be neglected in the case of a "normal" 
second-order transition, when the temperature -inde­
pendent constants in a-f and g-l have the same, 
atomic order of magnitude. However, the fact that the 
transition is a first-order one close to second-order 
transition, and the coefficient B of the fourth power of 
the polarization in the Devonshire expansion depends 
strongly on the temperature [1J, indicates that B is 
anomalously small compared with the constants of the 
next approximation, and the corrections to B must be 
taken into account. The temperature addition to the 
other quantities, such as the elasticity coefficients or 
the electrostriction coefficients, can already be 
neglected C1J. This was taken into account when writing 
down the diagrams in (15), where we discarded, for 
example, loops with three outgoing dashed lines, since 
at least one of these dashed lines should correspond, 
from parity considerations, to the acoustic deformation 
UQ! {3• 

With the aid of (7) and (14) we can write the analytic 
expression corresponding to (15) in the form 

1 1 , (f..oJ.b2 - ~) E' j';l' 
F- F, (1') = 2 CaBvoUaBUvo + ;_;--1 -z-- ZoxbE + Srr + 1;, 2v, 

' b 

t E Td;; ~i~i~' yooo , Uj~l~m (voooo + l'ei)'-3::_) _ t, ··· ~i, ro .. o. + <:,i'::l; 4v-+ 3!vc ·i.jt-r ~ tJlm 2 1 6!vc t1 ... 1~ 

' (16) 

Here F 0 ( T) denotes that part of the free energy which 
does not depend on the average displacements, and we 
have introduced the notation 

Lu kn 

kn 

(17) 

The upper indices in the potential V indicate the values 
of the momenta; okn = G ( k, iwn). Summation from 1 
to 3 is implied over repeated Greek indi~s, and from 
1 to 18 over Latin indices. The symbol ~i denotes 
simply the mean value xb for the optical coordinates 
Xb, and the deformation Uaf:l for the acoustic coordi­
nates. In the latter case, the zero index of the poten­
tial v~::. denotes actually the limit as k- 0, corre­
sponding to the derivative of this potential multiplied 
by ( -i)[B]: 

( . a vk·--) J = lla~ - l-{}k a ... 
\ J3 k=o 

inasmuch as the potential v~::. itself vanishes as a 
result of (2). 

(18) 

It is important l 7 J in what follows that the significant 
region of the integrals with respect to k in (17) is that 
the significant region of the integrals with respect to k 
in (17) is that of large wave vectors k ~ 1/a, since the 
contribution of the region of small k is suppressed with 
a statistical weight ~k3 . At these large values of k in 
the Green's function, the influence of A.c and of the tem­
perature-dependent anharmonic corrections becomes 
small even for the critical branch, since the coefficients 
Si in (9) have, generally speaking, the normal atomic 
order of magnitude. Therefore in first approximation 
the function Gin (17) can be replaced by G00 (k, iwn), 
given by the matrix (13) at A.c = 0. The influence of the 
next terms is discussed in Sec. 4. After making such a 
substitution, the quantities Yi> dij, and eijlm in (17) 
are smooth functions of the temperature and are con­
stant when T > ®D, when it is possible to confine one­
self to the classical term with n = 0 in the sums over 
n in (17). 

To express F in terms of the polarization and de­
formation, we also take into account the fact caJ that the 
equilibrium displacement of the critical coordinat~ Xc 
is much larger than the remaining displacements xr, 
for when Xb is determined from the condition BF/ Bxb 
= 0 the displacements xr are inversely proportional 
to the normal rigidities A.r, and Xc is inversely pro­
portional to the sum of A.c and the anharmonic correc­
tions ~A.rTEit· The polarization P per unit volume is 
accordingly determined by the coordinate Xc 

(19) 

As a result, ( 16) takes on the form of the Devonshire 
expansion C16 ' 1J: 

Ca~vOl'a~Uvo 1' - 1', PE E2 
F- Fo(T) = --2--- yl'uaa + 2rrP2~- + 8; 

(20) 

According to (16) -(20), the expansion parameters 
are expressed in terms of the microscopic quantities 
as follows: 
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i 0 "' -(P+k)k P kn I y=6a ~ V;;a" G,; 1 
Pa. k.n P=O 

3T7 0000 

b v, • 1111 
u=---

6z,• 

av 0000 
b _ Vc 1122 

12- 2zc'' -' 

Vc5Vt= 
c111 = 120z,6 ' 

Vc5V~1~3~~ 
Ctz3=----. 

8zc6 
(21) 

The Greek indices with the symbol a at the potentials 
in (21) correspond to the acoustic degree of freedom, 
while the indices without the symbol correspond to the 
critical degree of freedom. 

Formulas (20) and (21) differ from the results of 
Kwok and Miller [sJ in that the coefficients y 1 d a j3' and 
eaj3yo are expressed in terms of the microscopic 
parameters (17). InCa] these constants were calculated 
in the self-consistant-field approximation corresponding 
to discarding the terms f and i-l in the diagrams of 
(15). As noted above, the indicated diagrams have the 
same order of magnitude with respect to the parameter 
TE~t as the remaining ones. In addition, in the final 
expressions, which were analogous to ( 17), Kwok and 
Miller [sJ proposed to discard completely from the 
right-side the contribution of the critical degrees of 
freedom, "since allowance for them leads to terms in 
F that differ from the Devonshire terms." The afore­
mentioned terms correspond to the contribution made 
to F by the region of small k and are ·discussed below. 
However, as already noted, these corrections are pro­
portional to the higher powers of TEat and are small. 
In the principal approximation, on the other hand, an 
important contribution is made in the integrals (17) by 
the region of large k, and to determine this contribu­
tion it is necessary to put A.c = 0 in the critical de­
nominators, after which the critical degrees of freedom 
make contributions of the same order of magnitude to 
the constants as the remaining degrees of freedom. 

4. GREEN'S FUNCTION. CORRELATION EFFECTS 

The exact Green's function (12) satisfies Dyson's 
equations [1s] 

G;j1 (k, iwn) = (G.;-1 (k, iwn) );; + ki;(k, iwn), (22) 

where ~ij is the irreducible self-energy part. The 
graphic expansion of ~ in powers of the interaction, 
analogous to (15), can be written in the following form: 

(23) 

As noted above, the anharmonic effects are signifi­
cant for the critical degrees of freedom in the region 
of small k. In addition, below the transition there ap­
pears in the crystal a piezoeffect, a linear coupling of 
the acoustic and optical branches proportional to the 
polarization, it being sufficient to take into account only 

the coupling with the critical branch. Thus, it is suf­
ficient to determine the elements ~cc and ~ac of the 
matrix ~ij at small values of k, and the remaining 
~ij can be neglected. Writing out the analytic expres­
sions corresponding to the diagrams of (23), we get 

"a~ [ q44 
kac (k, iwn) = QaB = 2iz, q12kaPB + Z (PakB + ilaB(kP)) 

+q.~ e0 "eaB(kea)(Pe,)], ka<-{'1. (25) 
a 

We use here the same notation as in (17) and (21); ~k­
coefficients of electrostriction, qa = qu - q12 - q44-is 
the striction anisotropy constant. du ( iwn) and 
eaj3( iwn) in (24) differ from du = du ( 0) and eaj3 
= eaj3( 0) in (17) and (21) because the diagrams d and 
h-n in (24) differ from f and i-l in (15). In (15), 
these diagrams contain the Green's function at the 
same value of the frequency iwn over which the sum 
is being taken. In the analogous diagrams of (23), one 
of the G contains besides the internal frequency Wm 

also the external frequency wn: G( k, iwm) 
- G ( k, iwm + iwn). However, if we disregard the case 
of very low transition temperatures, on the order of 
several degrees, then at small values of k the thermo­
dynamic contribution of the terms with n f 0 is much 
smaller than when n = 0, and the argument of du and 
eaj3 can be omitted. A similar procedure can be used 
also in the analysis of the low-frequency dynamics, 
presented in Sec. 5, when iWn in (24) is replaced by 
the frequency w: du(w) ~ du and eaj3(W) ~ eai3, 
since at the large values of k that are essential for the 
integrals ( 17) the frequency w can be neglected to­
gether with other terms of the denominators G. 

Taking (22), (24), and (2 5) into account, the Green's 
function assumes in place of (13) the form 

c-1 (k,iwn)= 

"ftwn2 +A Wn2 Vii+V+Q Wn2 Vii;.LV, 0 0 

0 

0 

r 
- ____£_k2 

4:t 

0 

0 

~ _!!:__._Lk'!. ,. ("'' ) 
4;t c2 I 

(26) 

Here S0 = ~cc + A.c, the second row and column corre­
spond to the critical coordinates xc, the third to xr, 
and to abbreviate the notation the index c has been 
omitted from the critical matrices V, S, and f/i.. 

It will be shown in Sec. 5, that the elements of the 
matrix ( So)aj3 at k = 0 and Wn = 0 can be simply ex­
pressed in terms of the dielectric-constant matrix 
Eaj3 of a clamped crystal. Therefore formula (24) can 
be obtained also by a purely thermodynamic method 
with the aid of relations (38), (20), and (21). 
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We shall now discuss the correlation effects [3 , 14J, 
i.e., the additional terms that result from substituting 
in the right-sides of ( 15) and ( 17) for F and (23) for 
L: the exact Green's function in place of the previously 
employed G00, corresponding to (26) with Fo = Q = 0. 
Let us find, for example, the correction oL: to the dia­
grams c of (23) for L: at k = wn = 0. For simplicity 
we confine ourselves to the region above the transition 
temperature To and to the case of not too small T0 • 

With this, as already mentioned, it is sufficient to re­
tain only the classical term with n = 0 in the sum over 
the frequencies wn, corresponding to the internal line 
of the diagram: 

6~~~l(0,0)=3T .L;v:/,~jk(G;;(k,O)-G;/0 (k,O)). (27) 
k, ij 

For the function Gin (27), in accordance with the 
successive-approximation method, we take expression 
(25), and at the considered T >To we have So 
= 4rr.\E~1 and E0 = C+(T- Tc)-1 • The integral (27) con­
verges at small k ~ a -1 E-112 , so that (27) contains the 
values of G and G00 for small k. With this, the 
matrices Vb and Sbb' (8), which describe the inter­
twining of the different branches, tend to zero in ac­
cordance with (9). It is therefore sufficient to take into 
account in G only the critical and acoustic branches, 
for which the denominators of the Green's functions 
are small at small values of k, and in formula (27) it 
is sufficient to retain only the critical components Gee, 
inasmuch as the acoustic potentials v~}§);ia and 
V~~~lia vanish at small values of k as a result of (2). 

After eliminating the electromagnetic and acoustic com­
ponents, Gee takes on the following form: 

G,, = (So+ S + )cg1 - J!+A-'V)-', (28) 

where "- and gi are the same as in (21) and (10). We 
see that the long-range dipole interaction produced in 
(28) a longitudinal term proportional to gi, with a coef­
ficient .\ of the order of the square of the plasma fre­
quency of the ions and much larger at the considered 
small values of k than the remaining terms of the de­
nominator in (28). Therefore the longitudinal degree of 
freedom in the region a -1 >> k >> L -1 under considera­
tion ceases to be critical [7 , 10• 4J and it is sufficient to 
take into account in (27) only the transverse components: 

li~~~l = 3T ~ V~o[(So+S- V+A-1 V)~1 -(S- V+A-'V)~1 ]. (29) 
k 

The indices ( ... )t1 of the matrix R denote here that 
R must be projected on a subspace (plane) orthogonal 
to n, Rt = gtRgt, after which it is necessary to take in 
this subspace the matrix inverse to Rt. The values of 
the elements of Rt can be obtained from the matrix 
(R +.\gl)-\ by letting.\-""; 

(R,-')a~ = ( ~ n"nvA"v(O) r _ii__Aa~(s) l<~o, (30) 
"v · lis 

where A 01 f3 ( ~) is the cofactor of the matrix element 
Raf3 + ~notnf3. 

Substituting in (29) the expressions (9) for S, V, and 
A, and introducing in the integration with respect to k 
a new variable x = I k I E"V2 ,\-112, the integral (29), with 
allowance for the cubic symmetry, can be transformed 
into 

(31) 

where 

(32) 

gi and b01 f3 are the same as in ( 10) and (20), and dn 
denotes integrations over the angles of the vector n. 

The correction to the diagram d of (23) is calcu­
lated in similar fashion. The answer has likewise the 
form (31), and the corresponding constant J 2d is pro­
portional to quadratic combinations of the striction 
constants qik divided by the elastic moduli Cik· Owing 
to the already mentioned relative smallness of botf3, it 
is necessary in the quantitative calculation to take into 
account also certain diagrams omitted from (23), i.e., 
the diagrams f-n, in which two dashed lines are re­
placed by one solid line. The contribution of these 
terms reduces to the substitution botf3- Thaf3 in (32), 
where hotf3 ~ e 01 f3 in (20). 

The quantities .\-1 ( G~1 ) ot{3 at k = wn = 0, in accord­
ance with the formula (38) given below, form a matrix 
which is the inverse of the dielectric constant matrix 
Eotf3· Therefore the formula for E with first-approxi­
mation corrections is 

( 1 JT\-1 c+ ( 1; c+) 
B= ---=) ~-- i+JTy-- , 

'Bo fBo· T-Tc T-Tc 
(33) 

where J is equal to the sum of the already mentioned 
terms given in (32). 

The correction term in (33) has the usual form 
characteristic of corrections to the zeroth approxima­
tion of the self-consistent field [14 ' 3 J •• An analogous 
form is possessed by the correction terms for the 
other thermodynamic quantities [3 ]. The constant J is 
equal in order of magnitude to the reciprocal of the 
atomic energy E~l; therefore, as already noted, the 
fundamental parameter determining the suitability of 
the zeroth approximation (20) and (26) and the small­
ness of the correlation effects is TE~l· 

Let us estimate the correction term in (33) for 
BaTi03 • In this substance b01 f3, Te 01 f3, and qfkclk are 
quantities of the same order of magnitude, so that 
formula (32) can be used for the estimate of J. The 
quantity .\ enters into the formulas for the spectrum 
of the critical vibrations (41), and from a com~arison 
with the data of [17 ] it can be concluded that "- 1 2 

~ 10 13 Hz. We have no data concerning Si and Vi in 
BaTi03 , but for SrTi03 we have Si ~ ai [laJ, so that 
we can expect the same to hold here, too. Using for 
b01 f3 and ai the values given in [ 1J , we get 

l ~ _3_ A.''•(bu + 2bt2) ~ _1_ IT~ 5 _10_,_ (34) 
32:rr3 s';• 70 eV ' 

At the transition point, the correction term JT IE; in 
(33) amounts to ~ 5%. 

5. VIBRATION SPECTRUM AT SMALL VALUES OF k 

The dynamic properties of the system are best de­
scribed with ijle aid of the time-dependent Green's 
function [15 ] dt): 
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(35) 

The Fourier component of the time-dependent function 
G(t) (k, w) can be obtained from the temperature func­
tion G ( k, iw n) ( 12) with the aid of an analytic continu­
ation from the discrete set of points iwn in the com­
plex w plane to the real axis C15 J: 

G(tJ(k, w) = G(k, w). 

Thus, in the approximation in question dt) is the 
matrix (26) with the substitution wn - - iw. 

(36) 

The excitation spectrum is determined by the poles 
of G (t), i.e., by the values of the frequencies at which 
the corresponding system of homogeneous equations 
has a solution [1sJ; in this case the eigenvectors ~i 
determine the amplitudes of the displacements in the 
excitation. Going over for the sake of clarity from 
components of the potential to the electric field E, we 
have for the determination of the spectrum the follow­
ing equations: 

(A- .4!w 2)u + (V + Q- w2fl!)x, + (V- w 2f~tr)Xr = 0, 
(V++ Q+- w2flt)u-i- (So+ S- w'}x, + Saxr -z,E = 0, 

(V,+- w2fl!,.)u+Src+x,+ [0.,- w2)6rr•+S,,.]x,.-z,E = 0, 
4nw2 ( w2 \ 

- 2 - (z,x, + z,x,)a +\--;- 6a~- k26a~ + kak~ IE~= 0. 
c~ ~ I 

(37) 

The system (37) differs from the ordinary equations of 
harmonic oscillations in that the quantities Si and Q 
have a temperature and deformation dependence. These 
equations are quite lucid, and analogous semi-phenom­
enonological relations were written out earlier by 
Ginzburg [9, l4J and Cochran [lo, uJ, and called by then 
"linear anharmonic approximation." These equations 
were derived above microscopically, and the regular 
method employed makes it possible to investigate also 
higher approximations in the parameter TE~t' particu­
larly damping effects C 4J. 

At small values of k and w, the coupling between 
the critical or the acoustic branch and the other 
branches in (37) is small, the components Xr can be 
neglected, and the expansions (9) and (25) can be used 
for A, V, S, and Q. 

In the case when macroscopic wavelengths larger 
than or of the same order as the crystal dimension L 
are considered, the vector k in (37) should be replaced 
by the differentiation operator aj oR, and (37) goes 
over into the equations of elasticity and electrodynamic 
theory [!9], with allowance for the piezoeffect below T0 • 

It is seen from (37) that when oscillations in a homo­
geneous field E are considered the piezoelectric 
coupling between the critical branch, which determines 
the polarization, and the acoustic branch will be notice­
able only for frequencies w $ L-1 ai112, i.e., in the 
region of the piezoacoustic resonances. At larger fre­
quencies, the coupling between the branches decreases 
like W-2 , so that the quantity So in (37) determines the 
dielectric constant E at these high frequencies, called 
the permittivity of the clamped crystal: 

After eliminating from (37) the components of E, 
the equations for the spectrum at small values of k 
and w become 

(38) 

(A- ,ltw')u + (V + Q- w'1'1!)x, = 0, 

( V + Q+- w2 y~) u + ( !'_ + S- w2 + J..g'- J..g' w2 
\ e czkz- (J)z 

)x, = 0. 

(39) 

If we disregard very long wavelengths, k-1 ?; 10-3 em, 
where the well-known entanglement of the phonon and 
electromagnetic branches takes place [ao, 4 J, then the 
relativistic transverse term in (39) can be neglected. 
One of the six remaining branches, the longitudinal 
optical branch, has a high frequency w ~ A. 112, and will 
not be considered here, inasmuch as on going from 
(37) to (39) we have assumed that the frequencies were 
low. There remain therefore in (39) only the trans­
verse critical coordinates, and the equation for the 
spectrum can be written in the form 

DetiiA -.If w2 - ( V + Q- w 21i~) (J../e + S -- w2) ,-' · (40) 
· (V + Q+- w 21ff') :1 = 0, 

where the symbol ( ... )t is the same as in (29) and 
(30). 

Owing to the transversality of the critical matrix, 
the longitudinal parts of the matrices S, V, and Q make 
no contribution to (40). We can therefore discard the 
term proportional to k13 in the matrix Qaf3 (25), and 
in the matrices V and S (9) we can put vz = Vt and 
sz = st, after which V and S become diagonal relative 
to the principal axes of the crystal. If the elastic, 
striction, and dielectric constants are known, the spec­
trum of the five branches given by (40) is determined by 
six constants, namely A., !l, St> sa, Vt> and va, which 
can be determined experimentally. We note, however, 
that since it is possible to choose as the acoustic co­
ordinate in Sec. 2 the coordinate of any of the ions of 
the cell, the determination of these constants from the 
spectrum is not completely unique. The oscillation fre­
quencies are expressed only in terms of such combina­
tions of A., !l, Si, and Vi which do not depend on the in­
dicated choice; therefore a complete spectrum experi­
ment can determine only several possible sets of con­
stants (as many as there are nonequivalent atoms in 
the cell). 

The five branches described by Eqs. (40) break up 
at the smallest values of k into three acoustic 
branches with a linear dependence of w on k, and two 
transverse critical branches with a gap in the spectrum 
proportional to E112 ~ IT - Tc 1112• Thus, in the tetra­
gonal phase we have 

(1) 2 0 - /.. 
c!()-(1 /M ' -1! )e.L 

(41) 

Besides the temperature dependence of the gap, an 
essential singularity of the spectrum is that it varies 
strongly at wavelengths much larger than the inter­
atomic distances a. Thus, in the region a-1 >> k 
» ai112 w c ( 0) it is possible to neglect So and Q in 
(40), and all five branches have a linear dependence of 
w on k. When k ~ at112 wc ( 0), a strong kink occurs 
in the dependence of the acoustic frequencies on k, and 
the speeds of sound at small and large frequencies are 
not equal (see the figure). 

By way of illustration let us consider particular 
cases in ( 40). If k is directed along x, then the five 
branches of (40) break up into one longitudinal acoustic 
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branch and two pairs of degenerate transverse oscilla­
tions. On the other hand, if k is perpendicular to the 
tetragonal axis and directed along one of the principal 
axes or makes an angle 45° with it, then only one pair 
of branches, with a polarization perpendicular to k and 
to P, is separated, while the remaining transverse 
branches are coupled below To with the longitudinal 
branch, the dispersion equations being cubic: 

1) n, = 1, nz = n 3 = 0: 
wi' = k'(at +a"), 

(k' ') lk' , A ) ( . . 1/-,;)' AP'q"'' a,-," 1 ·-s1 -w +-- - k-u 1 -w'v·~ -----k2 =0; 
' ej_ M 4:rr 

2) 112 = 1, n 1 = Jt3 = 0: (42a) 

(k'a,- tu 2 ) \/ k2s1 - w2 + ').__ \- (k 2v1 - w' 1 / J:'.)' = U, 
OJ_ I v M 

[k2 (a, +a,)- w2] [(!.'a,- w'') (k'·'t- w2 + ').__)' -l "''''- ,,,, v~) '] 
Cii , ilf 1 

(42b) 

[ I ., ( a, .) ·ll . ( s, ) A J 1:~ \ ar -+ --:y - t•1 2 L k 2 .1..· 1 + ') ·· - ui~ +--:--
.... . """ 1:'...1.. 

[ 
1 l'u \ v fl 12 

- h' \"' + ~-)- ,,,z iii J = 0. 

[ ( rza) ']I I i.) 
/,:2 a1 + :2 - (1)- L (1.:2rz1 - w2) \ k2o1 - w2 +-;;;;-

( V fl )'] AP2q122 
- k'u 1 -<•>' ~ -(k2a1 -(1)2)-- -k2 =0. 

M rrp 
(42c) 

To illustrate the angular dependence of the spectra 
below T0 , let us consider also a hypothetical case of a 
crystal in which the constants introduced in (9) are aa 
= Va = sa= 0. Although in BaTi03 , for example, the 
elastic anisotropic constant aa is of the same order 
as a and az, this anisotropy is usually small in the 
observable quantities. It is more convenient in this 
case to perform the calculations in a coordinate system 
in which one of the axis is directed along k, the other 
is perpendicular to k and P. Here, again, a pair of 
branches with polarization perpendicular to k and P 
is separated, and for the remaining branches we obtain 
a third-degree equation 

(k'at- w2) ( k2St- w2 + 8:)- (k'u,- w2 v;· y 
AP2k2n 12 ( q44 )' - ---- 2 + qanj_2 = 0, 

I , rrp ( tJt_L2 Allt 2 ) 
(k2a,- w2) L (k"a 1 - w') k's1 - trJ' + -- + _ 

E!i f._L 

( V fl )'] AP'k' r r q \ z - k'ut-w2 -- --- (k2a1 -w2)n12i ~-tq,n_L2 1 
M - n:p 1 2 

+ (k2at- w2)n_L2(q12 + qant2 ) 2 J = 0. (43) 

In BaTi03, El is much larger than Eii, and qa is 
much larger than the constants q12 and q44/2, so that 
the anisotropy of the spectrum below To is appreciable. 

The formulas of this section were obtained by 
neglecting relaxation processes. In particular, they 
correspond to isothermal oscillations, whereas the 
oscillations can be also adiabatic, depending on the 
ratios of k and w, on the one hand, to the coefficients 
of thermal conductivity and viscosity on the other [1J. 
However, these effects are proportional to higher 
powers of TE~t and are small. For example, in BaTi03 
the difference between the adiabatic dielectric constant 
and the isothermal one is ~ 3% [1J. The damping of the 
oscillations [17J and the dielectric losses at microwave 
frequencies will be considered in a separate paper. 

6. CONCLUSION 

In conclusion, we make two remarks, one concerning 
the method and the other concerning the experiment. 

Let us discuss the connection between the present 
work and the description of the transition by the self­
consistent field method [3•4J. In [3•4J, the radius r 0 of 
the interaction of ions of different cells was assumed 
to be large. Therefore the interaction was accurately 
described by means of the average self-consistent 
field, and the correlation effects were proportional to 
r~3 . In the present paper, the small parameters are 
the anharmonicity TE~t and the anomalously small 
rigidity Ac ~ Ar TE~t· The unharmonic correlation 
effects are significant only for phonons with small 
k ~ -1 T112 -l/2 d th t' f th . · h a Eat , an e mo 1on o e remammg p o-
nons can be regarded as harmonic and independent of 
the transition. Therefore, in the calculation of the 
field acting on a given ion, the main contribution is 
made by the noncritical phonons, and the field can be 
regarded as independent of the position of the ion and 
replaced by the mean value, neglecting correlations. 

Thus, the approximation employed is similar to the 
approximation of the self-consistent field, except that 
in [3 •4J they used the smallness of the correlation of 
the particles in different cells, whereas here, at small 
anharmonicity, the phonons with different k are inde­
pendent of one another. Therefore the general results 
and the form of the temperature dependences (20), (33), 
(41) remain the same as inC3•4J and in the phenomeno­
logical theories [16•19• 14• 10J. Only the expression for the 
phenomenological constants in terms of the micro­
scopic parameters changes: in [3' 4J they were expressed 
in terms of the average temperature constants for the 
independent particles, but in our case they are ex­
pressed in terms of the averages for the independent 
phonons. This explains why the results obtained in the 
models of Devonshire [16 J and Slater [6J, who used the 
self-consistent field method, coincide with the results 
obtained in the case of weak anharmonicity [7J and with 
experiment. In this connection, the idea advanced in [4J, 
that the success of the phenomenological theory for 
perovskites indicates that the r 0 of these systems is 
large, does not necessarily follow; a sufficient and 
more probable explanation is the smallness of Ac and 
the weak anharmonicity. 

Physically, the applicability of the method of the 
self-consistent field differs from that of the expansion 
in the anharmonicity. For the former it is necessary 
to have a large radius r 0 , but the anharmonicity can be 
arbitrarily large, particularly, this may be the case of 
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the order-disorder transition [a, 4 J. The regions of ap­
plicability can, of course, also overlap; for example, 
at large ro the quantity St in (34) is proportional to 
r~ and the correlation correction is proportional to 
r~a. 

The second remark pertains to the structure of the 
crystals in question. As already noted, in perovskites 
the constants eaj3 and Caj3y in (20) are anomalously 
large compared with the first-approximation constant 
baj3, causing, in particular, the closeness of the first­
order transition to the second-order transition. In ac­
cordance with (21) and (17), this denotes that the criti­
cal potentials y<s> are much larger, in the appropriate 
atomic units, then the potentials y<4 >. Large values of 
y<s> may be connected with the well-known singularity 
of these structures-the close packing with very small 
''free space" for relative displacements of the ions [lJ. 

This can lead to a sharp growth of the repulsion at 
values of xc that are not small, i.e., to a situation of 
the square-well type. In this connection, great interest 
attaches to a determination of the microscopic potential 
y<ll> in (21), i.e., the constant zc or A., which, as 
discussed in Sec. 5, can be accomplished by studying 
the dynamics. It is also very desirable to search for 
transitions of the displacement type in other non­
ferroelectric and non-oxygen-octahedral crystals, 
since it is clear from the foregoing that the singulari­
ties of the thermodynamics and dynamics of the dis­
placement-type transition are not at all connected with 
ferroelectricity and may have a general character. 

The author is deeply grateful to A. I. Larkin and 
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