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It is shown that the transformations that eliminate the singularities in the Schwarzschild metric, 
being represented in the form of local Lorentz transformations, have the following common feature: 
the transformation parameter V, which has the meaning of the local velocity of the new system of 
coordinates relative to the initial system, reaches the velocity of light on the Schwarzschild sphere. 
A general prescription is formulated for the construction of coordinates in terms of which the 
Schwarzschild metric has no singularities on the gravitational radius. 

1. The question of singularities on the gravitational 2. We perform in (1) the following coordinate trans-
radius in the well known Schwarzschild metric formation 

d'' = 'l'(r)dl2 --- rp- 1 (r)dr2 - r2 (d82 + sin2 Sd<P2), (1) 

where cp ( r) = 1 - a/ r and a is the "gravitational 
radius," has recently again attracted attention. An im
portant aspect is the clarification of the invariant 
character of these singularities, i.e., the possibility of 
their elimination with the aid of suitable coordinate 
transformations [1 ' 2 J. Concrete examples of such 
transformations were obtained in the papers of 
Kruskal [3 J 1 > 

and Rylov [4J: 

V-r r r) t 
T(r,t)=a --1expi --- sh --, 

a · 2a 2a 

R(r,t)=a V~-1exp( 2: )ch~,;-· 

T(r, l) = t- ~ dr/rp(r)f(r), 

R(r,t)= ~f(r)dr/cp(r)-t 

(f(r) is an arbitrary function with properties e(a) 
= 1, f2 ( r) > 1 for r > a, and e ( r) < 1 for r < a). 

(2) 

(3) 

In the present paper we discuss from a unified point 
of view the entire class of transformations eliminating 
the Schwarzschild singularities. This is effected by 
representing the general coordinate transformations in 
the form of local Lorentz transformations. This re
sults in the following common characteristic of the 
transformations that eliminate the Schwarzschild singu
larities: they correspond to local Lorentz transforma
tions with a parameter V (local velocity in the new 
coordinate system relative to the initial one), reaching 
a value equal to unity (velocity of light) on the Schwarz
schild sphere. 

The existence of the indicated characteristic makes 
it possible to formulate a general prescription for 
finding the coordinates in which there are no Schwarz
schild singularities. 

OWe present here the form of the Kruskal transformations only for 
the region r;;;, a, R > ITI > 0. 
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r = r(R, T), t = t(R, T), 

dr = rRdR + rrdT, dt = tRdR + trdT, 

(4) 

(4') 

and require that the property of orthogonality of the 
metric be conserved. In the new coordinates we have 

ds2 = F dJ'2 - Gdl(2 - r' (R, T) ( d82 + sin2 8d<P2), ( 5) 

where 
F = tr2fj)- rr"'rp-1, G = rR2<p-'- tR2'fJ, 

tRtr''l' = rRrrrp-1• (5') 

The meaning of the symbols is obvious from the context. 
We seek a transformation to coordinates R and T 

such that the form (5) has no singularities in the entire 
region r > 0, i.e., in this region we have 

0 < F < oo, 0 < G < oo, (6) 

and the coordinates T and R retain, respectively, the 
temporal and spatial character. 

We introduce the local Lorentz transformation re
lating (1) and (5): 

'l''f,dt = (F'i•dT + VG'"dR) (1- V2 )-'"· 

<f!-'i•dr = (G''•dR + VF'"dT) (1- V')-'h. (7) 

The transformation parameter V has the meaning of 
the local relative velocity of the two reference systems, 
but obviously only in the region r >a, where cp 112 is 
real. In the region r <a, where cp is negative, the 
coordinate t acquires a space-like character, and r 
becomes time-like [sJ. By virtue of this, the Lorentz 
transformation for r < a should be of the form 

( -fjJ) 'i•dt = (G'f,dR + UF'I•dT) (1- UZ)-'1•, 
(-'1')-'hdr = (F'hd1 + UG'I•dR) (1- UZ)-'1, (7') 

with U serving as the relative velocity of the two co
ordinate systems. It is easy to see, however, the 
formulas (7') can be transformed into (7) by substituting 
U = V-1• We can therefore use the single form (7) in the 
entire region r > 0, bearing in mind that in the region 
r < a the meaning of the relative velocity of the two 
systems is assumed by V-1 • 

Comparing (7) with (4) we get 

_ ry _'i'tR _ tR(F)''•_rr(G''h 
V------- -- -)' 

cptr rR tr G . rR F 
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(9) 

F = tr2rp(r) (1- V2) = rr2 (1- V2 ) / rp(r) V2, 

G = tH''P (r) ( 1 - V2 ) / V2 = rR2 ( 1 - V2) / rp (r), (10) 

Equivalent formulas are produced by using the inverse 
transformation 

T = T(r, t), R = R(r, t), 

namely 

_ y = !!.!.__ = rp:, = r,( ~ \';, = R,(E )'''. 
cpR, 1 1 R, G ) T, F , 

V2 = T,R1 /T 1R, 

F = rp(r) I T,2(1- V2 ) = V2 I T,'cp(r) (1- l'')· 

G = V'cp(r) I R,'(1- Y') = 1 I R,'cp(r) (1- l'2). 

(11) 

(12) 

(13) 

(14) 

Conditions (6) for the absence of singularities in the 
metric (5) impose obvious requirements with respect 
to the first derivatives of the transformation functions 
(4) and (11), in terms of which F, G, and V are ex
pressed. The most definite and interesting consequence 
of these requirements is the condition 

rp(r) / (1- V2) > 0. (15) 

Since cp ( r) reverses sign when r = a, V2 should 
simultaneously pass through unity. 

We emphasize that the condition V2 > 1 when r <a 
does not denote actual realization of velocities exceed
ing the speed light, since in this region the relative 
velocity of the two reference systems is represented 
not by V but by v-1• The fact that V and V-1 coincide 
on the Schwarzschild sphere ensures continuity of the 
transition. 

3. Integration of the differential relations (8) or (12) 
with allowance for condition (15) gives the general pre
scription for constructing coordinate systems ( R, T) 
in which there are no Schwarzschild singularities. 
Thus, on the basis of (12), we have 

aR aR 
Y(r,t)rp(r)a;+Tt = 0, 

ar ar 
V(r, t)at + rp(r)a,:- = 0. (16) 

Specifying arbitrarily the function V ( r, t) subject to 
condition (15), and integrating (16), we get the corre
sponding R(r, t) and T(r, t). It is necessary here, 
of course, to choose such solutions of (10) that ensure 
satisfaction of conditions ( 6) in the entire region r > 0 ,, 
since the condition (15) is necessary but in itself not 
sufficient for satisfaction of (6). 

Condition (15) is easiest to satisfy in the case 
V = V ( r). The solution of (16) then takes the form 

~ ~ 

R=R(Jdr/rp(r)Y(r) -t), 

T = T(t- fdrY(r) I rp(r) ), (17) 

where R and T are arbitrary functions of their argu-
ments. In the particular case of linear functions we 
arrive at the Rylov transformations (3). 

How is the condition (15) to be satisfied in the 
general case V = V ( r, t)? To answer this question, 
we note, first, that (in the region r >a) V is a 
velocity (referred to a local-Galilean coordinate sys
tem), with which a point with fixed value of R moves 
relative to the Schwarzschild coordinate system. In
deed, for the metric (1) the local-Galilean velocity is 

determined by the expression V = cp-112dr/ cp 112dt. Sub
stituting here dr/ dt determined from the condition 
R ( r, t) = const, we get V = - Rt/ cpRr, which coincides 
with the first equation of (12). Thus, at fixed R the 
variable t is a function of r, satisfying the equation 

V(r, t)cp(r)dt/ dr = 1. (18) 

The solution t = t ( r), when substituted in V ( r, t ( r)), 
transforms it into a function of r. The condition (15) 
denotes in the general case that the function V(r, t(r)) 
= ( cp ( r) dt/ dr) -1 defined in precisely this manner 
should go through ± 1 when r goes through a. 

The asymptotic form of (18) near 2 > the Schwarzschild 
sphere has consequently the form 

±cp(r)dt/dr= 1, (19) 

which coincides with the asymptotic form of the equa
tion for the radial geodesic in the Schwarzschild space. 
Indeed, for such a geodesic there follows from (1) the 
relation 

( dr )' \ dt = rp2 (r)[1- consl·rp(r)], 

which is equivalent to ( 19) when r -a. 
Integrating (19) in the region r >a, we find that 

near the Schwarzschild sphere a point with fixed R 
moves in accordance with the law 

±(t- t0 (R)) = r+ aln ((r- a) /a). 

(20) 

(21) 

It follows therefore that t - 'f 00 when r - a + 0 and 
R is fixed and consequently the behavior of V ( r, t) 
when r ~ a and If I is large should have the form 

V(r,t)=±1+A(r-a)+Be±ta+ ... , (22) 

where 

A=[~v(r,t)] , ar r=a 
B = ± a[e+t;a ~ V(r,t) l . at _I r=a 

By way of illustration let us examine the example 
V = V ( t) = -tanh ( t/2a), which obviously satisfies the 
condition (22). The solution of Eqs. (16) in the region 
r > a with this V is 

R = R(x), T = T(y), (23) 

where 
r-a t 

x = r + a In -a-+ 2a Inch 2a , 

r-a t 
y = r +a In--+ 2a In sh-, 

a 2a 
(24) 

and R and T are arbitrary functions that satisfy the 
requirements (6). The choice of R(x) = exp(x/2a) and 
T ( y) = exp ( y / 2a ) leads to the Kruskal metric (2). 

We note that Eqs. (16) can be easily integrated also 
in the more general case V = V 1 ( r) V 2 ( t) which admits 
of separation of the variables. Here again the solutions 
take the form (23), but now 

x= ~ dr - ~ dtV,(t), 
V, (r) rp (r) 

i dt 1 V1 (r) 
Y=) Y,(t) -Jdr~. 

(2 5) 

In accordance with the foregoing, V 1 ( r) and V 2 ( t) 

~The exact meaning of the concept "near the Schwarzschild 
sphere" is made clear below and in general includes, besides (r- a)«:: a, 

also the condition It I~ a. 
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should be such that their product satisfies the condition 
(22). 

The author is grateful to A. I. Akhiezer for interest 
in the work and discussions. 
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