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It is shown that as a result of the well-known singularity of the dielectric constant E( k) in a degen­
erate electron gas, slowly damped oscillations of the potential with a period 1/2 Po (Po is the Fermi 
momentum) arise during penetration of an external longitudinal electric field into a sample, just as 
around a charged impurity. This quasiperiodic potential leads to the appearance of a gap in the one­
electron spectrum. Various manifestations of this singularity in the spectrum are considered. 

1. The derivative of the dielectric constant oE/ ok in 
a degenerate electron gas has at w = 0 a logarithmic 
singularity at k = 2po, where Po is the Fermi momen­
tum ( n = 1). This singularity, as is well known,C 1J 
leads to the result that the potential of the charged 
center, contains, in addition to the Debye screened 
part, an oscillating component of the form r- 3 cos 
( 2po r). 

It is significant that the effect of the potential ex­
tends over distances that are very large in comparison 
with the screening radius rn. This circumstance has 
great importance for the understanding of phenomena 
connected with the interaction between impurities and 
with the Knight shift in alloysPJ As has been shown by 
Brovman and KaganP:; this long-range part of the po­
tential plays a principal role in the formulation of the 
phonon spectrum of the metal. As is well known, the 
Kohn effect is also associated with this same singular­
ity in oE/ ok.c2 J 

It is evident that the singularity in BE/ elk under 
study should appear in various boundary problems of 
the penetration of an external electric field into a solid 
with a degenerate electron gas. Above all, it should be 
noted that at comparatively large distances from the 
boundary, where the field is usually considered to be 
absent, a potential will exist which falls off slowly with 
increasing distance from the boundary, and which 
oscillates with a period 1/2Po· We shall consider the 
effect of this oscillating field on the electronic proper­
ties of the solid. The fundamental effect which should 
evidently take place as the result of such a character 
of the penetrating field is the formation of a one­
dimensional gap at the Fermi surface in the spectrum 
of one-particle electron excitations. The appearance of 
the gap and the change in the density of states of the 
electrons can lead to singularities in the superconduc­
tivity, in the static electrical conductivity, and in the 
absorption of light. Furthermore, the periodic potential 
produces periodic modulation of the ion density and, 
consequently, the appearance of a new period in the 
lattice. 

2. Let us first consider the coordinate dependence 
of the potential. Let a semi-infinite specimen with 
plane surfaces z = 0 occupy the region 0 ~ z < 00 • A 
constant external electric field with intensity 
E = ( O, 9, E) is applied on the surface of the sample. 

(Actually, such a statement of the problem means that 
the sample of semimetal (metal) considered is one of 
the plates of a plane capacitor.) Then, as was shown by 
Shafranov, [ 4 ] the potential inside the sample ( z > 0) 
has the form 

E-~ eikz 
V(z)=- dk---

n_= k2e(k) 
{1) 

under the condition of specular reflection of the elec­
trons from the surface. 

In the derivation of Eq. {1), no assumptions were 
made regarding the properties of the electron system; 
therefore, it is valid both for degenerate and nonde­
generate systems. We shall use as E{k) the expres­
sion for the compressed electron system at a tempera­
ture of T =OaK: 

e(k) = 1 + xn2II (k) I k2 

with the polarization operator 

II(k)= ~+~(1-~)ln J k+ 2Po I . 
2 2k 4po2 1 k - 2p0 I 

Here KD = ry} is the reciprocal of the Debye radius. 

{2) 

Calculation of the integral {1) for the given form of 
II ( k) leads approximately to the following expression 
for V{z): 

V(z) = E exp ( --xnz) I ><n, z < z; 

. E ( "K.D r sin 2poa 
V (z) = 2po 2po (2poZ)2' z > z. 

(3a) 

(3b) 

The value of z is determined from the condition that 
the amplitude of the oscillating part becomes equal to 
the Debye screening part of the potential 

exp ( -xnz) = (><n l2po) 3 (2p0Z) _,_ 

From the form of V ( z) for the region z > z it follows 
that, at distances from the surface greater than 1/2 Po, 
the amplitude of the quasiperiodic potential ( E/ 2p0 ) 

(Kn/2po) 2 {2pozr 2 changes little over the wavelength 
of the oscillation 1/2Po· 

We note that the reduced form of the potential ob­
viously holds under the condition 

(4) 

where l is the length of the free path of the electrons. 
We also note that the form of the potential (3a), (3b) 
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differs from the form of the potential near the charged 
impurity by the absence of divergence as z - 0 and by 
the slower decay of the oscillating part. The potential 
V ( z) was computed from Eq. (1) and (2) for the value 
KD/2po = 1 on a computer and the result is shown in 
the drawing. 

3. We proceed to the study of the energy spectrum. 
To be precise, we consider the region of the crystal 
z > z, where the amplitude of the oscillating part 
changes little in the distance 1/2po, and we find the 
spectrum of the one-particle excitations in the poten­
tial V ( z), given by Eq. (3b). For a strictly periodic 
potential, the solution is known-it is a band spectrum, 
while in the motion along the Pz axis in p space, the 
first gap automatically lies on the Fermi surface. In 
our case, we clearly get a similar result, but only the 
"gap" will be damped in motion inside the sample. 

Actually, we write down the Hamiltonian in the form 

:Jf = ~ eo(k)ak +ak + U (z) ~ (ak+ak-zP 0,- ak+ak+zp 0,). (5) 
k k 

Here 
i ' U(z) = 2 h(z), eE ( XD ) 2 1 V0 (z) =- - ---

2po 2po (2poz) 2 ' 

e is the charge of the electron; the vector Poz has the 
components ( 0, 0, Po). 

Taking V 0 ( z) out from under the summation sign 
in (5) means that we assume the amplitude of the quasi­
periodic potential to be a slowly varying function at the 
distance ~1/2Po· 

The expression for the spectrum can now be ob­
tained immediately by using the well-known results; 
however, for what follows, it is more convenient for us 
to complete this simple calculation. 

The equation of motion for the Fourier forms of the 
Green's function ( ak ( t) I ak' ( t')) have the form 

{w- eo(k)}G(k, w) = (2n)-1 + U(z) {<D1 (w)- <D2 (w)}, 

{w- eo(k- 2po,)}<D.(w) = -U(z)G(k, w), 

{w-eo(k+2Poz)}<Dz(w) = U(z)G(k,w), 

where G, <I> 1 and <I> 2 are the Fourier forms of the 
Green's function 

respectively. 

(6) 

The functions <I> 1 and <I> 2 differ from zero, since an 
inhomogeneous system is considered. In the chain of 
equations (6), functions of the type (ak+2llPoz 1 ak,) with 

n > 1 are connected with band discontinuities of much 
higher order. By determining the poles of the G func­
tion, we find the spectrum 

e(k) = •fde0 (k) + eo(k- 2p,,)] + {1/,[eo(k- 2po,)- Bo(k) )2 (7) 

+ IU(z) 12}'1', 

where the minus sign holds for kz <Po and the plus 
sign for kz >Po· These formulas refer to the case 
kz > 0; for kz < 0, it is necessary to make the substi­
tution 2poz - - 2poz· 

Let the direction of kz be the polar axis. Then, it 
follows from Eq. (7) that if one moves along the direc­
tion fJ, cp ( fJ is the polar angle, cp the azimuth), then 
at a distance p0 I cos fJ one has a gap of value 
A = 2 I U ( z) I = V0 ( z). For motion in a given direction, 
the gap approaches the energy Eo (Pol cos fJ), which is 

V(~) 
UI~J~ E:fttp, 
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Dependence of the potential U on ~ for "D/2p0 = J_ 

the same as the Fermi energy for e = O, and goes to 
infinity as e- rr/2. 

By assuming that all the considerations are valid 
for z 2: z, one can write 

L\(z)= (1 ::/z)Z' (8) 

where z is already different from zero and the maxi­
mum value of the gap is 

"'m = ;: G;. )" (2p:z)2 · (g) 

Let us make some observations relative to the mean­
ing and conditions of applicability of these results. 

The dependence of the "gap" on the coordinates 
should be understood in the same sense as the "vari­
able" forbidden band in the system of several contact­
ing semiconductors with different forbidden bands. In 
other words, one can assume that the sample under 
study breaks up into parts which are large in compari­
son with the length of the oscillations, at which the 
potential differs but little from strictly periodic. Then, 
in each part, one can introduce a certain mean value of 
the forbidden band. The characteristic dimensions of 
the portion can be so chosen that, for example, the 
order of the mean free path (if the departure of the 
potential from periodic is insignificant) or less. 

The broadening of the levels as a conseguence of 
collisions has the value 

6E ~ 1 I 't ~ Po I ml ~ BF I Pol, 

where T is the relaxation time, m the effective mass, 
and EF the Fermi energy. It is obvious that for the 
existence of a gap, satisfaction of the condition A >> oE 
is necessary, i.e. 

In essence, our consideration is also limited by 
another condition 

(10) 

(11) 

which appears as the result of the fact that we do not 
consider the effect of spectrum changes on n ( k). 
Account of the opposite effect of appearance of the gap 
leads to the result that the pole on the real axis in 
n "( k) at the point 2po (because of which oscillations 
appear) shifts in the complex plane by an amount 
~ AlvF· As a result, a damping factor exp (- zAivF) 
appears in the oscillations, which eliminates them at 
distances ~vFI A much greater than the wavelength. 
A similar situation exists for oscillations near a 
charge impurity in a superconductor or in a normal 
metal at finite temperature .cs,s] 
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4. Oscillations of the penetrating field bring about 
a modulation of the electron charge density. We can 
therefore expect that a deformation of the lattice also 
takes place and is connected with the adjustment of the 
ion charge density to the electron charge density. We 
shall prove that this is actually the case. 

From the equations of motion for the operators of 
the acoustic phonon field, we have 

-i d (bk) = wo(k) (bk) + gv ~o(k) ~<at-ka,). 
dt 2V P (12) 

The second term on the right side of (12) does not de­
pend on the time, since the correlation functions in 
them have identical time arguments. It is clear that 
finite displacements in the lattice are obtained only 
from those ( bk) in the equations for which the second 
term on the right side of (12) differs from zero. From 
the foregoing, it is then evident that such will be the 
case only for k = 2paz· Setting 

A_ l/wo(2Poz) '\' ( + ) 
- g y --w- "-.! ap-2p 0,ap (13) 

p 

and solving ( 12) for k = 2Poz, we get 
~ 

(b21, 0,(t)) = Cexp {-iwo(2p.,)t} -A/wo(2Poz), (14) 

where C is a constant of integration. 
After averaging over a time interval that is large in 

comparison with w~1 ( 2p0z), we get for the total shift 

q(r)= q2p 0,cos(2po,r), (15) 

where the Fourier components of the vector q ( r) are 
connected with the bk by the relations 

qk = bk / Y2pwo(2Poz), 

p is the density of the solid. 
We now compute the amplitude of the displacement 

Poz g '>'(+ 
q2p Oz =- 2 (2 ) 'I ..:....J ap--2P ap). 

Po ·Wo Poz P' P (16) 

The value of ( a;-ap ozaP) is identical, except for sign, 

with the function .P 1 as t' - t + o. By determining .P 1 
from the set of equations ( 6) and substituting the result 
in (16), we find 

+ ~ dw 
~(ap-2p ap)=2niUI '\', ~ ·----:--c-......,-:-:-:c-----,-----
P 0' '";;' _ 00 [w-ei(P)-io][w-e2(P)+io] 

= JEJ ~---- _ 1 ~ [U[ mp0 ll 2 
2n ~ {Ieo(P)-eo(p-2p0,)]2 +4[U['}'f, ~ 2;- n2- ( Poz), (17) 

where E1,2 ( p) are given by Eq. (7) and II ( p) is given 
by (2); here we neglect the term 4[ U [2 under the 
radical. Account of it leads to corrections 
~( D.m/ EF) In ( D.m/ EF). We finally get 

~ 1 , 1/i"m [U[ , , 
q2p ~- \;h V - Po''ao 1• 

0' 5 :rt M Wo(2Poz) ' (18) 

where I; is a dimensionless constant of the electron­
phonon interaction, m the effective mass of the elec­
tron and M the mass of the ion. 

Strictly speaking, it is necessary to take into ac­
count also the inverse effect of the displacements in 
the lattice on the electron spectrum. This would be 
done correctly by including the electron-phonon inter­
action in the initial Hamiltonian with the external field. 
However, it is clear that this leads to corrections to 
D. that are proportional to I;. 

5. We consider the problem of the absorption of 
electromagnetic waves in the system under study with 
a one-dimensional gap. We shall be interested in the 
imaginary part of the dielectric tensor Ea {3 ( w). As a 
result of the appearance of the external constant field, 
the system becomes not only inhomogeneous but also 
anisotropic. It is quite evident that in our case, when 
the static field penetrates in the z direction, the 
tensor Eaf3 has the form 

in which the values Exx and Eyy are identical with the 
values in the isotropic case. This is connected with 
the fact that the electrons move in the field of the light 
wave in the directions of the x and y axes in the same 
way as in the absence of the static field. The motion 
along the static field is appreciably changed as the 
result of the appearance of the gap in the energy spec­
trum. 

We can represent the value of E~z ( w) in the form:C 7J 

., ( 2 4ne2 (" 
e, w)= (2n)'qo- Jd3pj(p,q)o(w+e1 (p-q)-ez(p+K)), ( 1g) 

where the function f ( p, q) appears in the calculation 
of the matrix element in terms of plane electron waves 
that are distorted by Bragg reflections, I K I = 2paz. In 
the limit q- 0, if we introduce the variables 
x = cos(p, K) andy= 2p/IKI, the function f(p, q)/q2 
takes the form 

f(x, Y) = ( ~ )' [ 1 + ( 2~)' (1- yx) 2 fcos2 (qp)po-2. 

In the long-wave limit, we thus obtain 

" ' 8 ( e.- ) 2 1 r 1' 
Bzz (w) = --- - J y2dy j dx 

3aopo 11 1'1- M 2/w2 ~ _ 1 

Xo yx-1+'--- 1+-F-(1-yx)2 , [ ]iw2- 4112][ 4e _2 J-2 
4e,, 112 

where ao = 1/me2 is the Bohr radius. As the result of 
integration, we obtain 

w<211(z), j 0, 

Bzz" (w} = 2 ( EF )( 211 )3[ l'w2- 4112] 
-- - - 2---- , w>211(z). (20) 
3a0po 211 w 4eF 

It is then seen that Eiz ( w) has a finite jump at the 
point w = 2D. in contrast with the system with a three­
dimensional gap in the spectrum, where the jump is 
infinite (E"(w) ~ 1/vw2 - 4D.2 ). As the distance from 
resonance increases,-Eiz(w) falls off as w- 3 to a 
value associated with the residual scattering in the 
isotropic case. 

If the absorption coefficient is a function of z, then 
the intensity of the transmitted light is characterized 
by the expression 

I= lo exp{ -lilx}, 

I 

1 ' 
li =- ~ k(z)dz, 

l, 0 

where lx,z is the thickness of the sample in the direc­
tions x or z. It then follows that in our case 
D. = D. ( z), one must use the value 

z, 
~," (co)= _1_ \ e," ( w, z) dz = _Jl__ - 1-. ____ I ____ BF (~1m)' . (21) 

l, ;_, 9a0po (2p01,) (2p0zo) 3 ro w 

where zo is determined from the condition w = D. ( z 0 ) 

and lz » Zo. 
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6. We now discuss the features of the electron 
spectrum for penetration of the electric field into the 
superconductor. First, we note that the character of 
the penetration of the field in the superconductor re­
mains as before. This is connected with the fact that 
the polarization operator in the static limit rr (k) does 
not change (with accuracy to within corrections of the 
order ~ EF) in the transition to the superconducting 
state. The set of Gor'kov equations in our case has the 
form 

1 
{(J}- eo(P)+ fl}G(p, (J}) = ?,-- iAF(O+)F+(p, (J}) 

+ IUI[«D!(p, (J})- <ll2(p, w}], 

{t•l- eo(P- 2po,) + fl}<ll, ==I UIG(p, (J}), 

{w- eo(P + 2po,) + fl}<ll2 = -I Ul G (p, w), 

{w + eo(P) - ft}F+(p, "') + i).F+(O+) G(p, (J}) = 0. (22) 

Here A. is the constant of effective electron-electron 
interaction. For the function G ( p, w) we get the equa-
tion 

[ (J}-;(p)- 7>.2IF(O+ll 2_ IUI 2 

Ul + ;(p) "'- ;(p- 2p,,) 

_ IUI 2 ]c _ 1 
"'- £(p + 2po,) (p, w)- 2n' 

where, as usual, ~ (p) = p2/2m- !l ;::j vo( IP I- Po). 
The spectrum close to one of the zone discontinuities, 
for example, when p ~ Poz, has the form 

(23) 

Thus, in the direction along the electric field, the 
squares of the superconducting and dielectric gaps are 
combined. A similar situation holds for consideration 
of one-dimensional metal-like systems.CaJ 

In the direction perpendicular to the electric field, 
there remains only the superconducting gap. The 
anisotropy of the gap, which is brought about by the 
external field, must manifest itself primarily in the 
dependence of the absorption of light and sound on the 
frequency and the polarization. 

7. Like the Kohn effect, the character of the pene­
tration of the electric field depends materially on the 
form of the Fermi surface. In particular, the presence 
of plane pieces of the latter strongly intensifies the 
singularity in the polarization operator .c 9J Calculation 
from Eq. (1) in this case leads to a slow damping of the 
field in the bulk of the specimen ( V ~ 1/z) in place of 
V ~ 1/z2 for a spherical Fermi surface. 

If there are two sets of particles (for example, elec­
trons and holes in a semimetal or semiconductor) of 
appreciably different masses and Fermi momenta, two 
sets of oscillations-of charge density and displace­
ments-should be produced in the lattice. Correspond­
ingly, two gaps should appear in the spectrum of exci­
tations, one for electrons, the other for holes. 

In the case of an anisotropic Fermi surface, an 
oscillation of charge and potential corresponds to each 
direction, associated with the Fermi momentum in that 
direction. It is possible that x-ray and optical measure­
ments of the corresponding periodic displacements in 
the lattice will permit the determination of the shape 
of the Fermi surface in this way. 

In a quantized magnetic field, the polarization op­
erator has the form [Io] 

+co 
n (k) =- 2mUJr, z; \ dp A.,· (-k-'-) n,P,- n,•, P,-k, • 

(2n) 2 ,, ,. _}00 ' V2mUJ L e, (p,)- e,• (p,- k,) 

where kt is the transverse component of the field, 
WL = eH/mc, Avv'(x) is which goes over to the 
symbol Bvv' for small values of its argument and 
which corresponds to the transition to strong fields. 

It is then seen that the electron gas, in strong 
quantized magnetic fields, transforms into a system 
of degenerate electron gases with different Fermi 
momenta Pov = {2m[EF- WL(v + %)JJ112, where 
v = 0, 1, 2, 3, .... Each of these gases behaves, in the 
direction of the magnetic field, as a one-dimensional 
system with a logarithmic singularity in IT ( k) as kz 
~ 2p0 z. In this case, the picture of the penetration of 
the electric field into the sample along the magnetic 
field should consist of a collection of oscillations, each 
of which has its own wavelength 1/2Pov and which falls 
off in the bulk of the sample as 1/z. The problem of 
the gap in the spectrum in this case is very complicated, 
and is connected with the quasi-one-dimensionality of 
the system.CaJ 

8. There also exists a set of phenomena in which 
the effect of spatial oscillations of the potential can 
appear. We shall only point them out without a detailed 
discussion. 

A. Penetration of an external electric field into a 
degenerate ferroelectric with a first-order phase 
transition of near but above the Curie point, can bring 
about its stratification into alternate paraelectric and 
ferroelectric regions. This effect is a simple conse­
quence of the shift of the Curie point in the electric 
field and the presence of an electric field that is oscil­
lating in space. Obviously, it is necessary, in order 
that the effect exist, that the thickness of the transition 
layer be less than the wavelength of the oscillation, 
1/2Po· It is well known that for 180° domain walls, the 
thickness of the transition layer amounts to ~10-a em. 
In such a case, the required condition can be satisfied. 

B. Inasmuch as the cause of the external electric 
field is immaterial, the effects of oscillation of the 
potential should take place in contact phenomena for 
systems in which at least one of the contacting samples 
in degenerate. In particular, if there is contact of a 
semimetal with a solid having a different work function, 
then a gap should be formed in the semimetal as a con­
sequence of the effect of the field arising from the con­
tact potential difference. The volt-ampere character­
istic can then be non-ohmic when such a contact is in­
troduced in a circuit. 

Similar phenomena should also be produced by the 
adsorption of ions on the surface of semimetals and 
metals. The same sort of effects should also appear 
near charged dislocations. 

C. We have considered a system in the form of a 
plane condenser. Evidently the effect should be differ­
ent in spherical and cylindrical capacitors, where the 
gap will no longer be spatially one-dimensional. 

D. The oscillating course of the potential will ac­
tually be connected with the degeneracy of the electron 
gas. Degeneracies can be obtained in the system by 
using different means of "pumping" of the electrons. 
Then there will exist all the effects considered, during 
the lifetime of the non-equilibrium electrons in the 
conduction band. 
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9. We shall now make a series of estimates for the 
effects and quantities considered. First of all, we 
estimate the amplitude of the potential in the region 
z >z. According to (3b), 

Vo ~ !}!_ (.::E._) 2 (2poi")-2• 
2po 2po 

Usually ( KDI2po) :o:::; 1. Then we take for the estimate 
Vo ~ (eEI2po) X (2poz)- 2 • Hence, for a semimetal and 
for E = 104-106 Vlcm, 2p~ :o:::; 10 and p~1 :o:::; 10- 5 em, 
we get V0 10- 3 - 10- 2 eV. For a metal, for 
E :o:::; 106 VIcm, ( 2poz) 2 :o:::; 10 and p~1 :o:::; 10- 8 em, we get 
Vo :o:::; 10- 3 eV, i.e., for a metal the conditions of obser-· 
vation of the effect are "at the limit." Since, in accord 
with (7), Ll :o:::; V0 , the estimates for Ll are identical with 
the foregoing 

Let us verify the feasibility of the condition for the 
existence of the gap: EF ILl « Pol. For a metal, settin!~ 
E.F ILl :o:::; 104 and p~1 :o:::; 10- 8 em, we have l >> 10- 4 em. 
Such a condition is frequently realized for low tempera.­
tures for small excitations above the Fermi surface. 
For a semimetal, it can also be fulfilled. 

With respect to metals, it is however necessary to 
note the following: inasmuch as the oscillations take 
place at atomic distances, the surface of the metal 
should be atomically smooth for the formation of a 
clear picture of the oscillations and of the energy gap. 
To obtain such a surface is difficult and perhaps im­
possible. Nevertheless, even for a rough surface of 
the metal, the penetration depth of the electric field 
can be large in comparison with the Debye radius. 

We now estimate the displacement in the lattice 
under the effect of modulation of the electron density. 
According to (16), the amplitude of the displacement is 
a quantity 

1 , ( 1 m ) 'h L'. , ,. q ~ -~12 -- ---pohao/2. 
5 n M wo(2po,) 

For a metal with!; :o:::; 1, miM :o:::; 10-\ Ll :o:::; 10- 3 eV, 
Wo(2poz) ~ WD :o:::; 10- 2 eV, p~1 :o:::; 10- 8 em, we have: 
q :o:::; 3 X 10- 5 p~1 :o:::; a 0 , where a 0 is the lattice constant. 

For a semimetal, 
_ 2 1 mpo 

\;- g" _2_2 __ 2 2' 
ao epo n 

where gm is the dimensional constant of electron-

phonon interaction, E is the static dielectric constant 
( E :o:::; 100 for Bi). Then, setting Ll :o:::; 10- 3 eV, 
Wo(2poz) :o:::; 10- 4 eV and Po :o:::; 106 em-\ we get 
q :o:::; 10- 4a 0 • This estimate shows that for such displace­
ments in the lattice, it is already necessary to take 
into account the effects of anharmonicity. 

For the observation of the optical absorption at the 
gap, we must clearly use the possibility of modulation 
of the gap width by means of the penetration of the 
variable electric field. By tuning the detector to the 
modulation frequency, we can split off the absorption 
constant, for example, into free carriers. 

We express our gratitude to V. F. Krapivin for 
calculation of the potential V ( z), and to V. L. Ginz­
burg, R. A. Suris and Sh. M. Kogan for useful discus­
sions, and also to L. V. Keldysh for valuable critical 
comments. 
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