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The thermoelectric effect in superconductors is studied on the basis of the microscopic theory of 
superconductivity. The thermoelectric current arises in an anisotropic superconductor under the 
action of a temperature gradient. The thermoelectric coefficients are computed. It is shown that as 
T - T c the magnetic field of the thermoelectric current takes on values that are completely ac­
cessible to experimental observation. 

IN the present work, the thermoelectric effect in 
superconductors is considered on the basis of the 
microscopic theory. In the work of Ginzburg [I] (see 
also [2 J), it was shown that the conclusion usually 
drawn as to the absence of this effect in superconduct­
ing state is not true. Actually, the normal current 
created by the temperature gradient in the isotropic 
case is completely compensated by the superconducting 
current. Such compensation does not generally take 
place when anisotropy is taken into account, which leads 
to a unique thermoelectric effect wherein a circulating 
current and a magnetic field are produced and (see 
below) can be measured experimentally. An expression 
was obtained in [IJ for the thermoelectric current and 
the field in an anisotropic superconductor. Of course, 
the calculation is carried out on the basis of the London 
theory, generalized to the anisotropic case. 

The relation for the current and field obtained in [IJ 

contains thermoelectric coefficients that can be com­
puted only within the framework of the microscopic 
theory. It is impossible to determine these coefficients 
from the experimental data obtained in the study of the 
normal metal, inasmuch as they (see below) naturally 
depend on the parameters of the superconducting state. 
At the same time, the solution of the problem of the 
possibility of observation of the effect is connected 
primarily with the determination of the coefficients. 
The microscopic consideration of the problem of the 
thermoelectric effect in superconductors, which, more­
over, is based on the exact expression for the super­
conducting current density, is therefore of definite in­
terest. 

Let us consider an infinite superconducting plate in 
which there exists a temperature gradient (see the 
drawing). In the plane case considered, all the quanti­
ties depend only on y; the coordinate axes are chosen 
as shown in the drawing; s is the axis of the crystal 
(a uniaxial crystal is considered), and s lies in the xy 
plane. 

We write down the Maxwell equation and also the 
expressions determining the superconduction and 
normal currents, respectively: 

(1) 

(2) 

(3) 

Here baf3 are the thermoelectric coefficients, Kaf3 
are the components of the Pippard tensor, the expres­
sion for which was obtained by Pokrovski1[3 J. The 
system (1) -(3) was written in the linear approximation 
in V'T. Of course, the case is considered for which 
l » ~0 ( l = path length). 

It is clear from these considerations that the com­
ponents jin) and j~s), together with the corresponding 
quantities bxz, bzy, ~z' KZY' etc., are equal to zero. 
From the equation of continuity it follows that in the 
plane case considered the component jy = jtn) + j~s) of 
the total current is also equal to zero. Only the com­
ponent h differs from zero and, as follows from (1) 
and (3), equals in the case of the half space y > 0 

ix(Y) = (cH/4::r.o)e-uib 

(H is the field in the depth of the sample (see below), 
and o = [Kxx(0)]-112 ). For a plate -a 5 y 5 a (see 
drawing), we find 

ix = (cH/4no)sh(y/b) /ch(a/o) 

in agreement with [I]. Thus the anisotropy of the 
crystal leads to the existence of a circulating current 
which differs from zero in a surface layer of thickness 
~o. 

We now compute the magnetic effect created by the 
thermoelectric current. We find from ( 1) -(3) 

(4) 

where 

K(q) = Kxx(q) - Kxu'(q) I Kuu(q), (5) 

"(n)( )- .(n)( )- Kxy(q) (n)( ) (6) 
J q - ]x q Kyy ( q) ]y q . 

A temperature gradient V'T :S 0.1 deg/ em can be 
created in the sample. The normal current generated 
in this case changes over distances ~~o. Therefore, 
the principal role in (4) is played by q « 1/ ~o· Fur­
thermore, it appears that q << 0-1 , with the exception 
of a very small range of temperatures near Tc.) The 
desired field is thus described by the following relation 
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4n d 
H,(y) =--- (K-'(0, T)j<n>(y)). (7) 

c dy 

In the isotropic case Hz vanishes as expected. Actually, 
the quantities j(n) and Kxy> which determine the value 
of j lN acco rdilg to ( 6), are seen to be equal to zero 
in this case. 

Thus the problem reduces to the calculation of the 
normal current or, in other words, to the determina­
tion of the thermoelectric coefficients baf3, which 
characterize the anisotropic superconductor under 
consideration. The components of the normal current 
can be written in the form 

j~nl_ (hn- b_t_}cos 9 sin 9VT, 

j~n)= (b11sin2 9 + b_t_ cos2 9) VT. 

Here b 11 and b 1 are the principal values of the tensor 
b a{3; b 11 corresponds to Ll T II S. 

By definition, 

) iJe dp 
j<">= -e -j{'>--

iJp (2nh) 3 ' 

where f< 1 > is the addition to the electron distribution 
function, the form of which is determined by the solu­
tion of the kinetic equation (see [4J): 

e of0l iJe 
-T----ai: iJp VT=lcT, fOl=(e<•-~l/T+i)-1• 

Terms connected with the effect on the distribution 
function of the magnetic fields, which are proportional 
to ( VT )3 in the case considered, can be neglected. 

We shall consider the scattering of electronic exci­
tations by impurities. Inasmuch as the factor exciting 
the electron system is the temperature gradient VT, 
the problem is analogous to the calculation of the elec­
tron thermal conductivity of a superconductor, which is 
considered in the isotropic case inL4 >5 J. We note that 
the consideration, which is based on a formula[ 6 J for 
the thermoelectric coefficient, 

b = (2(J)T)-1 ~ d"xe-;px([}(x), q(O)J), 

where j and q are the current density and heat flux 
operators, leads just as the calculation of the thermal 
conductivitypJ to the same result as the method of the 
kinetic equation. 

Carrying out the u, v transformation of Bogolyubov, 
we find 

H;nt = ~ V p,P'(UpVp•- UpVp•) (ap•o+apo + ap•t+ap!), 
p,p' 

where 

Up2 = '/,(1 + sp/ep), Vp 2 = 1/ 2 (1- sp/ep). 

Taking into account the elastic character of the 
scattering, Ep = Ep, and assuming, moreover, that 
Ll ( p) "" Ll = const, which is entirely permissible in 
view of the smallness of the anisotropy of the gap in 
comparison with the anisotropy of the Fermi surface, 
we find (see also [a]) 

-~ iJ]<"l iJeVT=-2nlli~ IVpp•I'U~'l-!~'!)da. (8) 
T iJe iJp h e v,-

where da is the element of area of the Fermi surface 
(see [3 J). 

The solution of (8) can be written in the form (see, 
for examplePJ) 

iJf"l e (9) 
f'l= --a;:T(AVT), 

where A = T ( p) v is the vector free path length and T, 

v are the relaxation time and the Fermi velocity of 
normal electrons. The electron path lengths in the 
normal and superconducting states are identical, as is 
well known. 

We now compute the normal current, with account 
of (9). Carrying out the integration over dE, we find 

' 2e ( /:;, ) r dcr ( 10) 
l<n>=-;rs:'\kT J VF v(AVT), 

where 

(11) 

We determine the thermoelectric coefficients b11 and 
b 1 from (10): 

2ek w- ( !J. ) 1 dcr 2 

bu= (2nfi)3.1 \kr J -;,;uli._t_-r(n). 
(12) 

It is significant that the thermoelectric coefficients 
depend on the parameters of the superconducting state. 

From (7), (5), and (6) we obtain 

4n dR ( ) 
H,(y)= ---;;-(V1') 2 dT' 13 

where 
K 

K(O)R = (bn- b_t_)cos 9 sin 9- -;'!(bn sin2 8 + b_t_ cos2 8), 
K"" 

and b 11 and 1 are determined from (12). Expressing 
the components of the Pippard tensor entering in this 
relation in terms of its principal value, we obtain the 
following final formula: 

4nkc d( ( /:;, \ bL2 (T)) 
H,(y)=-e-(VT)'(<pn-<p_t_) dT F\_ kT} bL•(O) sin28, 

'PU = } dcr vn:_t_t(n) / } do ull~-'--
vF VF 

(14) 

It is significant that the thermoelectric field is ex­
pressed in terms of the universal function T/Tc and 
quantities characterizing the normal metal. In the 
temperature range near the critical, Eq. (14) takes the 
form 

ck 2 In (2 sin 28) ( 1' \ - 2 
H=-n-(VT)'(<Jlli-<Jl_t_)----- 1----1. 

e Tc I c ! 
(15) 

It is seen that the effect increases as T- Tc, with 
the exception of a very small interval LlT near Tc, 
where the circulating current vanishes (see below). 
From (14) (as also from (7)) it is seen that the effect 
vanishes in the transition to the isotropic state. 

We now estimate the possible value of the field as 
T -Tc: 

ck nA 1 ( T )- 2 
H~-(VT)'-- 1-- . 

e VF Tc ' Tc· 
(16) 

We assume VT ~ 0.1 deg/cm and A~ 0.1 em (see, 
e.g.poJ). For T/Tc ~ 0.99, which is consistent with 
the assumed value of VT for pure superconductors, 
field H ~ 10- 3 G are possible. The value of T/Tc 
~ 0.9 corresponds to H ~ 10- 5 G. The values of H are 
quite accessible to experimental observation. From 
(16) it is seen that the sample investigated should be 
sufficiently pure. 

We thus see that the anisotropy of the crystal leads 
to the appearance in the superconductor of thermoelec­
tric current under the action of a temperature gradient. 
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The appearance of this current can be detected experi­
mentally. The performance of the corresponding ex­
periments is therefore of interest. 

In conclusion, the authors express their deep grati­
tude to V. L. Ginzburg for constant interest in the work 
and for useful discussions, and also to B. T. Ge'llikman, 
R. 0. Za1tsev and V. L. Pokrovski1 for interesting dis­
cussions. 
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