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The Green's function of an electron in a random potential obeying the normal-distribution law is cal
culated. The form of the wave function suggested by Feynman[zl is employed. It is possible to find the 
Green's function by taking into account a uniform electric field without assuming this field to be small. 

WE calculate here the averaged Green's function of 
an electron moving in a random potential U(r), which is 
assumed to have a normal distribution. Such a problem 
was considered by Andreevu 1 , who also presented a 
bibliography of this problem. In the present article we 
obtain Andreev's result by a different method, which 
makes it also possible to obtain the next term of the 
expansion in the exponential. In addition, it is possible 
to find with the aid of the proposed method (in the same 
approximation) the Green's function in a random field 
U(r) and in an alternating homogeneous electric field 
without assuming the latter to be small. This problem 
is important for calculations of the conductivity of a 
disordered system (in particular, in strong fields). 

The idea of the method consists in using the space
time approach to quantum mechanics developed by 
Feynman [ZJ. The Green's function (just like the wave 
function) is written in the form of a continuous integral 
over the virtual paths of a classical particle. It turns 
out that at this stage it is easy to average the G-function 
over the ensemble corresponding to the random field 
U(r). The latter circumstance is, of course, the conse
quence of the assumed Gaussian character of the dis
tribution. It is then possible to calculate approximately 
the continual integral and to obtain a closed expression 
for the G-function. The suggestion that the Feynman 
formulation of quantum mechanics be used belongs to 
V. L. Pokrovskil. 

In a time-independent random field U(r), the Green's 
function depends on r, r', and the time difference t- t', 
which we shall denote by t. We break up the interval 
[ 0, t] into N elementary intervals of the duration E = t/N. 
For G(r, r'; t) we can write (atomic units) 

1 [ i N 
G(r,r';t)= icr(t) lim- 5 exp -~ (r.-r._.) 2 

HO A 2ek=l 
N~~ 

N 

- ie ~ U (r•) J dr, ... drN-1· 
h=1 

( 1) 

We have chosen here a retarded Green's function; a(t) 
is the step function, equal to zero at t < 0 and to unity 

at t > 0; A= (21TiE) 3N/z; ro = r', rN = r; the integration 
is carried out only over the internal points rk, where 
O< k< N. 

The averaging of G(r, r'; t) reduces to determining 

the mean value of exp l_ iE ~ U(rk~ over the ensemble. 
[ k=1 J 

We choose the zero energy such that (U) = 0; the angle 
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brackets denote averaging. By virtue of the normal dis
tribution of the random function U(r), all the mean 
values of the products are expressed in terms of the 
binary correlation function W(r): 

(U(r1)U(r2)) = W(r1 - r2). (2) 

We then obtain for the sought mean value 

N_ 2 N l 
( exp [- ie ~ U (rk) ]) = exp [- ~- ~ W (rk- r••) _. 

k=-1 k,h'=l 

(3) 

The correctness of (3) can be readily verified by ex
panding the exponential in a series and averaging term 
by term. 

We introduce new variables Xk = rk- rk-1 and com
plement (1) by integration with respect to ro, multiplying 
the integrand by IS(ro- r'). The double sum in (3) can be 
transformed by using the evenness of W(r) (see (2)): 

1 N N f 
-e2 ~ W(r•-r••)= e2~ W(rk-rk•)+-e2NW(O). (4) 
2 "· k' l.>k' 2 

The second term in (4) vanishes in the limit as E - 0, 
NE-t. As a result we obtain 

(G(r, r'; t)> = (G(r-r'; t)> 

N 

)(b(r-r'-~x.)dx, ... dxN. (5) 
k=t 

It is convenient to go over to a Fourier representation 
in r- r': 

1 [ i N 
(G(p, t)) = G0 (p,t)~'.:'A ~ exp 2£k~ (xk- ep)" 

N 

-e2 ~W(x.+ ... +xk•H) ]ax, ... dxN, (6) 
k>k' 

where Go(p, t) is the Green's function of the free parti
cle: Go= ia(t)exp(-ip2t/2). Finally, we reduce the quad
ratic form in ( 6) to diagonal form by shifting the origin, 
Xk = Zk + Ep; 

f [ i N 
(G(p,t)) = G0 (p,t)~y~ exp 28 "~' z1? 

N 

-e• ~ W(ep(k-k')+z•+ ... +z••+!) ]az, ... dzN. (7) 
h.>k' 

So far we have made no approximations. We now ex
pand W( Ep(k- k') + Zk + ... + Zk' +I) in a Taylor series 
about the point Ep(k- k'). To this end it is necessary in 
each case that the sum Zk + ... + Zk' + 1 be much smaller 
than the correlation length L, that is, than the charac-



798 A. V. CHAPLIK 

teristic dimension of the function W(r). Inasmuch as 
lzkl ~IE in the important integration region, and the 
number of terms in this sum is of the order of N, we 
obtain the condition !t « L (in order of magnitude 
I I I ( 2 2 1/2 ~ Zk+ ... +Zk +1 ~ Zk+ ... +Zk'+l) ~vNE). Thus, 

W(ep(k- k') + z, + ... + z,,H) = W(ep(k- k')) 

+ VW(ep(k- k')) (z• + ... + z,,H) +· ... 
( 8) 

Retaining the first term in ( 8), we obtain Andreev' s re
sult 

N 

(G, (p, t)) = G0 (p, t)lim exp [ -s2 ~ W(ep(k- k')) l 
~,.0 k>k' -

1 t 
= G0 (p, t)exp [- 2" ~ W (pt'- pt")dt' dt" J. 

0 

(9) 

To clarify the character of the corrections to formula 
(9), we take into account the next term of the expansion 
( 8). We emphasize that this results in a correction in 
the exponential. 

The problem consists of calculating the coefficient 
ck preceding Zk in the triple sum 

"' k-1 k 

~ ~ VW(ep(k-k')) ~ z;. 
k==1 k'=l i=h'+l 

N 
Representing this sum in the form 6 ckzk, we can 

k~1 

again shift along zk so as to make the quadratic form in 
(7) canonical. After straightforward but cumbersome 
manipulations, we get 

k N 

c,= ~jVW(epi)+k ~ VW(spj), 
j=l 

N-It 11. 

N 
kC.-· 

""" 2 ' 

c,= ~jVW(epjJ+(N-k+1) ~ VW(epj) 
j=l j=N-k+l 

N 

+k ~ VW(epj), 
N 

k>--z· 

( 10) 

Going over from sums to integrals in accordance with 
the rule E6-J dt, we obtain the following expression 
for ( Gip, t)): 

(G2(p, t)) = (G1 (p, t)) 

t/2 t' t 

+exp ~ 0 u TVWd't+t' ~ VWd't r dt' 
0 0 0 

(11) 
t t-f' t' t ? +I [ J TVWdc+(t- nJ VWdT + t) VWdT J dt' }. 

where 'ilW = 'ilW(pT). 
Thus, the average Green's function is 

(G (p, t)) = G0(p, t) exp (!, + /2 + ... ) , (12) 

where I, and I2 are given by formulas (9) and (11). At 
large values of the time t » L/p, both terms in the ex
ponent of (12) increase linearly in t, so that the Green's 
function decreases like ( G(p, t)) ~ Go(p, t)exp(- t/T). 
This region exists if the condition t » L/p is compatible 
with the condition !t << L presented above, that is, we 
must have pL » 1. When t « L/p we get 

[ W(O)t2 13 J ( (G(p,t)) ~ G0 (p,t)exp --2-+t 240(VW(0))2t'+ .... 13) 

The second term in the exponential of (13) can be neglec
ted only if W2(0)t5 « L2. This limits the applicability of 
formula (9) at small values of the time. For large val
ues oft (t » L/p) the correction to (9) is given by the 
factor exp[iyW2(0)L 2p-4t], where y is of the order of 
unity. 

The calculation of the next terms of the expansion in 
(12) is much more complicated and leads apparently to 
even more cumbersome (and therefore useless) formu
las than ( 11). We can, however, draw a general conclu
sion from the foregoing calculations: when t is large 
the law governing the decrease of G(p, t) is exponential, 
and when t is small it is Gaussian. The last statement 
is exact, since its validity follows from the exact 
formula (7): 

N 1 
e2 ~ W(z,+ ... +zk'H)-+yW(O)t2 as t=Ne-+0. 

k>k' 

This means that the farthest "tail" of the density of 
states at negative energies is always described by the 
Gaussian exponential exp[-E2/2W(O)]. The asymptotic 
form of the density of states obtained in the paper of 
Zittartz and Langerr31 has a different form and depends 
on the dimensionality of space. However, the applicabil
ity of their formula is limited by the condition IE I « L _,, 
whereas in this paper we assume in fact that L - 0 (the 
cor relator is equal to a 15 -function). 

We shall now show how to take into account, within 
the framework of the proposed method, a homogeneous 
electric field F(t). We represent the Green's function 
G(r, r'; t, to), in a form similar to (1): 

1 (' [ i N 
G=ia(t-t0)lim--Jexp -~ (r,-r,_1)' 

e-o A 2ek=t 
N 

- ie .~, (U(r,)- F(t,)r,) Jar, ... drN-t· (14) 

Here, as before, ro ~ r', r = rN; tk =to + kE, t- to = NE. 
Introducing the variables Xk = rk- rk-1, we obtain an 
expression for the G-function, where the exponential 
under the integral sign will contain terms that are quad
ratic and linear in xk. The coefficients of the linear 
terms depend on F(t). We then shift the origin of xk and 
obtain, in an approximation corresponding to (9), the 
Fourier component G with respect to the difference 
r- r': 

t 

(G (p; r; t, to)= ia(t- t0)exp {tr ~ F(T)dT 

'" 

- ~ ~ [ P+ ~ F(T')dT' r dt} 
tn to 

(15) 

An investigation of (15) shows that the character of the 
attenuation of the Green's function with time, and conse
quently also the mobility of the particle 1 >, depends 
strongly on the field. In the case of a constant field 
there appears in the problem a new characteristic time 
tF = fl::lF, It turns out that when It- tal» tF the func-

1 lif the G-function attenuates like exp ( -t/r), in the p,t representa
tion, then r is the relaxation time which determines the mobility of the 
electron. 
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tion G(p; r; t- t0 ) attenuates not exponentially but in ac
cordance with a power law. 

Let us assume that the correlation function is iso
tropic, that is, it depends only on the modulus lr- r'l 
= p. We determine the antiderivative of W(p) in accord
ance with the formula 

p 

V(p)= ~ W(p')dp'. 
0 

We then obtain from (15) for t- to» tF (see the Appen
dix) 

, ( or v = - v (2t 1 p + Ft 1) ) 
(G(p; r; 1- to)>= Coexp ol --IP+-~--dt 

X I pn+F(t_-to)-t_ip+F(t-10)1 ,-Voo/F, 
pn+p 

(16) 

where n is a unit vector along the field and Go is the 
Green's function in the field without account of relaxa
tion. 

Besides the already mentioned inequalities tF 
« It- tal« L 2 , the applicability of formula (16) calls 
for satisfaction of one more condition. Namely, the 
values of the momentum p should lie outside the region 
in which It- tollp + F(t- to) I;:; L (the dimension of the 
region is of the order ~p ~ L/(t- to)). In particular, it 
is sufficient to have p;:; FtF = ,JFL, since tF « (t- to). 

As F- 0 there follows from (16) an exponential 
attenuation law 

G ~ G0 exp (-V =t / p) . 

The next term of the expansion in powers of F in the ex
ponential is V00 Fep·n/2p2 [p +p·n]. If this correction 
is not small compared with unity at characteristic values 
t - to ~ p/V 00 , then the mobility of the particle depends 
on the field (nonlinear regime). From this we determine 
the limit of the region of strong fields, namely F <: V 00 

~ W(O)L. In the limit of strong nonlinearity, F » V00 , 

the Green's function is proportional to 

exp[- ]1=lnF(t-tol_l. 
p p . 

and practically does not decrease in absolute value up a 
time on the order oft- to~ (p/F) exp(F/V00 ). This cir
cumstance denotes apparently that the relaxation time 
of the particle decreases exponentially with increasing 
field. 

Let us consider now a periodic field that is turned on 
adiabatically at t- - 00 , that is, 

F(t) =F0eV1coswt, y-++0. 

Putting to - - oo we get from ( 15) 

(G(p; r; t)) = Goexp{- ~ 'T w[ p(t'- t"} 
0 

(17) 
-__!(cos fiJI' - cos wt") l dt' dt"}. 

(t_)2 -

Confining ourselves to the case of a high frequency field 
Fa<< Lw 2 , neglecting the last two terms in the argument 
of Win (17), and then estimating the correction to the 
exponential necessitated by these terms, we obtain the 
condition for the applicability of such an approximation, 

FoW(O)L/w 2p2 « 1. If this inequality is satisfied, then, 
as seen from (17), the damped factor of the Green's 
function has the same form as in the absence of a field: 

[ (t- to) r ] exp ---- J W(z)dz • 
p 0 

Consequently, the relaxation time of a particle with mo
mentum pis 

In conclusion we note that within the framework of 
the proposed method it would be easy to take into account 
also a homogeneous magnetic field with arbitrary time 
dependence. Indeed, the vector potential of such a field 
is linear in r. This allows us to perform the same 
manipulations that led to formula (15). 

APPENDIX 

We shall obtain here the asymptotic form of the 
Green's function at large time (t- to>> tF) in a strong 
constant electric field. The problem consists of calcu
lating the double integral contained in (15): 

t 

1= _!__ Sw{v(t'-t")+__1-F[(t'-to)'--(t"-to)']}dt'dt" 
2 to 2 

1 1-!o 1 (A.1) 
=T ~ W[p(t'-t")+TF(t''-t'"')]dt'dt"~ 

0 

The correlation function W(r) will be assumed to de
pend only on the modulus of the argument. We replace 
the variables in (A.1) in accordance with the formulas 
t' - t" = x and t' + t" = 2y (the Jacobian of the trans
formation is equal to unity). The integration in the 
(x, y) plane is within a rhombus with sides satisfying 
the equations y ± x/2 = 0 and y ± x/2 = t- to. We first 
integrate with respect to x = t' - t", and the fact that W 
is even allows us to confine ourselves only to that half 
of the rhombus in which x > 0: 

%(t- til) 2~ r-eo 2(t-to-y) 

1= ~ dy~ W(lp+.Fylx)dx+ ~ dy ~ W(IP+Fvlx)dx 
1/~(f-to) 

, (A.2) 
Vo<rl-~_(2yi_!J__+Fyl) dy+ 'T ~-to-YliP+FyJldy. 

!P + Fyl 'J,(t-t,) IP + Fyl 

We transform (A.2), replacing the variable in the last 
integral t- to-y = z: 

'f,(t-to) V (2y I p + Fy I)- ]1 ( oo) t-to dy 
]= ~ dy+ V(oo) ~ ---

o IP+Fyl 0 IP+.Fyl 

;'T''l1(2z IP +!_(t- to)- Fz I)- l1(oo) dz. 

0 IP+F(t-to)-Fzl 

(A.3) 

The first integral in (A. 3) converges when t - to - oo, 

and it can be extended to infinity. The last term tends 
to zero, since the numerator of the integrand is bounded, 
and the denominator is not smaller than [ F(t- to)/2- p] 
-oo 

Finally, the second integral in (A. 3) is equal to 
t-tQ t-t\) 

J1(oo) ~ ~-= V(oo) ~ [p'+2pnFy+F2y']-'J,dy 
0 lp-1-fyl 0 

= l1(""_)_lni_!1_Il_+F(t-to)+ IP+F(t-to)L!I 
F pn+p 

From this we get the asymptotic formula (16) for the 
Green's function in the case of a constant field. 
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