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It is shown that at wavelengths larger than the Larmor radius of the conduction electrons, there occurs 
a strong renormalization of the spin-wave spectrum, equivalent to an increase of the exchange constant 
and change of its sign. At large magnon momenta, allowance for orbital motion of the electrons leads to 
no significant change of the spin-wave spectrum. 

' 

IN consideration of the Bose branches of the energy 
spectrum of metals in a magnetic field, an important 
factor to be taken into account is orbital motion of the 
conduction electrons. In the phonon spectrum, for ex
ample, this leads to a whole series of resonance ef
fects -geometrical resonance o'Scillations, [lJ acoustical 
cyclotron resonance (ACR), czJ giant quantum oscilla
tions, c3 , 4 J etc. It is shown below that allowance for the 
orbital motion of the conduction electrons in a ferro
magnetic metal leads to a comparatively large renor
malization of the spin-wave spectrum, independent of 
the magnetic field. This effect is essentially analogous 
to the renormalization of the phonon spectrum in a 
strong magnetic field. csJ 

In consideration of the spin-wave spectrum, we shall 
start from the fact that there exist in a ferromagnetic 
metal two types of Fermi excitations: s- and d-elec
trons, characterized respectively by small and large 
densities of states. Exchange interaction leads to or
dering of the spins of the conduction electrons. The 
Fermi surfaces corresponding to the two possible ori
entations of the spins of the s-electrons are, as a rule, 
separated by an amount of order -../e £F, where e is the 
Curie energy and £ F is the Fermi energy of the con
duction electrons. This same quantity determines the 
constant of interaction between the s-electrons and the 
spin waves. 

On carrying out a calculation similar to that made 
in c6 J, we arrive at the equation that determines the 
spin-wave spectrum: 

w = yH + ak2 + Il(w, k); ( 1) 

here w and k are, respectively, the frequency and thE! 
wave vector of the spin wave, y is the gyromagnetic 
ratio, H is the magnitude of the external magnetic 
field, and a ~ 8a2 is the exchange constant (a is the 
lattice constant). 

The polarization operator Il(w, k), according to c6 J, 

has the form 

Il(w,k) = g2 [GG-(GG)"']=- i-g_'_ S dedpdp'· 
(2n) 7 

X [G+(e + w, p + k, p')G-(e, p'- k, p)- G+(e + w,p, p')G-(e, p', p)]. (2) 
,i) 

Here g is the electron-magnon coupling constant, G± 
are the Green's functions of the conduction electrons 
with oppositely oriented spins, and (GG)W is the limit 
of the integral of the product of the Green's functions 
as k- 0. In going over to the momentum representa-
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tion, account was taken of the fact that in a magnetic 
:{;i.eld, the electronic Green's function does not depend 
solely on the difference of the spatial coordinates. On 
using the expression for the Green's function of an 
electron in a magnetic field and on integrating (2) over 
frequency and over the transverse components of mo
mentum, we get 

_ .\ dp __ n--'-(e_,+_("-p'-') l.,...-_n-'-(e_,--'('--p)~)
w- ez+(p) + ez-(P) + il) (3) 

where Mzm(p) = Lm~:;{Z,Zrh)e-P plm-ll is the matrix 
element used in c4 J, p = ck21/2eH, q = kz, n(c) is the 
Fermi distribution function at temperature zero, a± 
are renormalization constants of order unity, [?J and 
c~(p) is the energy of an electron in a magnetic field: 

V± [ 2eH 1 1 ) l en±(p)=-- ·--\n+- +p,'-P±'· . 
2p± c ' 2 -· 

(4) 

Here v± and P± are, respectively, the velocity and the 
momentum ort the Fermi surface (for simplicity, we 
consider the dependence of the electron energy on mo
mentum to be isotropic). 

According to c6 J, the energy difference between elec
trons with oppositely oriented spins is 

en+(p)- fn-(P) ~ f8ep, (5) 

Such a large "distance" between the Fermi surfaces 
precludes the existence of resonance effects similar to 
those that occur in the spectrum and precludes phonon 
damping. 

1. We consider the possible singularities of the in
tegral in the expression (3); we consider first the case 
q = 0. When q = 0, the denominator of the integrand in 
(3) can vanish when m- l ~ -Je cF;n, where n is the 
cyclotron frequenc,-. On the other hand, the matrix ele
ment Mzm behaves in the following fashion. When 

[(l+m)p]'"> lm-11 (6) 

it is an oscillatory function, whereas in the contrary 
case the matrix element is exponentially small. From 
this it follows that cyclotron resonance in the spin
wave spectrum can occur only when k ;:, D. = P+ - P-. 
Beginning with k = D., however, a collisionless, thresh-
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old-type extinction of spin waves, equal in order of 
magnitude to w (e!EF) 112 , becomes important. For this 
reason, no singularity of the ACR type is present in the 
magnon spectrum. In a similar manner, the great 
"distance" between the Fermi surfaces excludes the 
possibility of Pippard oscillations. 

We consider next the case 2(l + m)p] 112 « 1, which 
corresponds practically to the condition 

kR<1, (7) 

where R = cp0 /eH is the cyclotron radius. In this case, 
as follows from (6), it is necessary to retain in the sum 
(3) only the terms with m -l = 1, 0, -1. On the other 
hand, the summation over l may be replaced by inte
gration. As a result we arrive at the following formula: 

IT=-~ eH Saz { ~ IMz+a zi• ~dp n('tz+a(P))-n(ez-(p)) 
(2n)2 c a=t,o,-t ' ffi-e-;-+a (P)+ez-(P) 

_ ~ dp n(ez+(p))-n(ec(p)) }. 
· ffi-ez+(p)+ez-(P) (8) 

In the quasiclassical approximation, the matrix ele
ment has the form 

(9) 

where Jn(x) is a Bessel function. On expanding Jn(x) 
in (8) for small kR and retaining terms to and including 
the second order, we get after integration over p and 
l: 

(10) 

An estimate of the s - d exchange -interaction constant 
was obtained in [SJ: 

(11) 

where f.J.o is the Bohr magneton and M is the total mag
netic moment of the metal. On using this estimate, we 
finally find 

(12) 

As is seen from a comparison of formulas (12) and 
(1), the renormalization of the spin-wave spectrum that 
results from the orbital motion of the electrons in a 
magnetic field is larger by a factor (EF/e)1 12 than the 
term ak2 that is present in the absence of a magnetic 
field, and it has the opposite sign. 

We recall that the expression (12) relates only to the 
initial part of the dispersion curve, limited by the con
dition (7). The figure represents schematically the de
pendence of w on k for k < t.. (the mark on the axis of 
abscissas represents a value kR ~ 1). As is seen from 
the figure, the dispersion curve of the spin waves has a 
minimum, whose relative value is t..w/w ~ ..Je/EFUIEF· 

Obviously one can speak of a correction to the spec
trum only in a case in which the change t.. w in the spec-

w 

trum is large in comparison with the damping Im w • 
As has already been mentioned, at small magnon mo
menta, k < P+ - P-, damping caused by breaking up of 
a spin wave into an electron and a "hole" is absent. 
Another damping mechanism, connected with many
particle processes (for example, breaking up of a spin 
wave into a spin wave and an electron-hole pair or into 
several spin waves) leads, as estimates show, to a value 
of Im w proportional at least to the square of the spec
tral change, (t..w )2• Therefore the most important 
mechanism of spin-wave damping in metals at small 
momenta is apparently dissipation connected with the 
finite conductivity of the metal. Allowance for the finite 
conductivity can be made by solution of Maxwell's equa
tions for a ferromagnetic metal whose magnetic per
meability is determined by the microscopic treatment 
given above. Solution of Maxwell's equations leads to 
the following expression for the spin-wave spectrum 
and damping: 

- k2 c2k2 ( v \ 
ffi = yB-y8eF----2nyMffi 1 + i-.), 

Po2 ffio2 ffi 
(13) 

where w~ = 47TNe 2/m is the square of the plasma fre
quency of the metal, v is the electron collision fre
quency, and B = H + 41T M. 

As is evident from formula (13), the change in the 
spectrum is large in comparison with the damping in 
magnetic fields that satisfy the condition 

H>M v~mc• 
e ao 

(14) 

where ao is the static conductivity of the metal. For 
good metals (N ~ 1023 em -3 , T ~ 10-9 sec, M ~ 102 to 
103 G), this leads to the estimate H > 103 to 104 Oe. 

We remark that interaction of spin waves with the 
electromagnetic field, in the strong-field range under 
consideration (w T » 1), causes an additional renor
malization of the spin-wave spectrum, not connected 
with the Fermi-liquid interaction. As is evident from 
the expression (13), electromagnetic interaction leads 
to an additional amplification of the minimum on the 
dispersion curve w (k). 

The absolute value of the minimum t..H is quite 
small, and in fields H ~ 105 Oe it is of the order of a 
few Oersteds. Nevertheless the minimum can be ob
served in sufficiently pure ferromagnetic metals with 
a path length of the order of a few millimeters, at low 
temperatures, in magnetic fields of order 104 to 105 Oe. 
An experiment that may be suitable for this purpose is 
one on reflection of an electromagnetic wave from a 
semi-infinite ferromagnetic metal. As was shown in 
reference [BJ, the existence of an extremum on the dis
persion curve-a termination point of the spectrum
leads to the formation of a standing electromagnetic 
wave in the volume of the metal and, correspondingly, 
to complete reflection of the wave from the metal sur
face. Thus a minimum on the dispersion curve should 
manifest itself in the existence of a singularity of the 
surface impedance at the displaced ferromagnetic
resonance frequency. 

2. We now consider the case in which the wave vec
tor of the spin wave is parallel to the direction of the 
magnetic field. In this case Mnm(p) = Onm, and the ex
pression (3) takes the form 
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n(e1+(p))- n (e1-(p)) 

w+eo 
}. (15) 

For simplicity, we have taken the effective masses of 
electrons with oppositely directed spins to be equal, and 
we have designated by £o the "distance" between the 
Fermi surfaces. 

For small magnon momenta, the expression (15) for 
the polarization operator describes quantum oscilla
tions in the spin-wave spectrum, of the de Haas-van 
Alphen type. On going over from a sum to an integral, 
with the aid of Poisson's formula, and carrying out the 
integration over p, we get 

g2 ( 2nm) '/,Q'/, 
IT=- --a+a k2 

(2:n;)2 Bo2 

~ 1 { ( BF + Bo 3:n; \} x LJ--, e:xlp 2nli ---+-.1 .. 
1~ 1 (2nl) '' , Q 4 

(16) 

As is seen by comparison of formulas (16) and (1), 
the relative amplitude of the oscillatory term is 

Re IT BF ( Q )''' 
--~---

ak2 E) BF • • 
(17) 

We shall discuss the situation for large magnon mo
menta. When k .<: ~. there are in the spin-wave spec
trum singularities connected with the possibility of a 
spin wave's breaking up into an electron and a "hole" 
near the Fermi surface.l6 l This singularity is analo
gous to a Kohn singularity in the phonon spectrum. l9 l 

In a magnetic field, emission by a phonon of an elec
tron-hole pair leadsl3 , 4 l to giant quantum oscillations 
in the damping of phonons and to singularities in the 
phonon spectrum. In the spectrum and damping of mag
nons, however, giant oscillations are impossible, as be
fore, because of the great distance between the Fermi 
surfaces. Already at values of the spin-wave momen
tum of order ~. the term ak2 becomes appreciably 

larger than the Zeeman term yH. Then the width of the 
interval in which the damping due to breaking up of a 
spin wave into an electron and a hole differs from zero 
is equal to w!n ~ ak2 In ::::; 6 2 ;n£F » 1; that is, it is 
large in comparison with the distance between neigh
boring peaks in the damping. As a result, all the "col
umns" in the damping overlap, and the total damping is 
the same as in the absence of a magnetic field. 

In closing, the authors express their profound_grati
tude to I. E. Dzyaloshinskii, M. I. Kaganov, and E. A. 
Kaner for discussion of the results of the research. 
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