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Superposition of the magnetic field of a wave on a constant external magnetic field is equivalent to 
modulating the external field. A study of the perturbed trajectories of the particles in the modulated 
field shows that the variation of the phase relations of the particle motion and the electric field can 
lead to energy absorption. This effect is of the nature of parametric resonance, and it appears at 
frequencies equal to the cyclotron frequency divided by an integer (undertones). The resonance width 
is inversely proportional to the relaxation time, and the height is proportional to the square of the 
relaxation time. 

IN the theory of wave propagation in a plasma, the ef­
fects connected with the magnetic field of the wave are 
usually taken into account only in the higher approxima­
tions of perturbation theory. The Lorentz force due to 
the magnetic field of the wave is, as a rule, small. Nev­
ertheless, important effects may be caused by the mag­
netic field of the wave. l 11 

Superposition of the magnetic field of a wave on a 
constant external magnetic field is equivalent to modu­
lating the latter field. The modulated magnetic field 
changes the phase relations of the particle motion and 
the electric field, and consequently, changes the ab­
sorption of energy by the particle from the electric 
field. As a result of this, parametric resonance may 
arise. Thus, investigation of the nonlinear effects con­
nected with the magnetic field of the wave can be re­
duced to a linear problem of the parametric resonance 
type. 

The motion of charged particles in modulated mag­
netic fields was examined in references l2 - 4 J for sim­
ple field configurations, where a uniform but time­
varying component Hz cos yt ( y is the modulation fre­
quency) is superimposed on a constant uniform mag­
netic field Hoz (z is the unit vector along the z-axis). 
For this case, the induced electric field increased lin­
early with distance from the z axis. In the present 
paper, we examine a more realistic case of a plane 
wave with wave vector k perpendicular to the external 
magnetic field Hoz, and with the magnetic field of the 
wave directed along the external field. As is known, 
such a situation is realized, in particular, in the prop­
agation of a direct magnetosonic wave in a plasma when 
w « Wei (Wei is the ion cyclotron frequency). We shall 
solve the nonrelativistic problem by studying the mo­
tion of the different charged particles in this wave. The 
analogous problem for the relativistic case, but only 
for small modulation intensity (h = H/Ho « 1), was 
solved in the first approximation in h by Trubnikov and 
Bazhanova,l sJ where it was shown that at the higher 
harmonics of the cyclotron frequency, the electrons ab­
sorb energy from the wave. This effect, for waves prop­
agating exactly transverse to the magnetic field, is of 
a purely relativistic nature (cf. for example, lsJ, p. 243) 
and will not be considered in the present paper. 

The usual procedure consists of finding the unper­
turbed particle trajectories in the constant external 

magnetic field, and then calculating the corrections to 
these trajectories with the magnetic field of the wave 
regarded as a small perturbation. We, to the contrary, 
shall find the perturbed trajectories, or more precise­
ly, the dependence of the particle velocities on time in 
the fields of the plane waves, taking into account com­
pletely their dependence on time but assuming their 
spatial variations to be small. The problem then re­
duces to solving the equations of motion for a particle 
with mass M and charge Ze: 

dv ( 1. ) Mdt= Ze E+~(vH] , (1)* 

where the fields E and H are given as functions of the 
argument k • r - wt; r = R0 + or is the position vector 
of the particle, and R0 denotes its initial position. 

The problem can be solved in principle by succes­
sive approximations, if or is found from the solution of 
(1). The approximation assumed in the present paper is 
that we consider long waves or small displacements or, 
such that the quantity (k, or) is regarded as a small pa­
rameter. Under this hypothesis, we neglect spatial de­
pendence of the fields completely, and describe them as 

E = E cos ( wt- M, 
H = [Ho+H cos (wt- ~)]z, 

where {3 = k· Ro is the initial phase of the particle. 
The proposed solution method is applicable when the 

initial phase can be assumed to be random. To this end, 
a random change in the particle trajectory must occur 
over the distance or, as a result of collisions or other 
relaxation processes. Thus, the condition of applicabil­
ity of the proposed method is the fulfillment of the in­
equality: 

(2) 

where T is the relaxation time. 
For the field configuration assumed, the component 

of the particle velocity along the magnetic field Vz will 
be conserved, and the field of the wave will act only on 
the perpendicular component of the velocity. If we put 

ZeH0 Z~ . H 
We es Me , a es M(Ex +lEy), h""' Ho 

*[vill = v x H. 
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(h is called the intensity of the modulation of the mag­
netic field) and introduce w = Vx + ivy, then the motion 
of the charged particle in the plane perpendicular to the 
magnetic field HoZ will be described by one equation 
for the complex variable w: 

dw 
dt =a cos (rot- II)- iroc[1 +h cos (rot- ~)]w. (3) 

The general solution of (3) can be written in the form 
t 

w=e-i• ~ei•acos(rot-jl)dt+(v.,+ivll!l)e-i•, (4) 
0 

where (v)xk=o = V0x, (v)yjt=o = v0y, and if we put 

1i = w0 /w, then 

'X== lilct + bhsin ((J)t- ~) + {Jh sin ~0 

Using the Jacobi-Anger formula 

we readily see that 

cosx = ~ln(llh) cosH roc+ nro)t- n~ +Ohin~], 

sinx= ~ ln(Oh)sin[({J)c+nro)t-n~+llhsin~]. 

Calculating in accordance with (4) with formula (5) 
taken into account, we obtain the following expression 
for w(t): 

w =Vo-L cos (x- 1j>) - ivu sin ('X- 1jl) 

ZeiEI 
+---,w-[(Yt + iYz) cos ('X -1)) + (Y2 - iYt) sin (x -TJ)], 

where 

Yt = _ _2 ~nl:.n(Oh) sin[(ll-n)rot/2] (0-n)rot+v 
Ohn~~ (ll- n)ro cos 2 

y =-_2 ;nl= (Oh) sin[(ll-n)rot/2] 0 (ll-n)rot+v 
2 Ohn~ n (ll-n)ro sm 2 ' 

and the parameters have the following meaning: 

Vo-L == l'v.,• + V0y2, tg 1jl == Voy I Vox. tg 1) == Ey I Ex, 

y == 21\h sin ~ + 2n~. 

(5) 

(6) 

Changing over from the complex variable w to the ve­
locity components, we get 

Ze 
vx= vucos(x-1j>) +M lEI [Ytcos("X-TJ)+ Y2sin("X-1))], 

Ze (7) 
Vy= -vusin ('X-'¢) +M lEI [Y2cos (x-1))- Y1sin ('X-TJ)]o 

The velocity components vx and vy contain, accord­
ing to (6), resonance terms at the values of 

1\=:(J)clro=n, (B) 

where n is an integer. It is precisely these resonance 
terms which determine the energy absorbed by the par­
ticle from the wave. 

The change in the particle energy 6.E, resulting from 
the action of the wave field, is calculated from (7): 

+ 2vo~ [Y1 cos(1j> -TJ)+ Y.sin('IJl-1)}]} o (9) 

The main contribution to 6.E is given by the reso­
nance terms defined by the condition (B). Near reso­
nance, this condition is replaced by 

ll - n = ({J)c - 1UJ)) I ro ""' 18 < 1, (10) 

where n is the integer closest to o. Extracting from 
(9) only the resonance terms according to condition (10), 
we get 

Mo ~ ZeJ~{-ZeiEI [2n Ln(lln) sin(erot/2) ·]2 
2 1lf llh ero 

4vo~ sin(erot/2) ( erot . \} (11) 
- MnLn(M) --ero--cos 2- + llh sm ~ + ~n + 1) -1jl) 0 

We assume the initial phases of the particles to be 
random, so that 6.E must be averaged over {3. In the 
same way we can also average expression (11) over lf;, 
the azimuthal angle of the direction of the initial veloc­
ity. The averaged value of 6.E will be written as 
(6.E)f3, l/J. Averaging over {3, we get 

<AE) _ ZeiEI {ZeiEI [ 2n 1 sin(erot/2) ]2 
' ~-·~- -i- """-M llh -n(llh) ero 

4170~ 1 '(~h) sin(e{J)t/2) ( erot )} (12) -{;h-·n n- u 8(!) cos 2+11-1Jl . 

For an isotropic initial distribution, the second term 
of (12) vanishes after averaging over lf;, and we get 

<'"') _ 2 [Ze1Ein 1 ( h sin(e{J)t/2) ] 2 

l.l.L ~o>i' - ""jj ~ -n ll ) ---;;;-- o (12a) 

This function is periodic, but if condition (10) is 
satisfied, its period is large; and if the period is signif­
icantly greater than the relaxation time T, energy ab­
sorption takes place. At exact resonance (1i = n) the ex­
pression (12) becomes 

t2 [ZeiEI ]2 (AE)~ .• ; ~ 211! -h-1-n(llh) . (13) 

In the limit as h - 0, resonance takes place only for 
1i = 1, i.e., it changes into ordinary cyclotron resonance, 
and formula (13) becomes the well known expression for 
energy absorbed in cyclotron resonancel 41 (p. 3B3): 

(AE) - (ZejEi)2 t• 
M>- Bllf o 

At a finite modulation intensity h the resonance fre­
quencies become equal to the cyclotron frequency di­
vided by integers (undertones of the cyclotron fre­
quency). This effect has exactly the same physical na­
ture as parametric resonance in an externally modu­
lated magnetic field. However, since in our case h is 
proportional to the amplitude of the wave, this effect 
has become nonlinear. 

In the simplest field geometry, l 2 • 31 the equation of 
particle motion reduces to Hill's equation with charac­
teristic frequency wc/2. Thus, the.frequency spectrum 
of parametric resonance starts at the cyclotron fre­
quency. In our case, resonance occurs at exactly the 
same frequencies, but results from the solution of the 
first order complex equation (3) and not from the solu­
tion of Hill's equation. The essential difference is that 
in our problem, the resonance width is determined by 

the relaxation time T, while in the case of the simplest 
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field geometry the resonance width is determined by the 
specific stability diagram. [ 3 J 

In expression (12) for the absorbed energy, the time 
t must be replaced by the relaxation time T. In the ab­
sence of collisions (T ~ oo) the resonance is infinitely 
narrow and infinitely high. For finite values of T, the 
resonance width can be estimated from the condition 
we- nw < 1/T. The resonance height is proportional to 
T2. 

The conditions for the applicability of our results 
are the fulfillment of inequality (2) and the isotropic ini­
tial distribution of velocity, which is used in the aver­
aging of (12) over 1/J. Violation of the isotropy can only 
lead to the appearance in expression (13) for the ab­
sorbed energy of an additional term proportional to 
first power in time. For the fulfillment of inequality (2), 
the necessary conditions reduce obviously to the re­
quirement 

kRc < 1, lev I w < 1, 

where Rc is the cyclotron radius and v is the amplitude 
of the particle velocity in the wave. The first of these 
conditions requires a sufficiently strong constant mag­
netic field; the second is satisfied if the particle veloc­
ity is small in comparison with the phase velocity of 
the wave. 

The results of this paper (the occurrence of reso­
nance at the undertones of the cyclotron frequency) are 
the direct consequences of allowance for the magnetic 
field of the wave. They have a direct relation to the very 
general question of accelerating charged particles in 
high-frequency electromagnetic fields and to the heating 
of plasmas by such fields. A fugure goal of our work is 
the application of the results to a wide range of con­
crete physical phenomena of the type indicated; while 
the main problem of the present paper is the presenta­
tion of a procedure for taking into account the influence 

of the magnetic field of the wave on the motion of the 
charged particle. Essentially, the method presented 
forms the first step in the development of a more gen­
eral problem-the solution of kinetic equations by the 
method of trajectories with exact allowance for the per­
turbations of the particle trajectories in electromagnetic 
fields. 

In this paper, the problem was solved in an approxi­
mation in which the wave field is spatially independent. 
Further refinement of the method presented must be 
connected with an approximate allowance for the de­
pendence of the wave field on the space coordinates. The 
inequality (2) may then be replaced by a less stringent 
condition. 
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